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The following work was done under the supervision of Professor Andy Ruina and is based on a 
homework problem from MAE6780 by Brandon Hencey. 

Summary 
This report describes the approach undertaken to create a controller for a self-stabilizing bicycle. 
The model for the bicycle chosen is based on a simplified version of the linearized equations of 
motion cited in footnote 1. Two controllers were then created using this model: one for bicycle 
stability, and another for bicycle stability and steering reference tracking. These controllers were 
then implemented in simulation by using the ode45 Matlab solver and they were shown to meet 
the specifications. 

Motivation 
 
The goal of this project is to create a controller for a bicycle that self-stabilizes. This controller 
should receive a reference steering angle and then make the bicycle follow this reference while 
staying upright.  

In the future it is desired to implement the controller on a real bicycle, which will be able to self-
stabilize and navigate using position data. This controller will also be used to create a steer-by-
wire bicycle in which the rider turns a handlebar that is essentially a joystick. The 
microcontroller implementing the controller will then turn the steering wheel as needed, thus 
causing the bicycle to turn stably. Such a bicycle will be able to be ridden by people who do not 
know how to ride a bicycle or who cannot stabilize it themselves. 

   



Dynamics Model 

 
Linearized Equations of Motion 
The Dynamics model of a bicycle used here are based on the linearized equation of motion 
described in a paper co-written by professor Andy Ruina1. These equations are as follows: 

 [1]  𝜙
𝛿
= 𝑀!!(−𝐶 𝜙

𝛿
− 𝐾 𝜙

𝛿 +
𝑇!
𝑇!

) 

 [2]  𝜓 = !"!!!
!

cos 𝜆  

 [3]  𝑥 = 𝑣𝑐𝑜𝑠 𝜓  

 [4]  𝑦 = 𝑣𝑠𝑖𝑛 𝜓  

where: 

 𝜙 = 𝑟𝑜𝑙𝑙  𝑎𝑛𝑔𝑙𝑒 𝜓 = 𝑦𝑎𝑤  𝑎𝑛𝑔𝑙𝑒   ℎ𝑒𝑎𝑑𝑖𝑛𝑔  

 𝛿 = 𝑠𝑡𝑒𝑒𝑟  𝑎𝑛𝑔𝑙𝑒 𝑥 = 𝑥  𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛  𝑜𝑓  𝑏𝑎𝑐𝑘  𝑤ℎ𝑒𝑒𝑙  𝑤𝑖𝑡ℎ  𝑟𝑒𝑠𝑝𝑒𝑐𝑡  𝑡𝑜  𝑎  𝑓𝑖𝑥𝑒𝑑𝑓𝑟𝑎𝑚𝑒 

 𝑇! = 𝑟𝑜𝑙𝑙  𝑡𝑜𝑟𝑞𝑢𝑒 𝑦 = 𝑦  𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛  𝑜𝑓  𝑏𝑎𝑐𝑘  𝑤ℎ𝑒𝑒𝑙  𝑤𝑖𝑡ℎ  𝑟𝑒𝑠𝑝𝑒𝑐𝑡  𝑡𝑜  𝑎  𝑓𝑖𝑥𝑒𝑑𝑓𝑟𝑎𝑚𝑒 

 𝑇! = 𝑠𝑡𝑒𝑒𝑟  𝑡𝑜𝑟𝑞𝑢𝑒      𝑣 = 𝑓𝑜𝑟𝑤𝑎𝑟𝑑  𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦  𝑜𝑓  𝑏𝑖𝑐𝑦𝑐𝑙𝑒  (𝑎𝑠𝑠𝑢𝑚𝑒𝑑  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 

 𝑤 = 𝑤ℎ𝑒𝑒𝑙𝑏𝑎𝑠𝑒       𝜆 = 𝑠𝑡𝑒𝑒𝑟  𝑎𝑥𝑖𝑠  𝑡𝑖𝑙𝑡  

 
Figure 1: Bicycle Coordinate Axes [Figures from paper cited in 1] 

It should be noted that this model assumes a constant forward velocity. In practice this would be 
ensured by another controller acting on a hub motor attached to one of the wheels guaranteeing a 
constant rotation rate of the wheel. 

