HWY SOLUTIONS
(1) $K_{B E A M}=K_{B}=\frac{A E}{L}$
$k_{\text {lect }}$ for $K_{B} \& K_{1}$

$$
k_{\text {est }} \frac{1}{\left(\frac{1}{k_{B}}+\frac{1}{k_{1}}\right)}=\frac{k_{1} k_{B}}{k_{1}+k_{B}}
$$

$k_{\text {eft }}$ \& k_{2} act in parallel

$$
\begin{aligned}
k_{\text {eff }}=k_{\text {left }}+k_{2} & =k_{2}+\frac{k_{1} A E}{L\left(k_{1}+\frac{A E}{L}\right)} \\
k_{\text {eff }} & =k_{2}+\frac{k_{1} A E}{L k_{1}+A E}
\end{aligned}
$$

Sos Eqn

$$
\begin{aligned}
& m \ddot{x}+k_{\text {eff }} x=0 \\
& \ddot{x}+\frac{k_{\text {eff }} x}{m}=0 \\
& w_{\Lambda}=\sqrt{\frac{k_{\text {eff }}}{m}}
\end{aligned}
$$

(2) (a) Draw system as

$$
\begin{gathered}
f_{k 1}=k a \theta \\
\left(m_{\text {bean }}\right)_{p}=\left(I_{\text {beam }}\right)_{p} \ddot{\theta} \\
f_{k 2}=-k \cdot 2 a \cdot \theta \\
f_{M}=M 3 a \ddot{\theta}
\end{gathered}
$$

Positive θ CW 5

$$
\begin{aligned}
& \sum M_{p}=0=-f_{k 1} \cdot a-\left(M_{\text {beam }}\right)_{p}^{+} f_{k 2} \cdot 2 a-f_{m} \cdot 3 a \\
& 0=-k a^{k} \theta-\frac{7}{3} m a^{2} \ddot{\theta}-k \cdot 4 a^{2} \cdot \theta-9 a^{2} M \cdot \ddot{\theta} \\
& \left(\frac{7}{3} m+9 m\right) \ddot{\theta}+(5 k) \theta=0 \quad\left(I_{\text {beam }}\right)_{p}=\underbrace{\left(I_{\text {beam }}\right)_{c m}+m a^{2}}_{\text {parallel axis }} \text { theorem } \\
& \ddot{\theta}+\frac{5 k}{\frac{5 k}{3} m+9 m} \theta=0 \quad\left(I_{\text {beam }}\right)_{c m}=\frac{1}{12} m \cdot(4 a)^{2}
\end{aligned}
$$

(b) T	V	
beam	$\frac{1}{2}\left(I_{b}\right)_{p} \dot{\theta}^{2}$	0
left k	0	$\frac{1}{2} k(a \theta)^{2}$
right k	0	$\frac{1}{2} k(2 a \theta)^{2}$
mass M	$\frac{1}{2} M(3 a \dot{\theta})^{2}$	0

$$
\left(I_{b}\right)_{p}=\left(I_{\text {beam }}\right)_{p}=\frac{7}{3} m a^{2}
$$

$$
\begin{aligned}
L=T-V \quad L & =\frac{1}{2}\left(I_{b}\right)_{p} \dot{\theta}^{2}+\frac{9}{2} a^{2} m \dot{\theta}^{2}-\frac{1}{2} k a^{2} \theta^{2}-\frac{1}{2} k 4 a^{2} \theta^{2} \\
L & =\left(\frac{1}{2}\left(I_{b}\right)_{p}+\frac{9}{2} a^{2} M\right) \dot{\theta}^{2}-\left(\frac{5}{2} k a^{2}\right) \theta^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d t} \frac{\partial L}{\partial \dot{\theta}}-\frac{\partial L}{\partial \theta}=0 \\
& \frac{d}{d t}\left[2\left(\frac{1}{2}(I b)_{p}+\frac{9}{2} a^{2} m\right) \dot{\theta}\right]+3 k a^{2} \theta=0 \\
& \left((I b)_{p}+9 a^{2} m\right) \ddot{\theta}+5 k a^{2} \theta=0 \\
& \left(\frac{7}{3} m q^{2 x}+9 m q^{2}\right) \ddot{\theta}+5 k q^{2} \theta=0 \\
& \ddot{\theta}+\frac{5 k}{\left(\frac{7}{3} m+9 m\right)} \theta=0
\end{aligned}
$$

Note: For KE of beam, can alter natvel, use

$$
\begin{aligned}
& T_{\text {beam }}=\frac{1}{2}\left(I_{\text {beam }}\right)_{c m} \dot{\theta}^{2}+\frac{1}{2} m(a \dot{\theta})^{2} \\
& \text { as K.E. rigid body }=\frac{1}{2} I_{c m} \dot{\theta}^{2}+\frac{1}{2} m V_{c m}^{2}
\end{aligned}
$$

Keep in mind both rotational \& linear motion
(3) Use small \& approx. Do not neglect gravity.

PE loss by rotation of beam by $\& \theta$
mass M: Mig. Δh_{M} beam! $m \cdot g \cdot \Delta h_{m}$

$$
\begin{aligned}
& \Delta h_{M}=(3 \cdot a) \cdot(1-\cos \theta) \\
& \Delta h_{m}=\left(\frac{3}{2} a\right) \cdot(1-\cos \theta) \\
& s m_{a l l} \& \rightarrow \cos \theta \simeq 1-\frac{\theta^{2}}{2} \\
& \Delta h_{M}=3 a \frac{\theta^{2}}{2} \quad \Delta h_{m}=\frac{3}{2} a \frac{\theta^{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& L=T-V \\
& \begin{aligned}
& L=\frac{9}{2} m a^{2} \dot{\theta}^{2}+\frac{q}{24} m a^{2} \dot{\theta}^{2}+\frac{1}{2} m\left(\frac{9}{4}\right) a^{2} \dot{\theta}^{2}+M g 3 a \frac{\theta^{2}}{2}+m g \frac{3}{2} a \frac{\theta^{2}}{2} \\
&-4 K a^{2} \theta^{2}
\end{aligned}
\end{aligned}
$$

Lagrange

$$
\begin{aligned}
& \quad \frac{d}{\partial t} \frac{\partial L}{\partial \dot{\theta}}-\frac{\partial L}{\partial \theta}=0 \\
& 0=\frac{d}{d t}\left[\left(9 m a^{\alpha}+\frac{3}{4} m a^{\not x}+\frac{9}{4} m a^{\alpha x}\right) \dot{\theta}\right]-\left(m g 3 \alpha \alpha+m g^{\frac{3}{2}} \alpha \alpha-8 k a^{\alpha}\right) \theta \\
& 0=(9 m a+3 m a) \ddot{\theta}+\left(-m g 3-m g \frac{3}{2}+8 k a\right) \theta
\end{aligned}
$$

Effective Stiffness is coefficient in front of θ (as in $m \ddot{x}+k x=0$)
system is unstable (by divergence) if effective stiffness <0
Stability:

$$
\begin{aligned}
& 8 k a-\left(3 m g+\frac{3}{2} m g\right)>0 \\
& 8 k a>3 m g+\frac{3}{2} m g \\
& k>\frac{\left(3 m g+\frac{3}{2} m g\right)}{8 a}
\end{aligned}
$$

