Spring Design example. M&A E 325. Prof. Valero-Cuevas 10/27/99

Ball launcher for pin ball machine

Given stiffness \mathbf{K} , free lenght of spring \mathbf{L} , plunger travel \mathbf{y} , initial deflection \mathbf{yo} mass of ball \mathbf{m} , and spring average diameter **Da**.

Geometric design specifications: Find **d** and **Na** for a round stock music wire compression spring that can launch 10^5 balls with a dynamic margin of safety **Nsf** of at least 1.

Analysis of performance: Find the initial velocity \mathbf{v} of the balls, and the natural resonant frequency \mathbf{fn} of the spring in the barrel.

Finding spring geometry to meet design specifications

```
F := Ky + Kyo
(* F is spring force;
    don't forget to include the initial deflection yo *)
d := Da / SI (Da = average diameter of spring; SI is spring index;
    d is diameter of material, round cross section *)
Kw := (4 SI - 1) / (4 SI - 4) + 0.615 / SI
(*stress concentration in inner side of coil*)
tw := Kw (8 F Da) / (Pi d^3) (* maximal shear stress *)
Sut := Ad^b (* ultimate strength in tension; Equation 13-3*)
Sfw := 0.36 Sut (* Ultimate strength in torsion for 10^5 cycles;
Table 13-7, unpeened ASTM 228; Example 13-1; Figure 13-15*)
Nsf := Sfw / tw (* dynamic factor of safety*)
```

Parameters specified

K = 50 (*lbs/in*); Da = 2 (*in*); y = 1 (* in*); m = 0.1 (* lbm, about 45.3 grams*); yo = 0.5 (*in*); L = 5 (* in*); ■ from Table 13-4, for music wire:

A = 184649 (*psi*); b = -0.1625; G = 1.150 10^7 (*psi*); gamma = 0.285 (* lbs/ in^3*); g = 386 (* in/sec^2*);

- First iteration
- Assume SI=12; SI = Da/d

SI = 12;
F
75.
Kw
1.11943
tw
92359.8
Sut
247057.
Sfw
88940.4
Nsf

0.962978

Second iteration

Assume a lower spring index to increase dynamic safety margin above 1.

Assume SI=10; SI = Da/d

SI = 10;
F
75.
Kw
1.14483
tw
54661.8
Sut
239844.
Sfw
86344.

Nsf

1.5796

Done. Dynamic safety margin is now above 1.

Determine number of active coils, Na

From $K = G d^4/(8Da^3 Na)$

Na := Gd^4 / (8 Da^3 K)

Na

Determine solid length

```
Ls := d * Na
Ls (*in*)
1.15
```

Ls + y + yo = 2.15 in. Which is less than the free lenght of the spring. OK.

Solutions to geometric design specifications

```
d (* wire diameter, in inches d := Da/SI *)
```

0.2

Na (* number of active coils*)

Analysis of performance

Up (*in lbf*)

 Kinetic energy of ball when ejected is Uk = 1/2 m v^2; Conservation of energy requires that Up = Uk

 $v := (2 Up / m)^{.5}$

v (* in/s*)

```
Wa := (Pi^2 d^2 Da Na gamma ) / 4
(* weight of active coils, from eq. 13-11 b*);
fn := 1 / 2 (Kg / Wa) ^.5; (* natural resonant frequency,
   assuming both ends fixed. eq. 13-11 a*)
```

Wa (* lbf*) 0.323476

fn (* Hertz*)