
1 
 

 

 

 

 

 

 

Dynamic model derivation and controller 
design for an autonomous bicycle 

 

Shihao Wang (sw792) 

Mechanical Engineering 

12/18/2014 

 

  



2 
 

Table of Contents 

1. WORK SUMMARY 3 

2. MOTIVATION 3 

3. DYNAMICS MODEL DERIVATION 4 

3.1 POINT MASS MODEL 4 
3.2 FIND THE ACCELERATION OF THE CENTER OF MASS 5 
3.3 KILL THE YAW ANGLE TERM 6 
3.4 GEOMETRICAL RELATIONSHIPS 7 
3.5 ANGULAR MOMENTUM BALANCE TO POINT C 8 
3.6 LINEARIZATION OF THE DIFFERENTIAL EQUATION 9 

4. CONTROLLER DESIGN FOR SELF STABILIZATION 10 

4.1 STATE SPACE FORM 10 
4.2 CONTROLLABILITY 11 
4.3 DESIGN REQUIREMENTS 11 
4.4 POLE PLACEMENT METHOD 12 
4.5 SIMULATION 14 

5. OBSERVER BASED CONTROLLER FOR REFERENCE TRACKING 15 

5.1 OBSERVABILITY 15 
5.2 STATE OBSERVER 16 
5.3 POLE PLACE METHOD TO DESIGN THE STATE OBSERVER 17 
5.4 SIMULATION 18 

CONCLUSION 20 

APPENDIX A: MY DERIVATION OF THE RELATIONSHIP OF THE ANGLE ALPHA AND 

STEER ANGLE 21 

APPENDIX B: SCANNING COPIES OF MY HAND SCRIPT 23 

 

 

 

 

 

 

 



3 
 

1. Work Summary 

 

This report describes what I have done in the whole semester. In summary, I have derived the 

equations of motion of the bicycle, designed the controller and observer for a self-stabilizing 

bicycle, and simulated the controller and observer in MATLAB. The derivation of the equation 

of motion of the bicycle is based on a point mass model. Two controllers were then designed 

using this model. One is for bicycle’s self-stabilization and another observer based controller is 

for bicycle stability and steering reference tracking. These controllers were simulated in 

MATLAB by using the ode45 solver and they were shown to meet the design requirements. 

2. Motivation 

 

My academic interest is in Dynamics & Control. Autonomous Bicycle project is a combination 

of Dynamics and Controls, which definitely attracts me a lot. Even though I learned how to ride 

a bike when I was 5 years old, I have no idea about why we can ride bicycle in that way. With a 

curious heart and energetic personality, I want to know the equation of motion of bicycle 

analytically and design a controller that can stable and steer this bicycle. After a semester’s work, 

I have a new understanding about the bicycle and also lay a foundation for our future project. 

Our goal next semester is to create a steer-by-wire bicycle.  
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3. Dynamics Model Derivation 

3.1 Point mass model 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 is the point mass model. 

Where   

 G is the center of mass. AD is the front handlebar. 

                           

                          (       ) 

                                                           

                                    

                                     

                                     

                               (                ) 

 C = the contact point between the rear wheel and ground 

 D = the contact point between the front wheel and ground 

Figure 1 Point mass model 
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This model satisfies the following assumptions: 

 The handlebar has no moment of inertia 

 A vertical head angle (   ) 
 No trail (   ) 
 Rear wheel has no inertia 

 Rear frame is a point mass 

 Front wheel has no mass or inertia 

3.2 Find the acceleration of the center of mass 

To build the relationship between the lean angle, the yaw angle and the steer angle, we should 

first know the acceleration of the center of mass. 

 

 

 

 

 

First, find the position of the center of mass (COM). 

/ / /

/ / /

/ / / /

B F C F B C

G F B F G B

G F C F B C G B

r r r

r r r

r r r r

 

 

  

 

Second, take derivative of the position vector with respect to time. 