In order to see how the $x=c_{1} \cos \omega t+c_{2} \sin \omega t$ solution agrees with the $x=1+t$ solution in the limit as ω approaches zero, we observe that the initial conditions associated with $x=1+t$ are:

$$
\left\{\begin{array}{l}
x(0)=1 \\
x^{\prime}(0)=1
\end{array}\right.
$$

applying these initial conditions to $x=c_{1} \cos \omega t+c_{2} \sin \omega t$, we get:

$$
\left\{\begin{array} { l }
{ x (0) = 1 } \\
{ x ^ { \prime } (0) = 1 }
\end{array} \Rightarrow \left\{\begin{array}{l}
c_{1}=1 \\
\omega c_{2}=1 \Rightarrow c_{2}=\frac{1}{\omega}
\end{array}\right.\right.
$$

so the solution becomes:

$$
x=\cos \omega t+\frac{1}{\omega} \sin \omega t
$$

now, we take the limit of this solution as $\omega \rightarrow 0$:

$$
\lim _{\omega \rightarrow 0} x=\lim _{\omega \rightarrow 0} \cos \omega t+\lim _{\omega \rightarrow 0} \frac{1}{\omega} \sin \omega t=1+\lim _{\omega \rightarrow 0} \frac{t \cos \omega t}{1}=1+t
$$

where we use l'hopital's rule to evaluate the second limit.
In summary, since one of the arbitrary constants actually depends on ω, it is essential to account for it when taking the limit $\omega \rightarrow 0$.

在 1.

$$
\begin{aligned}
& y^{2}+(d-x)^{2}=a^{2} \\
& y=\sqrt{a^{2}-(d-x)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& T=\frac{1}{2} m_{1} \dot{x}^{2}+\frac{1}{2} m_{2} \dot{y}^{2}, V \\
& 2 y \dot{y}-2(d-x) \dot{x}=0 \Rightarrow \dot{y}=\frac{d-x}{2} x^{2} \\
& \sqrt{a^{2}-(d-x)^{2}} \dot{x} \\
& \therefore T=\frac{1}{2} f(x) \dot{x}^{2}, f(x)=m_{1}+\frac{(d-x)^{2} m_{2}}{a^{2}-(d-x)^{2}} \\
& \mathcal{L}=T-V=\frac{1}{2} f(x) \dot{x}^{2}-\frac{1}{2} k x^{2} \\
& \frac{\partial \mathcal{L}}{\partial x}=\frac{1}{2} f^{\prime} \dot{x}^{2}-k x \\
& \frac{\partial \mathcal{L}}{\partial \dot{x}}=f \dot{x}, \frac{d}{d t} \frac{\partial f}{\partial \dot{x}}=f \ddot{x}+f^{\prime} \dot{x}^{2} \\
& \frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{x}}-\frac{\partial f}{\partial x}=0 \Rightarrow f \ddot{x}+f^{\prime} \dot{x}^{2}-\frac{f^{\prime} \dot{x}^{2}}{2}+k x
\end{aligned}
$$

\#1 continued
So Lagrange's equation is

$$
f \ddot{x}^{\prime}+f^{\prime} \frac{x^{2}}{2}+k x=0 \quad \text { Ansitopart a }
$$

where $f(x)=m_{1}+\frac{(d-x)^{2} m_{2}}{a^{2}-(d-x)^{2}}$
b) To find national frequency, beep only lineiac tums. This gives

$$
\begin{gathered}
f(0) \ddot{x}+k x=0 \\
w^{2}=\frac{k}{f(0)}=\frac{k}{\frac{d^{2} m_{z}}{a^{2}-d^{2}}+m_{1}}
\end{gathered}
$$

\#2

$$
\begin{aligned}
& T=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right), V=m g y \\
& \quad \dot{y}=2 x \dot{x} \\
& T=\frac{1}{2} m\left(1+4 x^{2}\right) \dot{x}^{2}, V=m g x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L}=T-V=\frac{1}{2} m\left(1+4 x^{2}\right) \dot{x}^{2}-m g x^{2} \\
& \mathcal{L}=\frac{1}{2} f(x) \dot{x}^{2}-m g x^{2}, f(x)=\ln \left(1+4 x^{2}\right)
\end{aligned}
$$

\#2 continued
Similar to problem \#1,

$$
\frac{d}{d t} \frac{\partial l}{\partial \dot{x}}-\frac{\partial t}{\partial x}=0 \Rightarrow f \ddot{x}+f^{\prime} \frac{\dot{x}^{2}}{2}+2 m g x=0
$$

where $f(x)=m\left(1+4 x^{2}\right)$
linearize around $x=0$:

$$
\begin{aligned}
& f(0) \ddot{x}+2 m g x=0, \quad f(0)=m \\
& \ddot{x}+2 g x=0 \\
& \omega^{2}=2 g, \quad \omega=\sqrt{2 g}
\end{aligned}
$$

\#3. $\quad x_{p}=R \cos (\Omega t-\phi)$

$$
\dot{x}_{p}=-R \Omega \sin (\Omega t-\phi)
$$

Amplitude of velocity $=R \Omega$
From class notes, $\frac{R}{\delta_{s t}}=\frac{1}{\sqrt{\left(1-\left(\frac{\left.\left.\delta_{0}^{2}\right)^{2}+4\left(\frac{n}{\omega}\right)\right)^{2}\left(\frac{2}{\omega}\right)^{2}}{}\right.\right.}}$

$$
\therefore \quad \frac{R \Omega}{\delta_{s t}}=\frac{\Omega}{\sqrt{\left(1-\left(\frac{s i}{\omega}\right)^{2}+4\left(\frac{n}{\omega}\right)^{2}\left(\frac{\pi}{w}\right)^{2}\right.}}
$$

diviansionles

$$
\begin{aligned}
\begin{array}{l}
\text { imensionles } \\
\text { ampitione of velocity }=\frac{R}{\delta_{s t}} \frac{\Omega}{\omega}
\end{array} & =\frac{\Omega / \omega}{\sqrt{\left(1-\left(\frac{s q^{2}}{w}\right)^{2}+4\left(\frac{n}{\omega}\right)^{2}\left(\frac{\Omega}{\omega}\right)^{2}\right.}} \\
& =\frac{q}{\sqrt{\left(1-q^{2}\right)^{2}+4 p^{2} q^{2}}}
\end{aligned}
$$

\# 3 continue d
Set $\frac{d}{d q}\left(\frac{q}{\sqrt{\left(1-q^{2}\right)^{2}+4 p^{2} q^{2}}}\right)=0$ for max
Obtain

$$
\frac{q^{4}-1}{\left(\left(1-q^{2}\right)^{2}+4 p^{2} q^{2}\right)^{3 / 2}}=0 \Rightarrow q=1
$$

\therefore Max velocity amplitude occurs at

$$
\Omega=w
$$

\#4.

$$
\dot{\theta}=\sqrt{\frac{2 m g R}{m R^{2}+I_{0}}} \sqrt{\theta}, \theta(0)=0
$$

has two exact solutions:
Ore of than $i \quad \theta \equiv 0$ as stated.
The otha is obtained by sepal aton of variates

$$
\begin{aligned}
& \frac{d \theta}{\sqrt{\theta}}=\sqrt{\cdots} d t \\
& 2 \theta^{1 / 2}=\sqrt{\cdots} t+C^{7} \quad(c=0 \text { for } \theta(0)=0) \\
& \therefore \theta(t)=\frac{1}{2} \sqrt{\cdots} t^{2}
\end{aligned}
$$

\#4 continued
Comment: An equation with two (oumore) Solutions is bad news: how do you know if the solution you have found is the right one for your application?