The matrices M, C and K are obtained from the parameters of the bicycle being used. (See 
appendix A for the values used to model the bicycle which will be used for this specific project. 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  Linearized	  dynamics	  equations	  for	  the	  balance	  and	  steer	  of	  a	  bicycle	  	  	  J.P.	  Meijaard,	  Jim	  M.	  Papadopoulos,	  Andy	  Ruina,	  A.L.	  
Schwab	  



As will be seen later, many of these parameters will be ignored except for some geometric 
parameters and the overall mass of the bicycle) 

For more detail on how to obtain these matrices please see the cited paper. A Matlab script was 
written which obtains these matrices for a bicycle with any parameters of mass, inertia, and 
dimension given. The matrices from this script were compared the paper’s benchmark values, 
thus confirming their validity. 

Equations 2, 3, and 4 above are mostly for simulation purposes. Equation 1, which describes the 
dynamics of the bicycle’s roll angle and steer angle, is the one which will inform how the 
controller for the bicycle will be created.  

Point Mass Bicycle 
The linearized equations of motion above are a good start, but they can be difficult to use for 
controls purposes because these equations deal with the steering torque, a state that is difficult to 
control and measure in a real bicycle. Upon a suggestion by professor Ruina, the following 
simplifications to the model were made: 

• The front frame has no inertia 
• A vertical head angle (𝜆 = 0) 
• No trail (𝑐 = 0) 
• Rear wheel has no inertia 
• Rear frame is a point mass 
• Front wheel has no mass or inertia 

These simplifications essentially turn the bicycle into a point mass, thus eliminating the 
individual inertias of the bicycle’s components and leaving only a large steerable, point mass 
“hinge” satisfying the rolling constraint.  

Because these simplifications remove the interactions between the steering torque and inertia, the 
second equation (𝛿) becomes meaningless and can be removed. This leaves the following 
equation: 

 [5] 𝜙 = −𝑀𝑖𝐾!!𝜙 −𝑀𝑖𝐾!"𝛿 −𝑀𝑖𝐶!"𝛿 +𝑀𝑖!!𝑇! 

where MiK11 is the element in the first row and first column of the matrix produced by left 
multiplying the inverse of the M matrix times the K matrix in the linearized equations.  

Equation 5 is what will be used for controls formulation. 

  



Validity of the point mass model 
It may not be immediately obvious that this simplification yields a valid model. To test this, a 
controller was created for stabilizing the bicycle and it was implemented using the linearized 
equations and the simplified equations. The results are compared in Figure 2. 

As can be seen, the dynamics vary slightly with the largest differences being in the overshoot of 
each of the states.  

 
Figure 2: Comparison of the Linearized Equations and the Point Mass Bicycle Equations 

 
Figure 3: Comparison of the Linearized Equations and the Point Mass Bicycle Equations 



 

A B and C form  
The controls strategy used here will involve assuming that a servo-motor mounted to the steering 
wheel can provide any steering angular velocity desired. In this way the 𝛿 variable in equation 5 
can be treated as a control variable as well as a state. This leads to the following dynamics 
formulation: 

 [6] 
𝜙
𝛿
𝜙

=
0 0 1
0 0 0

−𝑀𝑖𝐾!! −𝑀𝑖𝐾!" 0

𝜙
𝛿
𝜙

+
0
1

−𝑀𝑖𝐶!"
𝛿 +

0
0

𝑀𝑖!!
  𝑇! 

or 

 [7] 𝑧 = 𝐴𝑧 + 𝐵𝑢 + 𝐷  𝑇!"#$ 

The outputs of interest are the roll and steer angles so the output variable is: 

𝑦 = 𝐶𝑧 

where: 

𝐶 = 1 0 0
0 1 0  

Control Design For Self Stabilization 
Now that a model is obtained, a controller can be designed to stabilize the bicycle. 

Specifications 
In order to guide the control design process, a set of desired specifications are listed for the 
overall system dynamics. Firstly, the bicycle is required to have a 5% settling time smaller than 1 
second to a step input, ensuring a fast response. The steering angular velocity is also desired to 
be kept below 7  𝜋  radians per second to ensure that the servomotor can provide this actuation. 
This limit can be imposed on a step response of size !

!
 radians to represent a worst-case scenario 

when the bicycle is operational. 

Specs 

• 1 second 5% settling time 
• steering angular velocity < 7𝜋 as response to a step input of 𝜋/4 

  



Block Diagram 
Knowing the system dynamics of the bicycle and the specifications, the overall system can be 
put into block diagram form: 

 

It is desired to find a K matrix that will stabilize the bicycle and meet the specifications. 