/ / / /G G F C F B C G Bv r r r r     

/
ˆ

c C Fv r v    

'

/ ' ' ' '
ˆ ˆˆ( ) sin( ) cos( ) sin( )B C CB B B CB B Br r r r r h k h n h               

'

/
ˆ ˆ( )G Br b b n     

ˆˆ ˆ( sin( ) ) ( cos( ) ) sin( )Gv v h h b n h k              

Third, take derivative of the velocity vector with respect to time. 

Figure 2 yaw angle in x-y plane 
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' ' 'ˆˆ ˆ(( sin( ) ) ) (( cos( ) ) ) ( sin( ) )G Ga v v h h b n h k              

'ˆ ˆ ˆ(( sin( ) ) ) ( cos( ) sin( ) ) ( sin( ) )v h v h h v h n                 

' 2 ˆˆ ˆ(( cos( ) ) ) ( sin( ) cos( ) ) ( cos( ) )h b n b h h n h b                   

' 2ˆ ˆ( sin( ) ) ( cos( ) sin( ) )h k h h k          

By adding these three components together, we could get the expression for
Ga . 

2

2 2 2

ˆ( cos( ) sin( ) cos( ) ) ...

ˆˆ( sin( ) cos( ) sin( ) ) ( cos( ) sin( ) )

Ga v h h h b

b h h v h n h h k

       

           

     

     
 

However, 
Ga contains terms like  and . We do not like these terms because we cannot 

control the yaw angle. So we should find other relations that can help us kill these terms. 

3.3 Kill the yaw angle term 

To eliminate the yaw angle term, we could build connection between this yaw angle and 
trough the relative motion. 

 

 

 

 

 

 

/ / / /

ˆ ˆ ˆˆ ˆcos( ) sin( ) , cos( ) sin( )

ˆ ˆ ˆ, ( )

D D

D F C F D C D C F

n n n

r r r v v l v l n

      

  

   

     
 

It is known that the velocity of point D could only go along ˆD  so 0D Dv n  .That is  

sin cos 0v l      

tanv

l


   

Figure 3 relations between 𝒂 and 𝝍 
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Now we can use v and  to replace . But we do not like term either. How could we do to 

replace this ? We could use geometry relationship to replace with lean angle and steer angle. 

3.4 Geometrical relationships 

For the geometrical relationships of angle ,   and , I have done this part before and 

confirmed that their relationships should be  
tan cos tan    

However, because the 3-D pictures I drew are not so beautiful, I put them in the appendix. 
Here, I use the picture Professor Ruina sent to me on Oct 18. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 the 3D plot to find the relationships 
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We just replace tan with
tan

cos




. That is 

tan tan

cos

v v

l l

 



   

We could also find   by taking derivative of .  

2

2

( tan )cos tan sin( )
cos

cos

v
v v

l


    




 

  

By substituting  and  , the expression of acceleration of center of mass only has steer angle 

and lean angle . We could measure those two angles and could use steer angle   to control the 

bicycle. That is what we want. 

 

3.5 Angular Momentum Balance to point C 

/ :CAMB  / / /
ˆ( )G C D C D G C Gr mg k r F r ma       

Dot product with ̂ : 

/ /
ˆ ˆ ˆ( )G C G C Gr mg k r ma        

2 2 2

2

2 2

2

( tan sin tan ...

tan tan tan tan ) 0
cos

mh
lv gl hl blv

l

b hmv
hv b lv

l

   


    



   

   

  

That is 

2

2
2 2

2 2

tan tan
sin ...

tan tan
tan tan 0

cos

mhv mbv
mgh m h

l l

mh mhb v b hmv
v

l l l

 
 

   
 



   

   

 

In this project, we could control the velocity v to be a constant value so 0v  . Plug in  
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2 2 2 2

2 2
( tan tan tan tan tan ) sin 0

cos

mh b hmv
lv hl hv b lv mgh

l l


       


       

This equation is very important in our control task because it contains the angle that we care 

most. However, in order to use this differential equation, we should linearize and simplify it.  