That is why the mathematicians have given us a uniqueness proof which gives conditions on the right hand side of the differential equation $(f(0))$

$$
\frac{d \theta}{d t}=f(\theta)
$$

Which guarantee that the is only one solution.

$$
T=\frac{1}{2} m_{1} \dot{x}^{2}+\frac{1}{2} m_{2} V_{2}^{2}
$$

$$
\bar{r}_{2}=x \hat{e}_{x}+a \sin \theta \hat{e}_{x}
$$

$$
+a \cos \theta \hat{e}_{y}
$$

Let $m_{1}=M$

$$
\bar{V}_{2}=(\dot{x}+a \dot{\theta} \cos \theta,-a \dot{\theta} \sin \theta)
$$

$$
m_{2}=m
$$

$$
\bar{V}_{2}^{2}=(\dot{x}+a \dot{\theta} \cos \theta)^{2}+a^{2} \dot{\theta}^{2} \sin ^{2} \theta
$$

$$
=\dot{x}^{2}+2 a \dot{x} \dot{\theta} \cos \theta+a^{2} \dot{\theta}^{2}
$$

$$
V=\frac{1}{2} k x^{2}-a_{m g} \cos \theta
$$

$$
\begin{array}{r}
\frac{\partial L}{\partial x}=-k x \quad \frac{\partial k}{\partial \dot{x}}=m_{1} \dot{x}+m_{2}(\dot{x}+a \dot{\theta} \cos \theta) \\
\frac{d}{a t} "=\left[\begin{array}{c}
\left(m_{1}+m_{2}\right) \ddot{x}+m_{2}(a)\left(\ddot{\theta} \cos \theta-\dot{\theta}^{2} \sin \theta\right) \\
+k x=0
\end{array}\right.
\end{array}
$$

$$
\frac{\partial h}{\partial \theta}=-a m g \sin \theta-a_{x} \dot{\theta} \sin \theta
$$

$$
\frac{\partial h}{\partial \dot{\theta}}=\left(a \dot{x} \cos \theta+a^{2} \dot{\theta}\right) m_{2}
$$

$$
\frac{d}{d t} n=\left(a \ddot{x} \cos \theta-a \ddot{x} \quad \dot{\theta} \sin \theta+a^{2} \ddot{\theta}\right) m_{2}
$$

$$
m_{2}\left(a \ddot{x} \cos \theta+a^{2} \ddot{\theta}\right)+a m g \sin \theta=0
$$

$$
\begin{gathered}
(m+M) \ddot{x}+m^{a} \ddot{\theta} \quad+k x=0 \\
\ddot{x}+a \ddot{\theta}+g \theta=0
\end{gathered}
$$

(b) Linearize abut $x=\theta=0 \quad \cos \theta \rightarrow 1 \quad \sin \theta \rightarrow \theta$

1) $(m+m) \ddot{x}+m a \ddot{\theta}+k x=0$
2) $m a \ddot{x}+m a^{2} \ddot{\theta}+m g a \theta=0$
(C)

$$
\begin{array}{ll}
m \ddot{z}+K z=0 & z=\left[\begin{array}{l}
x \\
\theta
\end{array}\right] \\
\ddot{z}=\left[\begin{array}{l}
\ddot{x} \\
\ddot{\theta}
\end{array}\right] \\
M=\left[\begin{array}{cc}
(M+m) & m a \\
m a & m a^{2}
\end{array}\right] \quad K=\left[\begin{array}{cc}
K & 0 \\
0 & m g a
\end{array}\right]
\end{array}
$$

(d) $m=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$
frequencies ω, ω_{2}

$$
\begin{aligned}
& \operatorname{det}\left[K-w^{2} M\right]=0 \\
& \operatorname{det}\left[\begin{array}{cc}
1-2 w^{2} & -w^{2} \\
-w^{2} & 1-w^{2}
\end{array}\right]=0 \\
& \left(1-2 w^{2}\right)\left(1-w^{2}\right)-w^{4}=0 \\
& 1-3 w^{2}+2 w^{4}-w^{4}=0 \\
& \left(w^{2}\right)^{2}-3\left(w^{2}\right)+1=0 \\
& w^{2}=\frac{3 \pm \sqrt{9-4}}{2} \\
& w_{1}^{2}=\frac{3-\sqrt{5}}{2} \quad w_{1}=0.6180 \\
& w_{2}^{2}=\frac{3+\sqrt{5}}{2} w_{2}=1.6180
\end{aligned}
$$

Modal vectors i_{2}^{z}

$$
m^{-1} K z=\omega^{2} z
$$

Solve by hand or in MATLAB

$$
1 z=\left[\begin{array}{l}
-0.5257 \\
-0.3249
\end{array}\right] \quad \text { a } z=\left[\begin{array}{c}
-0.85077 \\
1.3764
\end{array}\right]
$$

MATLAB: $[v, d]=\operatorname{eig}(K, M)$

$$
V=\left[\begin{array}{ll}
z & z^{z}
\end{array}\right]
$$

$$
d=\left[\begin{array}{cc}
w_{1}^{2} & 0 \\
0 & w_{2}^{2}
\end{array}\right]
$$

(e)

$$
\begin{aligned}
& \frac{\text { Orthogonality, condition }}{X_{j}^{\top} M X_{i}=0} \\
& X_{i}^{\top} K X_{i}=0
\end{aligned} \quad X_{1}=\left[\begin{array}{ll}
z & , z
\end{array}\right] \quad X_{2}=\left[\begin{array}{ll}
2 & 2
\end{array}\right]
$$

solving in MATLAB, all combinations of above equations yield zero.
(f)

$$
\begin{aligned}
& R=\left[\begin{array}{ll}
\exists & 2 \\
1 & z
\end{array}\right] \\
& R^{\top} M R=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

diagonal
(9) x, θ as linear combinations of principal coordinates p_{1}, p_{2} principal coordinates $p=p^{-1} z \quad(p g \mid 81)$

$$
\text { modal matrix } P=\left[\begin{array}{ll}
z_{2} & z
\end{array}\right] \quad z=P_{p} \quad z=\left[\begin{array}{l}
x \\
\theta
\end{array}\right]
$$

$$
\begin{aligned}
& x=-0.5257 p_{1}-0.8507 p_{2} \\
& \theta=-0.3249 p_{1}+1.3764 p_{2}
\end{aligned}
$$

b)

$$
\begin{aligned}
& R^{+} M R \ddot{p}+R^{\top} K R p=0 \\
& {\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right] \ddot{p}+\left[\begin{array}{cc}
0.3820 & 0 \\
0 & 2.6180
\end{array}\right] p=0}
\end{aligned}
$$

(2) Neglect gravity

* 2 approaches

1) Model changing angles in crating EOM
2) Assume small vibrations in generation of EOM because M, K matrices will be linearized about small vibrations in calculation of ω_{1}, ω_{2}.