Controller Design Using CVX 
CVX is a convex optimization toolbox for Matlab, and it is what will be used here to create 
controllers and observers that meet the required specifications. This technique for controller 
design states the creation of a closed loop system as an optimization problem, which must satisfy 
a set of linear matrix inequalities. Please refer to Appendix B for details on this process.  

CVX outputs the following controller when given the mentioned specs and a point mass bicycle 
model with parameters listed in Appendix A. 

 [8] 𝐾 = [−9.4964        5.9447      − 2.8767] 

Closed Loop System Simulation 
Using the controller listed in equation 8, a simulation is made of the closed loop system with the 
initial conditions of the bike as shown below: 

 𝜙! =
!!
!

  

 𝛿! = 0 

 𝜙! = 0 

The results are shown in figures 4 to 6. 

For more details on how the animation was achieved, please see Appendix C. 

As can be seen, the system meets the settling time requirement of 1 second and the steering 
angular velocity does not exceed 7𝜋 in magnitude. The states of the bicycle also stay within 
reasonable values, the steering angle does not exceed 𝜋/2 and the roll angle does not fluctuate on 
its way to the upright position.  



 
Figure 4: ODE Simulation of Closed Loop System 

 
Figure 5: Bicycle Trajectory 

  



 

 
Figure 6: Animation of ODE simulation 

 

  



Observer Based Controller With Reference Tracking 
The ultimate goal of this project is to create a bicycle which can track a steering reference and 
self-stabilize. While the controller mentioned in the previous section is adequate for stabilization, 
it does not track a steering reference and does not provide integral control to guarantee zero 
steady state error. In order to do this, we can refine the specifications mentioned previously: 

Specs 

• 1 second 5% settling time 
• steering angular velocity < 7𝜋 as response to a step input of 𝜋/4 
• zero steady state steering angle reference tracking 

The approach here will be to create new states which will be the integral of the reference error, 
and a controller will be designed for reference tracking. Because these new states are not easy to 
sense in a practical setting, an observer will also be designed to provide full state knowledge to 
the controller. The observer will be made to converge to the real states much faster than the 
controller dynamics to ensure the separation principle holds. Finally, this system will be 
simulated using an ode45 solver. 

Figure 7 shows a block diagram of the overall system approach. The system in the dotted box is 
the system observer. 

 
Figure 7: Observer Controller For Reference Tracking Block Diagram 

  



Augmented System 
In order to meet the mentioned specifications, we can re-formulate our dynamics system to 
include two new states: 

 𝑒!"# = 𝑟 − 𝐶!
! 𝑧 

where 

 𝑟 =
𝜙!"#
𝛿!"#

=
0
𝛿!"#

 

is the reference signal, and eref is the integral of the error between the current states and the 
reference states. The new augmented system takes the form: 

 
𝑧
𝑒!"#

= 𝐴 0
−𝐶 0

𝑧
𝑒!"# + 𝐵

0 𝑢 + 0
𝐼 𝑟 

or: 

 
𝑧
𝑒!"#

= 𝑧 = 𝐴𝑧 + 𝐵𝑢 + 𝐵!"#𝑟 

Controller Design Using CVX for Reference Tracking 
Using these new 𝐴 and 𝐵 matrices, the procedure described in in Appendix B can be used to 
create a controller which uses all of these states to track the steering reference and maintain 
stability. 

CVX outputs the following controller. As mentioned before, it is using the point mass bicycle 
model with values in Appendix A. 

 𝐾 = −22.7218        9.1335      − 2.5151      47.6035    − 29.9128   

Observer Design Using CVX 
In order to obtain all of the states needed for the feedback controller above, an observer must be 
created to approximate the real states of the system. This problem essentially reduces to creating 
an observer feedback matrix 𝐾! which is guaranteed to converge to the real states of the system.  

 𝑒!"# = 𝐴 − 𝐾!𝐶 𝑒!"# 

This observer can be designed using CVX and the process for doing this is detailed in Appendix 
B. The only thing required of this observer is that it obtains a 5% settling time of less than 0.1 
seconds so that it does not interfere with the control dynamics. 