3.6 Linearization of the differential equation 

The linearization strategy I use is 

sin ,cos 1, tan , tan           

Substituting them in  

2 2 2
2 0

mh v
mhv mghl mhl mh v b hmv

l

 
            

Simplify 

2 2
2 0

hv
v gl hl v b v

l

 
            

The next thing is to find the equilibrium state: * *,   where   

* ' * '' * ''' * ( )

* ' * '' * ''' * ( )

( ) ( ) ( ) =( ) 0

( ) ( ) ( ) =( ) 0

n

n

   

   

   

   

……

……
 

So the equilibrium equation is  

2 2
2 * *( )

hv
v gl

l


    

To make sure that this bicycle is not falling down, the lean angle should be zero so * should be 

zero. According to this equilibrium equation, * will also be zero.  

Let * *,          where  ,  represent the small change of  , . Leaving the high 

power or order product terms like 2 ', , ( )            : 

2 '' '( ) ( ) 0v gl hl bv            

Rewrite this equation  

2 ' ''v bv hl gl       
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At this point, I have finished the derivation of the equation of motion of bicycle. But how 

could I make sure that the equation I get is right? What if I made mistakes in the derivation? So I 

compare this equation to the whole complex model, cross the terms that are not contained in this 

point mass model and linearize the equation. The result matches this point mass model.  

4. Controller design for Self Stabilization 

4.1 State space form 

Now we have the differential equation.  Then next task is to design a controller. For a controller, 

the first thing is to know about the state, input and output. Then I could write them in state space 

form and design the controller .After discussing with Marvin and Rany, I know that they could 

measure the lean angle , the lean angular velocity  and the steer angle . So these three angles 

should be our states. The differential equation is  

2
'' g v bv

h hl hl
       

The state space form of the equation is 

2

0 1 0 0

0

0 0 0 1

g v bv

h hl hl

 

  

 

   
      
               
         

  

 

 1 0 0y







 
 


 
  

  

Where   The state
'

'x        input u(t) is    

The system open loop block diagram is  

 

 

 
Figure 5 the system open loop block diagram 
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Where 
2

0 1 0

0

0 0 0

g v
A

h hl

 
 
  
 
 
 

 

0

1

bv
B

hl

 
 
  
 
 
 

  1 0 0
T

C    

4.2 Controllability 

Controllability is an important property of a control system, and the controllability property plays 

a crucial role in many control problems, such as stabilization of unstable systems by feedback, or 

optimal control. Just like what we did in the single input-single output system, if we want to 

control this system realization totally, we should first test the controllability of this system. 

For complete state controllable, the rank of the n*n matrix Mc should be full rank. 

1[ ]n

cM B AB A B ……  

2

0 1 0

0

0 0 0

g v
A

h hl

 
 
  
 
 
 

0

1

bv
B

hl

 
 
  
 
 
 

 

Where    29.8 / , 0.4 , 0.98 , 0.5 , 3.81 /g m s h m l m b m v m s       

Using the MATLAB, rank (Mc) =3. So we could move any pole of this system to achieve our 

design requirements because this system is of complete control. 

4.3 Design requirements 

Current behavior of this system is as follows. If we give a unit step input, the output is  

 

 

 

 

 

 

It is obvious that when given a step input, this system will have a bad behavior. So we should 

change the system by changing the place the poles of the system. In order to guide the control 

design process, a set of desired specifications are listed for the overall system dynamics. Firstly, 

Figure 6 Current behavior of this system 
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the bicycle is required to have a rise time smaller than 0.1 second to a step input, ensuring a fast 

response. The overshoot to a step response should be less than 5% in order to keep our bicycle 

from vacillating.  

Requirements: 1. Rise time tr<0.1s 2.overshoot Mp <5%.  

1. Settling time ts<0.1s 

1.8
0.1 18n

n




    

2. Overshoot Mp <5%.  

21
0.05 0.69PM e



 



     

So the desired region is as follows. 

 

 

 

 

 

 

 

The shaded region is the desired place where we want the poles of the system to be.  

4.4 Pole placement method 

Our system can be expressed in this form 

x Ax Bu

y Cz

 


 

We shall choose the control signal u to be  

u Kx   

Where K  is a row vector 1 2 3[ , , ]K k k k . Plug in u into x   

( )x A BK x   

The solution of this equation is given by 

Figure 7 the desired design region 
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( )( ) (0)A BKx t e x  

Based on the knowledge of linear algebra, the eigenvalues of matrix A-BK are the poles of our 

system. By choosing the matrix K, we could change the poles of the system. If we want our 

system to have a good behavior, we only need to place the poles (eigenvalues) of A-BK in the 

desired region. This gives us a closed loop system. The system block diagram is as follows. 