Approach 2

component	T RE	$V P E$
m	$\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)$	-
$3 k$	-	$\frac{1}{2} 3 k x^{2}$
$2 k$		$\frac{1}{2} 2 k\left(\Delta l_{2 k}\right)^{2}$
k		$\frac{1}{2} k\left(\Delta l_{k}\right)^{2}$

compression of k

$$
\left.\begin{aligned}
& \Delta l=[\cos 60, \sin 60] \cdot[x, y] \\
& D l=x \cos \frac{\pi}{3}+y \sin \frac{\pi}{3} \\
& \frac{O m p r s s i o n}{2} \text { of ak } \\
& D l_{2 k}=x \cos \frac{\pi}{3}-y \sin \frac{\pi}{3} \\
& 0.5 \\
& \sqrt{3} / 2
\end{aligned} \right\rvert\, \frac{d}{d t}
$$

$$
\begin{aligned}
& L=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)-\frac{3}{2} k x^{2}-k \Delta l_{\partial t^{2}}^{2}-\frac{1}{2} k \Delta l_{k}^{2} \\
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)-\frac{\partial L}{\partial x}=0 \quad \text { (1) } \\
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{y}}\right)-\frac{\partial L}{\partial y}=0 \quad \text { (2) }
\end{aligned}
$$

$$
\Delta l_{k}{ }^{2}=\frac{1}{4} x^{2}+\frac{\sqrt{3}}{2} x y+\frac{3}{4} y^{2}
$$

$$
\Delta l_{2 k^{2}}^{2}=\frac{1}{4} x^{2}-\frac{\sqrt{3}}{2} x y+\frac{3}{4} y^{2}
$$

$$
\begin{aligned}
& \text { (1) } m \ddot{x}+3 k x+k\left(\frac{1}{2} x-\frac{\sqrt{3}}{2} y\right)+\frac{1}{2} k\left(\frac{1}{2} x+\frac{\sqrt{3}}{2} y\right)=0 \\
& m \ddot{x}+x\left(3 k+\frac{1}{2} k+\frac{1}{4} k\right)+y\left(-\frac{\sqrt{3}}{2} k+\frac{\sqrt{3}}{2} \cdot \frac{1}{2} k\right) \\
& \rightarrow m \ddot{x}+\frac{15}{4} k x-\frac{\sqrt{3}}{4} k y=0 \\
& \text { (2) } m \ddot{y}+k\left(-\frac{\sqrt{3}}{2} x+\frac{3}{2} y\right)+\frac{1}{2} k\left(\frac{\sqrt{3}}{2} x+\frac{3}{2} y\right)=0 \\
& \longrightarrow m \ddot{y}-\frac{\sqrt{3}}{4} k x+\frac{9}{4} k y=0 \\
& M=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad K=\left[\begin{array}{cc}
15 / 4 & -\sqrt{3} / 4 \\
-\sqrt{3} / 4 & 9 / 4
\end{array}\right] \quad(\text { setting } K=1) \\
& \text { (Settion } m=1 \text {) } \\
& \text { MATLAB }[v, d]=\operatorname{erg}(K, M) \\
& d=\left[\begin{array}{cc}
w_{1}{ }^{2} & 0 \\
0 & w_{2}^{2}
\end{array}\right] \\
& \omega_{1}=1.4608 \\
& \omega_{2}=1.9662
\end{aligned}
$$

2.

$T=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)$
Lagrange's Es give

$$
\begin{aligned}
& m \ddot{x}=-\frac{\partial v}{\partial x} \\
& m \ddot{y}=-\frac{\partial v}{\partial y}
\end{aligned}
$$

Blow up view:

$$
\begin{aligned}
V= & \frac{1}{2} k\left(\sqrt{\left(\frac{1}{2}-x\right)^{2}+\left(\frac{\sqrt{3}}{2}-y\right)^{2}}-1\right)^{2} \\
& +\frac{1}{2}(2 k)\left(\sqrt{\left(\frac{1}{2}-x\right)^{2}+\left(\frac{\sqrt{3}}{2}+y\right)^{2}}-1\right)^{2} \\
& +\frac{1}{2}(3 k)\left(\sqrt{(1+x)^{2}+y^{2}}-1\right)^{2}
\end{aligned}
$$

Expand V using the Taylor series for $\sqrt{1+Z}$

$$
\begin{aligned}
& \sqrt{1+z}= 1+\frac{z}{2}-\frac{z^{2}}{8}+\cdots \\
& \sqrt{\left(\frac{1}{2}-x\right)^{2}+\left(\frac{\sqrt{3}}{2}-y\right)^{2}}= \sqrt{\frac{1}{4}-x+x^{2}+\frac{3}{4}-\sqrt{3} y+y^{2}} \\
&= \sqrt{1+\left(-x+x^{2}-\sqrt{3} y+y^{2}\right)} \\
&= 1+\frac{\left(-x+x^{2}-\sqrt{3} y+y^{2}\right)}{2} \\
&-\frac{\left(-x+x^{2}-\sqrt{3} y+y^{2}\right)^{2}}{8}+\cdots \\
&=\left.1-\frac{1}{8}-\frac{\sqrt{3} y}{2}+\frac{x^{2}}{2}+\frac{y^{2}}{2}+3 y^{2}+2 \sqrt{3} x y\right)+/ \\
&= 1-\frac{x}{2}-\frac{\sqrt{3}}{2} y+\frac{3}{8} x^{2}+\frac{1}{8} y^{2}-\frac{\sqrt{3}}{4} \times y \\
&= \frac{1}{4}-x+x^{2}+\frac{3}{4}-\sqrt{3} y+y^{2}+1 \\
&\left(\sqrt{\left.\left(\frac{1}{2}-x\right)^{2}+\left(\frac{\sqrt{3}}{2}-y\right)^{2}-1\right)^{2}}=\right.-2+x+\sqrt{3} y-\frac{3}{4} x^{2}-\frac{1}{4} y^{2}+\frac{\sqrt{3}}{2} x y \\
&=\left.x^{2}+y^{2}-\frac{1}{4}-y\right)^{2}+1-2\left(\frac{1}{4} x^{2}+\frac{3}{4} y^{2}+\frac{\sqrt{3}}{2} x y\right. \\
&= \frac{\sqrt{3}}{2} x y \\
&=
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{(1+x)^{2}+y^{2}}=\sqrt{1+2 x+x^{2}+y^{2}} \\
&=1+\frac{1}{2}\left(2 x+x^{2}+y^{2}\right)-\frac{1}{8}\left(2 x+x^{2}+y^{2}\right)^{2}+\cdots \\
&=1+x+\frac{x^{2}}{2}+\frac{y^{2}}{2}-\frac{x^{2}}{2} \\
&=1+x+\frac{y^{2}}{2} \\
&\left.\left.\begin{array}{rl}
\left.\sqrt{(1+x)^{2}+y^{2}}-1\right)^{2} & =(1+x)^{2}+y^{2}+1-2\left(1+x+\frac{y^{2}}{2}\right) \\
& =1+2 x+x^{2}+y^{2}+1-2-2 x-y^{2} \\
& =x^{2} \\
V=\frac{1}{2} k\left(\frac{x^{2}}{4}+\frac{3}{4} y^{2}+\frac{\sqrt{3}}{2} x y\right) \\
+\frac{1}{2}(2 k)\left(\frac{x^{2}}{4}\right. & \left.+\frac{3}{4} y^{2}-\frac{\sqrt{3}}{2} x y\right) \\
V=\frac{1}{2} k[3 k) x^{2} \\
=\frac{x^{2}}{2}\left(\frac{1}{4}\right. & \left.+\frac{2}{4}+3\right)+\frac{15}{4} x^{2}
\end{array}\right)+\frac{9}{4} y^{2}-\frac{\sqrt{3}}{2} x y\right] \\
& m \ddot{x}=-\frac{2 v}{2 x}=-\frac{15}{4} k x+\frac{\sqrt{3}}{4} y k \\
& m=-\frac{\partial v}{2 y}=-\frac{9}{4} k y+\frac{\sqrt{3}}{4} x k \\
&\left.=\sqrt{3} x y\left(\frac{1}{2}-1\right)\right]
\end{aligned}
$$