CVX outputs the following observer gain: 

 𝐾! =
0.1559   −0.0007
0.0004 0.0443
6.1965 −0.0401

∗ 10! 



however, because we have two unobservable states in our observer, the Ko matrix must be 
modified slightly for the matrix dimensions to match. 

 𝐾! =

0.1559   −0.0007
0.0004 0.0443
6.1965 −0.0401

0 0
0 0

∗ 10! 

 

Simulation of Observer and Controller 
In order to simulate the response of the observer controller, the whole system can be put into the 
following form: 

 𝑧
𝑧 = 𝐴 −𝐵𝐾

𝐾!𝐶 (𝐴 − 𝐵𝐾 − 𝐾!𝐶)
𝑧
𝑧 + 0

𝐼 𝑟 

and simulated using the Matlab ode45 solver.  

For this simulation the following reference signals and initial conditions are used: 

 𝑧! =
𝜙!
𝜙!
𝛿!

=

!
!
0
0

    𝑧! =

𝜙!"#
𝜙!"#
𝛿!"#
𝑒!"#$
𝑒!"#$

=

0
0.1
0.2
0
0

 

Figures 8 to 11 show the system response. As can be seen, the observer converges to the real 
states within a tenth of a second, the bicycle stabilizes in less than 1 second and at steady state, 
the bicycle travels in a circle, as expected.   



 
Figure 8: Observer Transient Behavior (on the Timescale of Milliseconds) 

 
Figure 9: Controller Transient Behavior 

  



 
Figure 10: Bicycle Trajectory (10 second simulation) 

 
Figure 11: Reference Tracking Simulation 

  



Comparing the Controls Models 
Two controllers were described in this report and were demonstrated to meet the specifications 
required. However, these two models differ in ways the deserve mentioning.  

The controller for self-stabilization, while only stabilizing the bicycle without reference tracking, 
is a very easy controller to implement on a real microcontroller. If all of the states can be 
provided by sensors, then all that is needed to implement the control law is a one line operation: 

 𝑢 = −𝐾𝑧 

The second controller is a bit more complicated to implement. Because it involves an observer, 
an integrator is needed to predict the states of the bicycle. However, this controller is much more 
complete and allows for steering reference tracking which is our goal. 

Conclusion 
This report has detailed the approach taken towards creating a self-stabilizing bicycle. A 
simplified point mass model was described, and its validity was confirmed by comparing it to the 
linearized equations of motion for a bicycle. Then, this point mass model was used to create two 
different kinds of controllers: one for stability and another for stability and steering reference 
tracking. The controllers were then simulated and shown to meet the required specifications.   



Appendix A: 
Bicycle Model Parameters 
These parameters are based on measurements of the bicycle, which is desired to stabilize. Some 
of these parameters were not changed from the benchmark values listed in the paper cited in 
footnote 1 because no effort was made yet to measure these values from the real bicycle. 

 Parameter Symbol Value  
 Wheel base w 1.02 m 

Trail c 0.08 m 
Steer Axis Tilt 𝜆 𝜋/10 
Gravity g 9.81 m/s^2 
Forward Speed v 3.57 m/s 

Rear 
Wheel 

Wheel Radius rR 0.1905 m 
Wheel Mass mR 6.5 kg 
Mass Moments of Inertia (IRxx,IRyy) (0.0603,0.12)*mR/2 kg*m^2 

Rear Body 
and Frame 
Assembly 

Position Center of Mass (XB,zB) (0.3,-0.9) m 
Mass mB 15.65 kg 
Mass Moments of Inertia 𝐼!"" 0 𝐼!"#

0 𝐼!"" 0
𝐼!"# 0 𝐼!""

 
9.2 0 2.4
0 11 0
2.4 0 2.8

*mB/85 

Front 
Handlebar 
and Fork 
Assembly 

Position Center of Mass (XH,zH) 0.9 m 
Mass mH 4 kg 
Mass Moments of Inertia 𝐼!"" 0 𝐼!"#

0 𝐼!"" 0
𝐼!"# 0 𝐼!""