 

 

 

 

 

Because the number of components in the state is three, we have three poles in our system. We 

want them to be in the shaded region of Figure 6. To balance the acceptable response and the 

amount of control energy required, I choose three poles near the right boundary of the desired 

region. If writing in a row vectors,  

[ 20 25 30]P      

The formal by hand is to plug in these poles in the A-BK matrix and solve for k1,k2 and k3.  

 

 

 

 

 

 

 

Then we calculate the determinant of matrix 3 3A BK I   . The three roots of that polynomials 

are the components of [ 20 25 30]P     .  

The other method is to use MATLAB command place(A,B,P). Then we could get the K vector 

directly. 

K=place(A,B,[-20 -25 -30]) 

Figure 8 the closed loop system block diagram 

Figure 9 Solve for K by hand 
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K=[ -843.1298 -119.7419  8.2379] 

Now I have finished the design of controller for bicycle’s stabilization.  

4.5 Simulation 

For the simulation part, I set the initial conditions to be 

Initial roll angle=-pi/4; Initial steer angle=pi/18; Initial yaw angle=pi/6; 

Initial position x0=0, y0=0; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 ODE Simulation of Controller 

Figure 11 Animation of simulation 
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i
The MATLAB code used to plot this animation is from Diego Olvera 

 

 

 

 

 

 

 

 

 

 

 

From the simulation, we could see that this controller works well and could satisfy our design 

requirements. And this is also the controller that our team is using now.  

 

5. Observer Based Controller for Reference Tracking 

In the pole-placement approach to the design of control systems, we assumed that all state 

variables are available for feedback. In practice, however, not all state variables are available for 

feedback. Then we need to estimate unavailable state variables. A state observer estimates the 

state variables based on the measurements of the output and control variables.  

5.1 Observability 

In order to design the observer, we should first check about the observability of this system 

realization. As discussed in the controllability chapter, the completer state controllability 

condition for this system is that the rank of the n*n matrix Mo should be full rank. 

Figure 12 the trajectory of the motion of bicycle 
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2

1

o

n

n

C

CA

M

CA

CA





 
 
 
 
 
 
  

……  

Where 

2

0 1 0

0

0 0 0

g v
A

h hl

 
 
  
 
 
 

 

1

0

0

T

C

 
 


 
  

 

So  

1 0 0

0 1 0

1.04 0 1.58

oM

 
 


 
  

 

From the matrix
oM , we could know that its rank is 3 so it is of full observability. 

5.2  State Observer 

The observer is a subsystem to reconstruct the state vector of the plant. The mathematical model 

of the observer is basically the same as that of the plant, except that we include an additional 

term that includes the estimation error to compensate for inaccuracies in matrices A and B and 

the lack of the initial error. We define the observer to be  

( )x Ax Bu H y Cx     

And  

u Kx   

So the observer could be expressed as 

( ) ( )x A BK x H Cx Cx     

To make sure that our observer would truly estimate the real state, let us subtract the above term 

by the real state and discuss about the error. 

( )( )x x A HC x x     
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Define the difference between x  and x as the error vector 

e x x   

Then we could get 

( )e A HC e   

 

 

 

 

 

 

 

 

 

 

The dynamic behavior of the error vector is determined by the A-HC matrix. What we want is 

that this error approaches zero quickly. The eigenvalues of this A-HC matrix determine the 

behavior of our observer. Because this realization is completely observable, then we could 

choose a proper H to make the observer have better behavior. 

5.3 Pole place method to design the state observer 

The method used to design the observer is the same as we design the controller. We would like 

the observer dynamics to be sufficiently faster than the dynamics of the overall system. Thus we 

would put the roots of the observer matrix five times or ten times faster than the poles we design 

in our controller. 