$$
\left.\begin{gathered}
M \ddot{x}+K x=0 \\
{\left[\begin{array}{cc}
m & 0 \\
0 & m
\end{array}\right]\left[\begin{array}{c}
\ddot{x} \\
\ddot{y}
\end{array}\right]+\left[\begin{array}{cc}
\frac{15}{4} k & -\frac{\sqrt{3}}{4} k \\
-\frac{\sqrt{3}}{4} k & \frac{9}{4} k
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
x=A \cos \omega t \\
y=B \cos \omega t \\
\left\lvert\,-\omega^{2} m+\frac{15}{4} k \quad-\frac{\sqrt{3}}{4} k\right. \\
-\frac{\sqrt{3}}{4} k \quad-\omega^{2} m+\frac{9}{4} k
\end{gathered} \right\rvert\,=0 \quad \begin{aligned}
& \left.\beta^{2}+\frac{15}{4}\right)\left(-\beta^{2}+\frac{9}{4}\right)-\frac{3}{16}=0 \quad \omega h e r e \beta=\omega \sqrt{\frac{m}{k}} \\
& \beta^{4}-6 \beta^{2}+\frac{33}{4}=0 \\
& \beta^{2}=\frac{6 \pm \sqrt{36-33}}{2}=3 \pm \frac{\sqrt{3}}{2} \\
& \omega=\sqrt{3 \pm \frac{\sqrt{3}}{2}} \sqrt{\frac{k}{m}}=1.461 \sqrt{\frac{k}{m}}, 1.966 \sqrt{\frac{k}{m}}
\end{aligned}
$$

3. The general motion of the first coordinate of a two degree of freedom system is given by:

$$
x_{1}(t)=R_{1} \cos \left(\omega_{1} t-\theta_{1}\right)+R_{2} \cos \left(\omega_{2} t-\theta_{2}\right)
$$

Is this a periodic motion? Under what condition will it be periodic?
At $t=0$,

$$
x_{1}(0)=R_{1} \cos \left(\theta_{1}\right)+R_{2} \cos \left(\theta_{2}\right)
$$

At what time t will this happen again?
Suppose that $\omega_{2}=\frac{m}{n} \omega_{1}$, where m and n are whole numbers. Then

$$
x_{1}(t)=R_{1} \cos \left(\omega_{1} t-\theta_{1}\right)+R_{2} \cos \left(\frac{m}{n} \omega_{1} t-\theta_{2}\right)
$$

After time $T=\frac{2 \pi n}{\omega_{1}}$, we have

$$
x_{1}(T)=R_{1} \cos \left(2 \pi n-\theta_{1}\right)+R_{2} \cos \left(2 \pi m-\theta_{2}\right)=x_{1}(0)
$$

In fact, $x_{1}(T+t)=x_{1}(t)$ for all t, not just $t=0$. Thus in this case the motion is periodic.
However, if the ratio of ω_{2} to ω_{1} is an irrational number, then $x_{1}(t)$ will never return to $x_{1}(0)$ and the motion will not be periodic.
(1)

$$
\begin{aligned}
& T=\frac{1}{2}\left(\dot{x}_{1}^{2}+\dot{x}_{2}^{2}\right) \\
& V=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}+\left(x_{1}-x_{2}\right)^{2}\right) \\
& =x_{1}^{2}+x_{2}^{2}-x_{1} x_{2} \\
& \delta W_{2}=F \cos \Omega t \delta x_{2} \Rightarrow Q_{2}=F \cos \Omega t \\
& \delta W_{1}=0 \Rightarrow Q_{1}=0 \\
& \ddot{x}_{1}+2 x_{1}-x_{2}=0 \\
& \ddot{x}_{2}-x_{1}+2 x_{2}=F \cos \Omega t \\
& M=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), K=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right), f=\binom{0}{F \cos \Omega t} \\
& M \ddot{x}+K x=f(t) \\
& \text { Let } x=\Sigma \cos \omega t \text { for } f(t)=0 \\
& (-\omega \bar{I}+k) Z=0 \\
& \left|\begin{array}{cc}
-w^{2}+2 & -1 \\
-1 & -w^{2}+2
\end{array}\right|=0,\left(-w^{2}+2\right)^{2}=1 \\
& -\omega^{2}+2= \pm 1 \\
& \omega^{2}=2 \mp 1=3,1 \\
& \omega_{1}=1, \quad\left[\begin{array}{cc}
-1+2 & -1 \\
-1 & -1+2
\end{array}\right], \bar{X}=0 \Rightarrow, \bar{X}=\binom{1}{1} \\
& w_{2}=\sqrt{3}, \quad\left[\begin{array}{ll}
-1 & -1 \\
-1 & -1
\end{array}\right], \mathbb{Z}=0 \Rightarrow \underset{2}{Z}=\binom{1}{-1}
\end{aligned}
$$

Set $x=R p, \quad R=[1 \Phi, 2 X]=\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$

$$
\begin{gathered}
x_{1}=p_{1}+p_{2} \\
x_{2}=p_{1}-p_{2} \\
\underbrace{R^{t} M R}_{R^{*} I R} \ddot{p}+\underbrace{\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]}_{\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]} \begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}]
\end{gathered}+\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right] \underbrace{\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{cc}
2 & 0 \\
0 & 6
\end{array}\right]}_{\left[\begin{array}{cc}
1 & 3 \\
1 & -3
\end{array}\right]}=
$$

$$
\begin{aligned}
& \ddot{p}_{1}+\omega_{1}^{2} p_{1}=\frac{F}{2} \cos \Omega t, \quad \omega_{1}=1 \\
& \ddot{p}_{2}+\omega_{2}^{2} p_{2}=-\frac{F}{2} \cos \Omega t, \quad \omega_{2}=\sqrt{3} \\
& p_{1}=k \cos \Omega t, \quad\left(-\Omega^{2}+\omega_{1}^{2}\right) k=F
\end{aligned}
$$

So $\quad p_{1}=\frac{F / 2}{1-\Omega^{2}} \cos \Omega t$
Similasly $p_{2}=\frac{-F / 2}{3-\Omega^{2}} \cos \Omega t$

$$
\begin{aligned}
\therefore x_{1}=p_{1}+p_{2} & =\left(\frac{1}{1-\Omega^{2}}-\frac{1}{3-\Omega^{2}}\right) \frac{F}{2} \cos \Omega t \\
& =\frac{F}{\left(1-\Omega^{2}\right)\left(3-\Omega^{2}\right)} \cos \Omega t \\
x_{2}=p_{1}-p_{2} & =\left(\frac{1}{1-\Omega^{2}}+\frac{1}{3-\Omega^{2}}\right) \frac{F}{2} \cos \Omega t \\
& =\frac{\left(2-\Omega^{2}\right) F}{\left(1-\Omega^{2}\right)\left(3-\Omega^{2}\right)} \cos \Omega t
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
\ddot{x}_{1}+2 x_{1}-x_{2}=0 \\
\ddot{x}_{2}-x_{1}+2 x_{2}=F \cos \Omega t \\
\text { Set } \begin{array}{l}
x_{1}
\end{array}=A \cos \Omega t \\
x_{2}=B \cos \Omega t \\
-\Omega^{2} A+2 A-B=0 \\
-\Omega^{2} B-A+2 B=F
\end{array}\right\} \text { Solve for } A, B \\
& \Rightarrow \quad A=\frac{F}{\left(1-\Omega^{2}\right)\left(3-\Omega^{2}\right)}, B=\frac{F\left(2-\Omega^{2}\right)}{\left(1-\Omega^{2}\right)\left(3-\Omega^{2}\right)}
\end{aligned}
$$