 
0.05892 0 −0.00756

0 0.06 0
−0.00756 0 0.00708

 

Front 
Wheel 

Radius rF 0.1905 m 
Mass mF 1.81 kg 
Moments of Inertia (IFxx,IFyy) (0.1405,0.28)*mF/3 

Linearized	  Model	  for	  Bicycle	  
𝑀 = 16.9716 0.6662

0.6662 0.1584 	  	  	  	  	  	  	  	  	  	  	  𝐾 = −181.1716 246.1913
−8.1393 10.6009 	  	  	  	  	  	  	  𝐶 = 0 33.7803

−3.7922 2.5322 	  

	   𝜙
𝛿
= 𝑀!!(−𝐶 𝜙

𝛿
− 𝐾 𝜙

𝛿 +
𝑇!
𝑇!

)	  

Point	  Mass	  Model	  for	  Bicycle	  
𝑀𝑖𝐾!! − 10.9              𝑀𝑖𝐾!" = 13.8833                𝑀𝑖𝐶!" = 1.1667                𝑀𝑖!! = 0.0789	  

𝜙 = −𝑀𝑖𝐾!!𝜙 −𝑀𝑖𝐾!"𝛿 −𝑀𝑖𝐶!"𝛿 +𝑀𝑖!!𝑇! 

  



Appendix B:  
Controller and Observer Design Using CVX 
Convex Optimization 
CVX2 is a convex optimization toolbox for Matlab. This toolbox can be used for the design of 
control algorithms by stating the creation of the controller K as an optimization problem in 
which the closed loop system is required to meet any set of given specs.  

Controller Design Using CVX 
For this section, a dynamics model of the following form will be assumed: 

  𝑧 = 𝐴𝑧 + 𝐵𝑢 

subject to a control law: 

  𝑢 = −𝐾𝑧 

Solving for K is stated as a convex optimization by four linear matrix inequalities. One of these 
linear matrix inequalities guarantees Lyapunov stability of the closed loop system, LMIs two and 
three, along with the first, place bounds on the control effort used for a given set of initial 
conditions, and the fourth places limits on the settling time of the closed loop system. 

Linear Matrix Inequality 1 – Guarantee Lyapunov Stability 
This first LMI aims to ensure that the closed loop system will be a Lyapunov stable system that 
settles to our desired stability point. That is, it will ensure that our system will always head in the 
direction of the desired final states. To do this, a value function is defined as such: 

  𝑉 = 𝑧!𝑃𝑧 

where z is a vector of our states and P is a cost matrix to be determined. The derivative of this 
function is: 

  𝑉 = 𝑧!𝑃𝑧 + 𝑧!𝑃𝑧 

  𝑉 = 𝑧!(𝐴!"! 𝑃 + 𝑃𝐴!")𝑧 

where: 

  𝐴!" = 𝐴 − 𝐵𝐾 

In order to ensure Lyapunov stability the following properties are required: 

  𝑉 > 0  

  𝑉 < 0 

so that the value function to always heads to zero. In order for this to be the case, P must be a 
positive definite matrix, and 𝐴!"! 𝑃 + 𝑃𝐴!"  must be a negative definite matrix.  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2	  http://cvxr.com/cvx/	  	  	  CVX	  Matlab	  Convex	  Optimization	  	  Michael	  C.	  Grant,	  Stephen	  P.	  Boyd	  



  𝑃 > 0 

  𝐴!"! 𝑃 + 𝑃𝐴!" < 0 

This can be guaranteed by creating P and K in the right way. However, P and K appear 
nonlinearly in the above inequalities. In order to do this we can restate our problem as one 
inequality: 

  −(𝐴!"! 𝑃 + 𝑃𝐴!") 0
0 𝑃

> 0 

and apply a congruence transformation: 

  𝑃!! 0
0 𝑃!!

−(𝐴!"! 𝑃 + 𝑃𝐴!") 0
0 𝑃

𝑃!! 0
0 𝑃!!

!
> 0 

 

  
−(𝑃!!𝐴! − 𝑃!!𝐾!𝐵! + 𝐴𝑃!! − 𝐵𝐾𝑃!!) 0

0 (𝑃!!)!   
> 0 

Now, as can be seen, the terms 𝑃!! and 𝐾𝑃!! appear linearly. Applying a change of coordinates: 

  𝐽 = 𝑃!!𝐾! 

  𝑌 = 𝑃!! 

the expression becomes: 

 [9] −(𝑌𝐴! − 𝐽𝐵! + 𝐴𝑌 − 𝐵𝐽!) 0
0 𝑌!   

> 0 

Using CVX we can solve for a J and Y that satisfy this LMI and thus find K and P: 

  𝑃 = 𝑌!! 

