Statics and Strength of Materials Formula Sheet

12/12/94 — A. Ruina

Not given here are the conditions under which the formulae are accurate or useful.

Basic Statics

Free Body Diagram

The **FBD** is a picture of any system for which you would like to apply mechanics equations and of all the external forces and torques which act on the system.

Action & Reaction

If A feels force **F** and couple **M** from B. then B feels force **-F** and couple **-M** from A. (With **F** and **-F** acting on the same line of action.)

Force and Moment Balance

These equations apply to every FBD in equilibrium:

- The torque $\mathbf{M}_{/C}$ of a force depends on the reference point C. But, for a body in equilibrium, and for any point C, the sum of all the torques relative to point C must add to zero).
- Dotting the force balance equation with a unit vector gives a scalar equation, e.g. $\{\sum \mathbf{F} \cdot \mathbf{i} = 0 \Rightarrow \sum F_x = 0.$
- Dotting the moment balance equation with a unit vector gives a scalar equation, e.g. $\{\sum \mathbf{M}_{/C}\} \cdot \mathbf{\lambda} = 0 \implies$ net moment about axis in direction $\mathbf{\lambda}$ through C = 0.

Some Statics Facts and Definitions

- The moment of a force is unchanged if the force is slid along its line of action.
- For many purposes the words 'moment', 'torque', and 'couple' have the same meaning.
- **Two-force body**. If a body in equilibrium has only two forces acting on it then the two forces must be equal and opposite and have a common line of action.
- Three-force body. If a body in equilibrium has only three forces acting on it then the three forces must be coplanar and have lines of action that intersect at one point.
- **truss:** A collection of weightless two-force bodies connected with hinges (2D) or ball and socket joints (3D).
- Method of joints. Draw free body diagrams of each of the joints in a truss.
- Method of sections. Draw free body diagrams of various regions of a truss. Try to make the FBD cuts for the sections go through only three bars with unknown forces (2D).
- Caution: Machine and frame components are often not two-force bodies.
- Hydrostatics: $p = \rho g h$, $F = \int p \, dA$

Stress, strain, and Hooke's Law

Stres		Strain	Hooke's Law	
Normal:	$\sigma = P_{\perp}/A$	$\epsilon = \delta/L_0 = \frac{L-L_0}{L_0}$	$\begin{split} \sigma &= E\epsilon \\ [\epsilon &= \sigma/E + \alpha \Delta T] \\ \epsilon_{tran} &= -\nu \epsilon_{long} \end{split}$	
Shear:	$\tau = P_{\parallel} / A$	$\gamma =$ change of formerly right angle	$\tau = G\gamma$ $2G = \frac{E}{1+\nu}$	

Stress and deformation of some things

	Equilibrium	Geometry	Results	
Tension	$P = \sigma A$	$\epsilon = \delta/L$	$\delta = \frac{PL}{AE}$ $[\delta = \frac{PL}{AE} + \alpha L \Delta T]$	
Torsion	$T = \int \rho \tau \ dA$	$\gamma = ho \phi / L$	$\phi = \frac{TL}{JG}$ $\tau = \frac{T\rho}{J}$	
Bending and Shear in Beams	$M = -\int y\sigma dA$ $\frac{dM}{dx} = V , \frac{dV}{dx} = -w$ $V = \int \tau dA$ $\tau t\Delta x = \Delta MQ/I$	$\epsilon = -y/\rho = -y\kappa$ $u'' = \frac{d^2}{dx^2}u = \frac{1}{\rho} = \kappa$	$u^{\prime\prime} = \frac{M}{ET}$ $\sigma = \frac{-My}{T}$ $\tau = \frac{VQ}{Tt}$	
Pressure Vessels	$pAgas = \sigma A_{solid}$		$\begin{split} \sigma &= \frac{pr}{2t} \text{ (sphere)} \\ \sigma_l &= \frac{pr}{2t} \text{ (cylinder)} \\ \sigma_c &= \frac{pr}{t} \text{ (cylinder)} \end{split}$	

Buckling

	C	Critical buckling load = $P_{crit} = \frac{\pi^2 EI}{L_{eff}^2}$.					
1	pinned-pinned	clamped-free	clamped-clamped	clamped-pinned			
	$L_{eff} = L$	$L_{eff} = 2L$	$L_{eff} = L/2$	$L_{eff} = .7L$			

Mohr's Circle

Rotating the surface of interest an angle θ in physical space corresponds to a rotation of 2θ on the Mohr's circle in the same direction.

$$C = \frac{\sigma_1 + \sigma_2}{2} = \frac{\sigma_x + \sigma_y}{2}$$

$$R = \frac{\sigma_1 - \sigma_2}{2} = \sqrt{(\sigma_x - C)^2 + \tau_{xy}^2} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

$$n 2\theta = \frac{\tau}{\sigma - C} = \frac{2\tau}{\sigma_x - \sigma_y}$$

Miscellaneous

• Power in a shaft: $P = T\omega$.

ta

 Saint Venant's Principle: Far from the region of loading, the stresses in a structure would only change slightly if a load system were replaced with any other load system having the same net force and moment.

Cross Section Geometry

		Definition	Composite	annulus (circle: $c_1 = 0$)	thin-wall annulus (approx)	rectangle
A	l =	$\int dA$	$\sum A_i$	$\pi(c_2^2 - c_1^2)$	$2\pi ct$	bh
J	<i>I</i> =	$\int \rho^2 \ dA$		$\frac{\pi}{2}(c_2^4 - c_1^4)$	$2\pi c^3 t$	
1	! =	$\int y^2 dA$	$\sum (I_i + d_i^2 A_i)$	$\frac{\pi}{4}(c_2^4 - c_1^4)$	$\pi c^3 t$	$bh^{3}/12$
\bar{y}	<i>ī</i> =	$\frac{\int y dA}{\int dA}$	$\frac{\sum y_i A_i}{\sum A_i}$	center	center	center
Q	<i>)</i> =	$\int ydA = A'\bar{y}'$	$\sum A'_i \bar{y}'_i$			$\frac{b(\frac{h^2}{4}-y^2)}{2}$