The fastest pole in our controller is p3 = -30. Here the poles of the observer should satisfy  

  5* 30 150P     

So I choose the poles of the observer to be  

[ 155 156 157]P      

Figure 13 the observer on a closed-loop block diagram 
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By using the MATLAB’s place () command, we could find the arrow H vector is 

H = place(A',C',[-155 -156 -157]) 

H=[78 2028 -11137]’ 

Here, we finished the design of the observer based controller for reference tracking. 

5.4 Simulation 

To simulate the effect of this controller, I use the classic control method in MATLAB.  Based on 

the state space model, we could treat them as two parts. One is Plant and the other is Controller. 

 

 

 

 

 

 

 

 

 

 

 

Then I could rewrite it in the block diagram form. 

 

 

 

 

By using MATLAB, the transfer function of Plant is  

3 16 2

0.2068 1.576
( )

2.22 10 1.043

s
P s

s s s

 


  
 

Figure 14 Plant and Controller of the state space form 

Figure 15 Block diagram of State space model 
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Also, the transfer function of the Controller is  

5 2 6 6

3 2

2.056 10 1.153 10 2.16 10
( )

99 3715 23160

s s
C s

s s s

     


  
 

So the transfer function of the closed-loop system is  

( ) ( )
( )

1 ( ) ( )

P s C s
L s

P s C s



 

3 2 6 6

6 5 4 3 5 2 6 6

42530 56260 2.264 3.403
( ) , 10

99 3714 65590 5.587 2.24 3.403

n ns s e s e
L s e means

s s s s e s e s e

  


     
  

Given a step input the response of the closed-loop system is  

 

 

 

 

 

 

 

 

 

 

From this step response, the rise time is 0.0629s <0.1s and the steady state value is 1 which 

means that this controller has a good behavior. We will use this controller next semester.  

Up to here, I have finished all my subtasks related to dynamics and control this semester.  

 

 

 

 

Figure 16 the step response of the closed-loop system 
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Conclusion 

This report has detailed the approach taken towards designing controllers for bicycle. The 

derivation of the equation of motion of the bicycle is introduced first. This derivation is based the 

point mass model. Then, in order to use that differential equation, the methods to linearize and 

change it into state space form were shown. The state space form was used to create two 

different kinds of controllers: one for stability and another for stability and steering reference 

tracking. The controllers were then simulated and shown to meet the required specifications.   
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Appendix A: 

My derivation of the relationship of the angle alpha and steer angle 

The derivation procedure is as follows: 
 
1. We can abstract our bicycle model to the geometry model (Figure 17). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(1) The yaw angle (CD direction) is .The lean angle ' 'BCB or ADA  is .  

(2) The steer angle is . ' ',
2 2

BB C AA D
 

    .  

The three direction vectors are ˆˆ ˆ, ,i j k . 

 
2. Find point H along the line BA and let 
the length of AH be 1.  
 

3. In the plane where the steer angle is in, make
2

AHE


   and cross one side of the angle

 with point E. 
 

4. Crossing point H , make a line parallel to line AD and cross the line CD with point G.(Let 
AHGD be parallelogram AH = DG = 1) and make EF parallel to AD and cross the XoY plane 
with point F. 

5. Connect the FG. 
 
 

Figure 17 



22 
 

Figure 19 

Figure 18 

Then, we can get this graph. See Figure 18 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In AHE , , , 1
2

AHE HAE AH


      so tanHE  . 

AD AB AD AH   and also AD AE  so AD AHE  

AD AHE AD HE   , || AD HG AHE EHG (EH HG)
2

HG


       

,AH HE AH HG AH HEFG AH GF        

|| (DG GF)
2

DG AH DG HEFG DGF


       

In , , , 1
2

DGF DGF FDG DG AH


        so tanGF   

 
Crossing point F, make line

' ||FH EH ,crossing line HG with point 'H

and crossing ' 'A BCD  with point I. See 
Figure 19. 

' 'EH HG FH H G    
' 'IGH H FG       

In
' ' ' ', tan , tan ,H cos cosCFH H F HE CF F GF H FG GF          

  
So tan cos tan   . 
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Appendix B: Scanning copies of my hand script 
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