  𝐾 = 𝑃𝐽 ! 

Linear Matrix Inequalities 2 and 3 – Minimize Control Effort 
Because the value “V” from the Lyapunov stability definition is a non-physical value, we can use 
it to create bounds on the control effort 𝑢. This can be done by way of the following inequality: 

  𝑢! < 𝑉 𝑧 < 𝑉 𝑧0 < 𝛾! 

where 𝑢 is the control effort,  𝑉 𝑧0    is the first value of the system in time, and 𝛾 is some spec 
we choose.  

LMI 1 

The inequality  

  𝑉 𝑧 < 𝑉 𝑧0  



is already guaranteed by Lyapunov stability, but the first and third each require an LMI. 

LMI 2 

The inequality 

  𝑉 𝑧0 < 𝛾! 

Ensures that the first cost of the Lyapunov function is lower than the square of our control 
specification.  

This can be rewritten as: 

  0 > −𝛾! + 𝑧!!𝑃𝑧! 

applying a Schur complement: 

  
−𝛾! 𝑧!!

𝑧! −𝑃!!
< 0 

and using the same change of variables as before 

 [10] −𝛾! 𝑧!!
𝑧! −𝑌 < 0 

Now that this inequality is linear with respect to Y it can be put into the CVX solver. The value 𝛾 
and the initial conditions matrix 𝑧! will be specs we input as required max control effort for a 
given initial condition.  

LMI 3 

The third inequality 

  𝑢! < 𝑉 𝑧  

can be rewritten as: 

  𝑧!𝐾!𝐾𝑧 < 𝑧!𝑃𝑧 

 𝐾!𝐾 < 𝑃 

Applying a congruence transformation: 

 𝑃!!𝐾!𝐾 𝑃!! ! < 𝑃!! ! 

and changing variables once again: 

 𝐽  𝐽! − 𝑌 < 0 

And, applying a Schur Complement: 



 [11] 
𝑌 𝐽
𝐽! 𝐼 > 0 

This LMI now ensures the control effort inequality. 

Linear Matrix Inequality 4– Ensure Settling Time Spec 
In order to ensure that our closed loop system has a settling time of less than ts, the system must 
have poles to the left of: 

  𝜎 = 𝜇𝑤! =
!
!!

 

in the complex plane,  where ts is the 5% settling time spec. This approach is typically used to 
check how well a closed loop system will respond to a step input by looking at where the closed 
loop poles are, however we can turn this into an LMI spec to require that our closed loop system 
meet this spec. This is done by way of the following inequality: 

  𝑃 𝐴!" + 𝜎𝐼 + 𝐴!" + 𝜎𝐼 !𝑃 < 0 

which can be rewritten as: 

 𝑃𝐴! − 𝑃𝐵𝐾 + 𝜎𝑃 + 𝐴!!𝑃 − 𝐾!𝐵!𝑃 + 𝜎𝑃 < 0 

Applying a congruence transformation  

 𝑃!! 𝑃𝐴! − 𝑃𝐵𝐾 + 𝜎𝑃 + 𝐴!!𝑃 − 𝐾!𝐵!𝑃 + 𝜎𝑃 𝑃!!! < 0  

 −(𝐴!𝑃!!
! − 𝐵𝐾𝑃!!! + 𝑃!!𝐴!! − 𝑃!!𝐾!𝐵! + 2𝜎𝑃!!!) > 0 

and a change of variables: 

[12] −(𝐴!𝑌 − 𝐵𝐽! + 𝑌𝐴!! − 𝐽𝐵! + 2𝜎𝑌) > 0 

Equation 11 is now an LMI that will ensure that the settling time spec is met. 

Using CVX 
Equations 9 to 12 are now ready to be put into the CVX solver to create a P and K matrix.  

Figure 12 shows the LMIs in the convex optimization solver. As can be seen, the value 
“control_max_sqrd” is input as a variable to minimize and the settling time spec “ts” is strictly 
specified. This is because any controller created must make a trade-off between these two specs. 
My making one of the two specs a requirement and another an optimization parameter, we can 
control what CVX optimizes for. 



 
Figure 12: Matlab code specifying LMIs to CVX 

Observer Design Using CVX 
The design of an observer can be stated as the creation of a closed loop system of the following 
form: 

 𝑒 = 𝐴 − 𝐾!𝐶 𝑒 

 𝑒 = 𝑧 − 𝑧!"# 

Where Ko is the observer gain matrix desired, e is the error between the real states and the 
observed states, and A and C are the system matrices. 