Agrees with (1)

SOLUTION to question 3:
Multiply the first eq. in (7) by $-\Omega^{2}$ and add to the second eq. in (7) giving:

$$
R^{t}\left(-\Omega^{2} M+K\right) R=-\Omega^{2} D_{1}+D_{2}
$$

Take the inverse of both sides:

$$
\begin{gathered}
\left(R^{t}\left(-\Omega^{2} M+K\right) R\right)^{-1}=\left(-\Omega^{2} D_{1}+D_{2}\right)^{-1} \\
R^{-1}\left(-\Omega^{2} M+K\right)^{-1}\left(R^{t}\right)^{-1}=\left(-\Omega^{2} D_{1}+D_{2}\right)^{-1}
\end{gathered}
$$

Now multiply on the left by R and on the right by R^{t}, giving

$$
\left(-\Omega^{2} M+K\right)^{-1}=R\left(-\Omega^{2} D_{1}+D_{2}\right)^{-1} R^{t}
$$

This demonstrates the equivalence of eqs.(5) and (13).

$$
u_{t t}=c^{2} u_{x x}, u_{x}=0 \text { at } x=0, l
$$

Set $u=U(x) \cos \omega t$

$$
\begin{aligned}
-\omega^{2} U & =c^{2} U^{\prime \prime} \\
U(x) & =c_{1} \sin \frac{\omega}{c} x+c_{2} \cos \frac{\omega}{c} x \\
U^{\prime} & =\frac{\omega}{c}\left(c_{1} \cos \frac{\omega}{c} x-c_{2} \sin \frac{\omega}{c} x\right) \\
U^{\prime}(0) & =U^{\prime}(l)=0 \Rightarrow c_{1}=0 \text { and }
\end{aligned}
$$

$\sin \frac{\omega l}{c}=0$

$$
\frac{\omega l}{c}=n \pi, n=0,1,2, \ldots
$$

a)

$$
\omega_{n}=n \pi \frac{c}{l}, U_{n}(x)=\cos \frac{\omega_{n}}{c} x
$$

b) Show $\left\{V_{n}\right\}$ is or the goral

$$
\begin{aligned}
& \int_{0}^{l} U_{n} U_{m} d x=0, n \neq m \\
& \int_{0}^{l} \underbrace{\cos \frac{n \pi x}{l} \cos \frac{m \pi x}{l}} d x=0 \\
& \frac{1}{2} \cos \left(\left(\frac{n+m}{I}\right)^{\pi} x\right)+\frac{1}{2} \cos \left(\left(\frac{n-m}{l}\right)^{\pi} x\right) \\
& =\frac{l}{2 \pi}\left(\frac{\sin \left(\frac{n+m}{x} x\right)}{n+m}+\left.\frac{\sin \left(\frac{n-m}{1, x}\right)}{n-m}\right|_{0} ^{l}\right) \\
& =\frac{\sin (n+m) \pi}{n+m}+\frac{\sin (n-m) \pi}{n-m}=0
\end{aligned}
$$

C)

$$
u(x, t)=\left\{\begin{array}{c}
\sum_{n=1}^{\infty}\left(a_{n} \cos \omega_{n} t+b_{n} \sin \omega_{n} t\right) \cos \frac{\omega_{n} x}{c} x \\
+a_{0}+b_{0} t
\end{array}\right.
$$

Trigid body mode
d) IC $t=0, u_{t}=0 \Rightarrow b_{n}=0, n=0,1,2, \ldots$

$$
t=0, \quad u=\frac{x}{l}=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{l}
$$

Mull.by $\cos \frac{m \pi x}{l} \& \int_{0}^{l} \Rightarrow$

$$
\begin{aligned}
\int_{0}^{l} \frac{x}{l} \cos \frac{m \pi x}{l} d x=\int_{0}^{l} a_{m}\left(\cos \frac{m \pi x}{l}\right)^{2} d x=\frac{l}{2} a_{m} \\
(m>0)
\end{aligned} a_{m}=\frac{2}{l} \int_{0}^{l} \frac{x}{l} \cos \frac{m \pi x}{l} d x, m>0 . ~\left(\frac{1}{l} \int_{0}^{l} \frac{x}{l} d x=\frac{1}{l^{2}}\left[\left.\frac{x^{2}}{2}\right|_{0} ^{l}\right]=\frac{1}{2} .\right.
$$

e)

$$
\begin{aligned}
& \text { at } x=\frac{l}{2}, u\left(\frac{l}{2}, t\right)=\frac{1}{2}+\sum_{n=1,3,5}^{\infty} a_{n} \cos \omega_{n} t \cos \frac{n \pi}{2}=\frac{1}{2} \\
& \text { at } x=0, u(0, t)
\end{aligned}=\frac{1}{2}+\sum_{n=1,2,5}^{\infty} a_{n} \cos \frac{n \pi c t}{l}, \begin{aligned}
\text { at } x=l, u(l, t) & =\frac{1}{2}+\sum_{n=1,3,5}^{\infty} a_{n} \cos \frac{n \pi c t}{2} \cos n n^{-1} \\
& =\frac{1}{2}-\sum_{n=1,1,5,5}^{\infty} a_{n} \cos \frac{n \pi t t}{2}
\end{aligned}
$$

f)

$$
\begin{array}{r}
x(0, t)=\frac{1}{2}-\frac{4}{\pi^{2}}\left(\cos \frac{\pi c}{l} t+\frac{1}{9} \cos \frac{3 \pi l}{l} t\right. \\
\\
\left.+\frac{1}{25} \cos \frac{5 \pi \pi^{2}}{l} t+\cdots\right)
\end{array}
$$

See figine attriched.
2.

See text, prottem 7.8, pp. 210-211
3.

$$
E A \frac{\partial u}{\partial x}=-M \frac{\partial^{2} u}{\partial t^{2}} \text { at } x=l
$$

seetexts problem 7.4, p. 207

(a) $\omega_{n}=n \pi, \quad U_{n}(x)=\cos n \pi x$
b)

$$
\begin{aligned}
f(x, t) & =x^{2} \cos t=\sum f_{i}(t) U_{i}(x) \\
f_{n}(t) & =\left(\frac{\int_{0}^{1}(\cos n \pi x) x^{2} d x}{\int_{0}^{1}(\cos n \pi x)^{2} d x}\right) \cos t \\
& =\frac{\frac{2}{\pi^{2} n^{2}}(-1)^{n}}{\frac{1}{2}} \cos t=F_{n} \cos t
\end{aligned}
$$

where $F_{n}=\frac{4}{\pi^{2} n^{2}}(-1)^{n}, n>0 . \quad F_{0}=\frac{1}{3}$
c)

$$
\begin{aligned}
& H(x)= u_{t}(x, 0)=x=\sum H_{n} \cos n \pi x \\
& H_{n}=\frac{\int_{0}^{1} x \cos n \pi x d x}{\int_{0}^{1}(\cos n \pi x)^{2} d x}=\frac{\frac{1}{\pi^{2} n^{2}\left((-1)^{n}-1\right)}}{\frac{1}{2}}, n>0 \\
& H_{n}=\left\{\begin{array}{c}
-\frac{4}{\pi^{2} n^{2}}, n \cdot d d \\
0, n \text { even }
\end{array}\right\} n>0 ; H_{0}=\int_{0}^{1} x d x=\frac{1}{2} \\
& G(x)=n(x, 0)=0 \Rightarrow G_{n}=0
\end{aligned}
$$

