
Your TA, Section # and Section time:	Your name:
Cornell TAM/ENGRD 2030 No calculators, books or notes allowed. 3 Problems, 90 minutes (+ up to 90 minutes overtime)	Prelim 3 April 21, 2014
How to get the highest	score?
Please do these things:	
 Draw Free body diagrams whenever force, are used. 	moment, linear momentum, or angular momentum balance
• : Use correct vector notation.	
A+: Be (I) neat, (II) clear and (III) well or	ganized.
☐ : TIDILY REDUCE and box in your answers (Do	n't leave simplifiable algebraic expressions).
>>: Make appropriate Matlab code clear and c You can use shortcut notation like "T ₇ = 18" is Small syntax errors will have small penalties.	
	d, \ldots), coordinates $(x, y, r, \theta \ldots)$, variables (v, m, t, \ldots) , t) with sketches, equations or words.
\rightarrow : Justify your results so a grader can distinguish	an informed answer from a guess.
3 : If a problem seems proceedly dieffinied, clearly state problem).	te any reasonable assumptions (that do not oversimplify the
$\approx~:~Work~for~partial~credit~(from~60100\%,~depe}$	nding on the problem)
 Put your answer is in terms of well defined values. 	d variables even if you have not substituted in the numerical
- Reduce the problem to a clearly defined se	et of equations to solve.
- Provide Matlab code which would generat	te the desired answer (and explain the nature of the output).
	ise. Ask for more extra paper if you need it. Put your name pages or extra sheets on the page of the relevant problem.
	Problem 7:
	Problem 8: /25

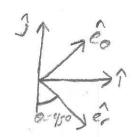
Problem 9: _____/25

7) A uniform stick (mass m, length ℓ) is floating in space at rest. It is then hit with an impulsive force at B. Find the distance d from G to B, so that point A has a velocity of $\vec{v}_A = \vec{0}$ immediately after the impulse.

- 8) 2D. A uniform square plate of mass m and sides ℓ is suspended by a frictionless hinge at A and a string at C from a flat horizontal ceiling. At t = 0 the string BC is cut.
- a) Calculate the moment of inertia I^G of the block about its center of mass in terms of m and ℓ .
- b) Immediately after the string is cut, at $t=0^+$, what is the acceleration of G, \vec{a}_G ? (Answer in terms of ℓ, m, g, I^G and the base vectors shown. Do not use your I^G from part a.)
- c) Immediately after the string is cut, at $t = 0^+$, the vertical reaction force at A, $\vec{F}_A \cdot \hat{j} = mg/2$, or not? Please give a clear reasoning for a yes or no answer without any long calculations. Full credit if there is precise reasoning with no algebra.

Parallel Axis Thm

$$I_A = I_6 + m |\vec{r}_{Al6}|^2 = I_6 + m (\frac{e}{2})^2 + (\frac{e}{2})^3 = I_6 + \frac{me^2}{2}$$

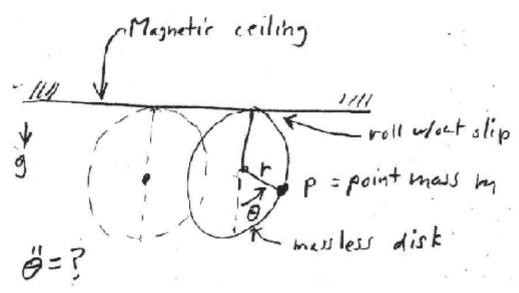

Combining | and $2 \rightarrow \propto = \frac{-mge}{2I_6 + me^2}$

Rigid body
$$\vec{q}_{A} = \vec{x} \times \vec{r}_{A16} + \vec{\omega} \times (\vec{\omega} \times \vec{r}_{A16}) + \vec{q}_{6}$$
 $\vec{\omega} = \vec{0}$ at instant rape is cut $\rightarrow \vec{\omega} \times (\vec{\omega} \times \vec{r}_{A16}) = \vec{0}$
point \vec{A} is hinge $\Rightarrow \vec{q}_{A} = \vec{0}$
 $\vec{0} = \vec{0} + \vec{\omega} \times \vec{r}_{A16} = 0 \rightarrow \vec{q}_{6} = -\vec{\omega} \times \vec{r}_{A16}$

$$5 \text{ nb 2 into 3} \rightarrow \overline{a_6} = -(\frac{-m_9 \ell}{2 I_6 + m \ell^2}) \hat{b} \times (\frac{-\ell}{2} \hat{1} + \frac{\ell}{2} \hat{1})$$

$$\overline{a_6} = \frac{-m_9 \ell^2}{4 I_6 + 2 m \ell^2} (\hat{1} + \hat{1})$$

$$\text{Notici if used } \hat{e_7}, \hat{e_0} \rightarrow \overline{a_6} = \frac{-m_9 \ell^2 I_2}{4 I_6 + 2 m \ell^2} \hat{e_0}$$



c) Realize the force of A, the angular and linear acceleration and the force at B all change instantaneously when B is cut. This means you cannot argue Fax = mg - Fat = mg