Observer Lyapunov Stability 
In order to ensure Lyapunov stability of the observer, a procedure similar to the one stated for the 
controller can be used to create an LMI for this spec: 

  𝑃 > 0 

  𝐴!"! 𝑃 + 𝑃𝐴!" < 0 

Writing these as one inequality 

  −(𝐴!"! 𝑃 + 𝑃𝐴!") 0
0 𝑃

> 0 

  −(𝐴!𝑃 − 𝐶!𝐾!!𝑃 + 𝑃𝐴 − 𝑃𝐾!𝐶) 0
0 𝑃

> 0 

Using a change of variables: 

  𝐽 = 𝑃𝐾! 



[13] −(𝐴!𝑃 − 𝐶!𝐽! + 𝑃𝐴 − 𝐽𝐶) 0
0 𝑃

> 0 

Equation 13 will ensure Lyapunov stability of the observer. 

Observer Settling Time 
In order for the separation principle to hold when using an observer, the observer settling time 
must be much smaller than the controller settling time, and so specifying a settling time for the 
observer is important. This can be done in a way similar to the controller settling time LMI: 

  𝑃 𝐴!" + 𝜎𝐼 + 𝐴!" + 𝜎𝐼 !𝑃 < 0 

  − 𝑃𝐴 − 𝑃𝐾!𝐶 + 𝜎𝑃 + 𝐴!𝑃 − 𝐶!𝐾!!𝑃 + 𝜎𝑃 > 0 

using a change of variables: 

  𝐽 = 𝑃𝐾! 

 [13] − 𝑃𝐴 − 𝐽𝐶 + 𝜎𝑃 + 𝐴!𝑃 − 𝐶!𝐽! + 𝜎𝑃 > 0 

Equation 13 guarantees the settling time spec for the observer closed loop system. 

  



Appendix C: 
Bicycle Simulator 
The bicycle simulator created in Matlab for animating the solutions to the dynamics uses a single 
function repeatedly to plot the pose of the bicycle.  

The function 

[COG_hand,SH_hand,CPfw_hand,CPrw_hand]=DrawBikePose(x,y,z,yaw,roll,steer) 
 

takes in the x,y and z coordinates of the bicycle’s rear wheel contact point, the bicycle’s yaw, roll 
and steer angles, and outputs the object handles of the plotted bicycle components.  

This function achieves this plotting by way of a series of matrix multiplications to rotate and 
translate a series of points. The following dimensions and frames will be used: 

 
Figure 13: Bicycle Parameters and Frames 

  



Rotation/Translation One 
The first rotation/translation matrix describes the location of the moving frame {p1,p2,p3} 
located at the rear wheel contact point, with respect to the fixed { i , j , k } frame. 

𝑅1 =

cos  (𝜓) − sin 𝑝𝑠𝑖
sin 𝜓 cos 𝜓

0 𝑥
0 𝑦

0 0
0 0

1 𝑧
0 1

 

 

Rotation/Translation Two 
The second rotation/translation matrix describes the location and orientation of the {g1, g2 , g3} 
frame fixed to the center of gravity point with respect to the frame {p1,p2,p3}. 

𝑅2 =

1 0
0 cos 𝜙

0 𝑥!
− sin 𝜙 − 𝑦! ∗ sin 𝜙

0 sin 𝜙
0 0

cos 𝜙 𝑦! ∗ cos 𝜙
0 1

 

 

 

  



Rotation/Translation Three 
The third rotation/translation matrix describes the location and orientation of the {s1, s2 , s3} 
steering frame with respect to the {g1,g2,g3} frame.  

𝑅3 =

cos  (𝛿) − sin 𝛿
sin 𝛿 cos 𝛿

0 𝐻𝑎𝑛𝑑𝑤
0 0

0 0
0 0

1 𝐻𝑎𝑛𝑑ℎ
0 1

 

 

Plotting Approach 
Using these matrices described to move from frame to frame, plotting is a matter of creating 
points in a convenient coordinate and then multiplying those points by the coordinate 
transformation matrices to obtain the positions of those points expressed in the global {i,j,k} 
frame. Then, the plot3() command can be used. 

 