d) $\quad p_{n}^{\prime \prime}+w_{n}^{2} p_{n}=F_{n} \cos t$
$t=0, p_{n}=0, \dot{p}_{n}=H_{n}$
e) $\quad p_{n}(t)=A_{n} \cos n \pi t+B_{n} \sin n \pi t+\frac{F_{n} \cos t}{(n \pi)^{2}-1}, n>0$
(contisined) $\quad p_{0}(t)=\frac{1}{2} t-\frac{1}{3} \cos t+\frac{1}{3}$
where $A_{n}=\frac{-F_{n}}{(n \pi)^{2}-1}$

$$
B_{n}=\frac{H_{n}}{n \pi}
$$

where F_{n} and H_{n} are given in b) and c)
f)

$$
\begin{aligned}
& u(x, t) \approx p_{1}(t) U_{1}(x)+p_{0}(t) U_{0}(x) \\
& \approx\left(A_{1} \cos \pi t+B_{1} \sin \pi t+\frac{F_{1} \cos t}{\pi^{2}-1}\right) \cos \pi x+p_{0}(t) \\
& \approx\left(\frac{\left.-\frac{4}{\pi^{2}\left(\pi^{2}-1\right)}(\cos t-\cos \pi t)-\frac{4}{\pi^{3}} \sin \pi t\right) \cos \pi x}{} \quad+\frac{1}{2} t-\frac{1}{3} \cos t+\frac{1}{3}\right. \\
&2 a) \quad u=U(x) \cos \omega t \\
&-\omega^{2} U+\frac{E I}{5} U^{N}=0 \\
& U^{\prime v}-k^{4} U=0, \quad k^{4}=\omega^{2} \frac{\rho}{E I} \\
& U=e^{\lambda x} \Rightarrow \quad \lambda^{4}-k^{4}=0 \quad \Rightarrow \lambda=k,-k, i k,-i k \\
& U=C_{1} \cosh k x+c_{2} \sinh k x+c_{3} \cos k x+c_{4} \sin k x \\
& B C \quad U(0)=U(l)=U^{\prime}(0)=U^{\prime}(l)=0
\end{aligned}
$$

4 homegeneans algebraic ens.
For nontrivial solution, set determinant $=0$ which gives

$$
\begin{aligned}
& \cos k l \cosh k l=1, \quad k=\sqrt{\omega}\left(\frac{\rho}{E I}\right)^{1 / 4} \\
& \omega=\frac{(k l)^{2}}{l^{2}}\left(\frac{E I}{5}\right)^{1 / 2}
\end{aligned}
$$

Solving the system of 4 hanog. es, obtain

$$
\begin{aligned}
U_{n}(x)= & \cosh (k l) \frac{x}{l}-\cos (k l) \frac{x}{l} \\
& +\mu\left(\sinh \left(k_{l}\right) \frac{x}{l}-\sin (k l) \frac{x}{l}\right)
\end{aligned}
$$

where

$$
\mu=-\frac{(\cosh k \ell-\cos h l)}{(\sinh k \ell-\sin h l)}
$$

b) $\quad k l=4.73,7.85,10.99,14.13$
c) See plot, attached.

Note: This information may be obtained directly from the "Table of Beam Frequencies" posted on the web.

At the bottom of the Table we fried:

$$
\begin{aligned}
& \omega=\frac{\lambda^{2}}{\ell^{2}} \sqrt{\frac{E I}{\rho}} \text { where } \lambda=k \ell \text { in above notation } \\
& J(u)=\cosh u-\cos u \\
& H(x)=\sinh u-\sin u
\end{aligned}
$$

Using this notation, the Tall gives the mode shape as

$$
U_{n}(x)=J\left(\lambda_{n} \frac{x}{l}\right)-\frac{J\left(\lambda_{n}\right)}{H\left(\lambda_{n}\right)} H\left(\lambda_{n} \frac{x}{l}\right)
$$

3.

$$
\begin{aligned}
& \frac{d^{2} u}{d x^{2}}+u=1 \\
& u(0)=0 \\
& u(\pi)=0
\end{aligned}
$$

General solution

$$
\begin{aligned}
u & =A \sin x+B \cos x+1 \\
u(0) & =B+1=0 \Rightarrow B=-1 \\
u(\pi) & =-B+1=0 \Rightarrow B=1
\end{aligned}
$$

Since B cannot be equal to both 1 and -1 , this problem has no solution.

Note that the above syptem does have a solution for appropilite choices of the Jugitt hard side. For example

$$
\left.\left.\begin{array}{rl}
\frac{d^{2} u}{d x^{2}}+u=\cos 3 x \\
u & =A \sin x+B \cos x-\frac{1}{8} \cos 3 x \\
u(0) & =B-\frac{1}{8}=0 \Rightarrow B=1 / 8 \\
u(\pi) & =-B-\frac{1}{8}(-1)=0 \Rightarrow B=1 / 8
\end{array}\right\} \begin{array}{l}
\text { no }
\end{array}\right\}
$$

This can be exp pained in terms of the "Fredholm alternative theorem" which I will go over in class.
la.

From Table, $\lambda_{1}=3.9266$

$$
\omega_{1}=\lambda_{1}^{2} \sqrt{\frac{E I}{\rho l^{4}}}=15.42 \sqrt{\frac{E I}{\rho l^{4}}}
$$

16.

$$
\begin{aligned}
& \frac{d^{4} u}{d x^{4}}=1 \\
& u=c_{1}+c_{2} x+c_{3} x^{2}+c_{4} x^{3}+\frac{x^{4}}{24}
\end{aligned}
$$

$B C$:

$$
\begin{aligned}
& x=0, u=0, u^{\prime}=0 \Rightarrow c_{1}=c_{2}=0 \\
& x=l, u=0, u^{\prime \prime}=0 \Rightarrow c_{3}=\frac{l^{2}}{16}, c_{4}=-\frac{5}{48} l \\
& u=\frac{x^{2} l^{2}}{16}-\frac{5}{48} x^{3} l+\frac{x^{4}}{24}(=V(x) \text { below })
\end{aligned}
$$

ic.

$$
\begin{aligned}
& Q=\frac{E I \int_{0}^{l}\left(V^{\prime \prime}\right)^{2} d x}{\rho \int_{0}^{l} V^{2} d x}=\frac{E I \frac{l^{5}}{320}}{\rho \frac{19 l^{9}}{1451520}} \\
& \omega_{1}<\sqrt{Q}=\sqrt{\frac{4536}{19}} \sqrt{\frac{E I}{\rho l^{4}}}=15.45 \sqrt{\frac{E I}{\rho l^{4}}}
\end{aligned}
$$

Great agreement with $1 a$!