Matte matically

LMB:
$$Z\vec{F} = F_{AX}\hat{1} + F_{AY}\hat{3} - mg\hat{3} = mag$$
 (see FBD "ofter" on previous page)
 $23.\hat{3} \rightarrow F_{AY} = mag - \hat{3} + mg = \frac{-mg\ell^2}{4I_6 + 2m\ell^2} + mg = mg(1 - \frac{m\ell^2}{4I_6 + 2m\ell^2})$
from part a: $I_6 = \frac{m\ell^2}{4I_6}$

- 9) 2D. A massless disk with radius r rolls without slip on the ceiling, held up by magnetic forces. On the periphery is attached a point mass m. Gravity g acts. An equilibrium position is with $\theta = 0$ and the mass hanging a distance 2r from the ceiling.
 - a) Given r, θ and g find $\tilde{\theta}$.
 - b) Find the period of small oscillation?
 - c) Does the period depend on amplitude? (genuinely hard question)

$$= mR^{2} \left[Sin\theta \left(\dot{\theta}^{2} Cos\theta + \dot{\theta} Sin\theta \right) + \left[1 + Cos\theta \right) \cdot \left(\dot{\theta}^{2} (1 + Cos\theta) - \dot{\theta}^{2} Sin\theta \right) \hat{k} \right]$$

$$= mR^{2} \left[\dot{\theta}^{2} \left(Sin^{2}\theta + (1 + Cos\theta)^{2} \right) + \dot{\theta}^{2} \left(Sin\theta Cos\theta - Sin\theta (1 + Cos\theta) \right) \right] \hat{k}$$

$$= mR^{2} \left[\dot{\theta}^{2} \left(2 + 2Cos\theta \right) + \dot{\theta}^{2} \left(- Sin\theta \right) \right] \hat{k}$$

$$\Rightarrow -mqR Sin\theta = mR^{2} \left[2 \dot{\theta} \left(1 + Cos\theta \right) - Sin\theta \right] \hat{\theta}^{2} \right]$$

$$\Rightarrow \frac{q}{R} Sin\theta + 2 \dot{\theta} \left(1 + Cos\theta \right) - \dot{\theta}^{2} Sin\theta = 0$$

$$\Rightarrow \frac{q}{R} Sin\theta + 2 \dot{\theta} \left(1 + Cos\theta \right) + \frac{Sin\theta}{2(1 + Cos\theta)} \frac{q}{R} = 0$$

$$\Rightarrow \frac{Gin\theta}{2(1 + Cos\theta)} + \frac{Sin\theta}{2(1 + Cos\theta)} \frac{q}{R} = 0$$

$$\Rightarrow \frac{Gin\theta}{1 + Cos\theta} = tan\frac{q}{2}$$

$$\Rightarrow \frac{Gin\theta}{1 + Cos\theta} = \frac{1}{2} tan\frac{q}{R} = 0$$

SMALL ANGLES APPROXIMATION:

191441 = tang & 0 2

EQUATION (a) BOCOMES:

$$\ddot{9} - \frac{\theta}{4} \dot{\theta}^2 + \frac{9}{4R} \theta = 0$$

I GINDRING B2 TERM ALSO,

TIME PERIOD = 24 TE

$$\dot{\theta} \sim \frac{\theta}{T} = \frac{\theta}{Z\Pi} \frac{3}{4R}$$

$$\dot{\theta} \sim \frac{\theta}{T^2} = \frac{\theta}{4\pi^2} \left(\frac{9}{4R}\right)$$

WE FIND THAT
$$\left| \frac{\theta}{4} \stackrel{\circ}{\theta}^{2} \right| \sim \left| \frac{1}{4} \frac{\theta^{3}}{4\pi^{2}} \left(\frac{9}{4R} \right) \right| \ll \left| \frac{5}{6} \right|, \left| \frac{9}{4R} \theta \right|$$

SO OUR APPROXIMATION 15 OK!

© EQUATION FROM @ CAN BE REWRLITEN AS
$$\cos \frac{\phi}{2} \, \ddot{\theta} - \frac{1}{2} \, \sin \frac{\phi}{2} \, \dot{\theta}^2 + \frac{9}{2R} \, \sin \frac{\phi}{2} = 0 - 0$$

SUBSTITUTE R= RSin D

$$\dot{\vec{x}} = \frac{R}{Z} \cos \frac{Q}{Z} \dot{\vec{\theta}}$$

$$\dot{\vec{x}} = -\frac{R}{2} \sin \frac{Q}{Z} \dot{\vec{\theta}}^2 + \frac{R}{2} \cos \frac{Q}{Z} \dot{\vec{\theta}}$$

SO EQUATION (1) BECOMES

$$\frac{2\ddot{\alpha}}{R} + \frac{9\alpha}{2R^2} = 0$$

$$\Rightarrow \dot{\alpha} + \frac{g}{4R} \alpha = 0 \quad \text{SHM} \quad \text{with } T = 2\Pi \sqrt{\frac{4R}{g}}$$

WHAT HAPPENS TO BE EQUATION OF SIMPLE HAPMONIC MOTION, WHICH SHOW INDEPENDENCES BETWEEN TIME PERIOD & SAME AS FOR STALL ANGLE APPROXIMATION!