1d. Again take $V(x)=\frac{x^{2} l^{2}}{16}-\frac{5}{48} x^{3} l+\frac{x^{4}}{24}$

$$
\begin{aligned}
& \rho=\rho_{0}+m \delta\left(x-\frac{l}{2}\right) \\
& Q=\frac{E I \int_{0}^{l}\left(V^{\prime \prime}\right)^{2} d x}{\rho_{0} \int_{0}^{l} V^{2} d x+m V\left(\frac{l}{2}\right)^{2}} \\
& V\left(\frac{l}{2}\right)=\frac{l^{4}}{192} \\
& Q=\frac{E I \frac{l^{5}}{320}}{\rho_{0} \frac{19 l^{9}}{1451520}+\frac{m l^{8}}{(142)^{2}}} \\
&=\frac{E I\left(\frac{4536}{19}\right)}{\rho \cdot l^{4}+\left(\frac{315}{152}\right) m l^{3}} \\
& \omega_{1}<\sqrt{Q}=15.45 \sqrt{\frac{E I}{\rho \cdot l^{4}+2.07 m l^{3}}}
\end{aligned}
$$

2. $r(x)=x+1 \quad$ (See 7.22 on p.225)

$$
\begin{aligned}
& A(x)=\pi(x+1)^{2} \\
& Q=\frac{\int_{0}^{2} E A(x)\left(u^{\prime}\right)^{2} d x}{\int_{0}^{2} \rho A(x) u^{2} d x}
\end{aligned}
$$

Choose $u(x)=x(x-2)$
Which satisfies the $B C \quad u(0)=u(2)=0$
Then $u^{\prime}=2 x-2$

$$
\begin{aligned}
& Q=\frac{E \int_{0}^{2} \pi(x+1)^{2}(2 x-2)^{2} d x}{\rho \int_{0}^{2} \pi(x+1)^{2} x^{2}(x-2)^{2} d x}=\frac{\frac{184}{15} E}{\frac{464}{105} \rho} \\
& Q=\frac{161}{58} \frac{E}{5} \Rightarrow \omega_{1} \leqslant \sqrt{Q}=1.67 \sqrt{\frac{E}{5}}
\end{aligned}
$$

3. $u^{\prime v}-u=1$
a) $\quad u=c_{1} \sin x+c_{2} \cos x+c_{3} \sinh x+c_{4} \cosh x-1$

$$
\begin{aligned}
& \left.\begin{array}{l}
u(0)=0=c_{2}+c_{4}-1 \\
u^{\prime \prime}(0)=0=-c_{2}+c_{4}
\end{array}\right\} \quad c_{2}=c_{4}=\frac{1}{2} \\
& \left\{\begin{array}{l}
u(\pi)=0=c_{4} \tilde{c}+c_{3} \tilde{s}-c_{2}-1 \quad \text { where } \begin{array}{r}
\tau=\cosh (\pi) \\
\\
u^{\prime \prime}(\pi)=0=\sinh (\pi)
\end{array}
\end{array} . \begin{array}{l}
u c_{4} \tilde{c}+c_{3} \tilde{s}+c_{2}
\end{array}\right.
\end{aligned}
$$

Substituting $C_{2}=C_{4}=\frac{1}{2}$ from above gives 2 incompatible values for $C_{3} \Rightarrow$ no solution
b) The Fredholm Aftunative sago $f(x)$ must be outhegosal to the null space of the adjoint.
[Not ethat (i) $u^{\prime N}-u=0 \Rightarrow u=\sin x$ satisfies $B_{1} C$. ie. the homogeneous syptum has a nontrivial solo and lii] the opuator $L u=u^{\prime v} u$ is setf-adjoint.] Only those $f(x)$ munch satisfy $\int_{0}^{\pi} f(x) \sin x d x=0$ will give a solution, $E_{1 g}$. $f(x)=\cos 3 x$.

Consider a clamped-free beam of constant depth, and a width which varies linearly from a maximum at the fixed end to zero at the free end. Taking the origin of coordinates at the fixed end, $I=I_{0}(1-x / l)$ and $\mu=\mu_{0}(1-x / l)$, where I_{0} and μ_{0} are respectively the moment of inertia and mass per unit length at the fixed end. Choose a two-term series,

$$
W=A_{1} x^{2}+A_{2} x^{3}
$$

The kinetic and potential energies are:

$$
\begin{aligned}
T^{*} & =32 \int_{0}^{l} \mu W^{2} d x=\frac{\mu_{0}}{2} \int_{0}^{l}\left(1-\frac{x}{l}\right)\left(A_{1} x^{2}+A_{2} x^{3}\right)^{2} d x \\
V_{\max } & =1 / 2 \int_{0}^{l} E I\left(W^{\prime \prime}\right)^{2} d x=\frac{E I_{0}}{2} \int_{0}^{l}\left(1-\frac{x}{l}\right)\left(2 A_{1}+6 A_{2} x\right)^{2} d x
\end{aligned}
$$

Integrating, taking the partial derivatives, and substituting into (61.127) gives the pair of equations,

$$
\begin{align*}
& (2-\beta / 30) A_{1}+(2-\beta / 42) A_{2} l=0 \tag{61.128a,b}\\
& (2-\beta / 42) A_{1}+(3-\beta / 56) A_{2} l=0
\end{align*}
$$

where $\beta=\mu_{0} l^{1} \lambda / E I_{0}$. The roots of the frequency equation are $\beta_{1}=51.25$ and $\beta_{2}=1377$, and, hence, the first two frequencies are $\omega_{1}^{2} \leq 51.25 E I_{0} / \mu_{0} l^{4}$ and $\omega_{2}^{2} \leq$ $1377 E I_{0} / \mu_{0} l^{4}$
2. Ritzon
w/ 3 tams

$$
\begin{aligned}
& V=c_{1} x^{2}+c_{2} x^{3}+c_{3} x^{4} \\
& \bar{Q}=Q \frac{\rho l^{4}}{E I}, \bar{c}_{2}=c_{2} l, \bar{c}_{3}=c_{3} l^{2} \\
& \bar{Q}=l^{4} \frac{\int_{0}^{l}\left(v^{\prime \prime}\right)^{2} d x}{\int_{0}^{l} v^{2} d x} \\
& \int_{0}^{l}\left(V^{\prime \prime}\right)^{2} d x=l\left(\frac{144}{5} \bar{c}_{3}^{2}+36 \bar{c}_{2} \bar{c}_{3}+16 c_{1} \bar{c}_{3}+12 \bar{c}_{2}^{2}\right. \\
& \left.+12 c_{1} \bar{c}_{2}+4 c_{1}^{2}\right)=l F \\
& \int_{0}^{l} v^{2} d x=l^{5}\left(\frac{\bar{c}_{3}^{2}}{9}+\frac{\bar{c}_{2} \bar{c}_{3}}{4}+\frac{2}{7} c_{1} \bar{c}_{3}+\frac{\bar{c}_{2}^{2}}{7}\right. \\
& \left.+\frac{c_{1} \bar{c}_{2}}{3}+\frac{c_{1}^{2}}{5}\right)=\ell^{5} G \\
& \bar{Q}=\frac{F}{G}, \quad G \bar{Q}=F
\end{aligned}
$$

take $\frac{2}{x_{1}}, \frac{2}{x_{2}} * \frac{2}{x_{3}}$ ot his eq. \Leftrightarrow set $\frac{\partial \bar{Q}}{\partial C_{i}}=0$

$$
\left[\begin{array}{ccc}
\frac{2 \bar{Q}-40}{5} & \frac{\bar{Q}-36}{3} & \frac{2 \bar{Q}-112}{7} \\
\frac{\bar{Q}-36}{3} & \frac{2 \bar{Q}-168}{7} & \frac{\bar{Q}-144}{4} \\
\frac{2 \bar{Q}-112}{7} & \frac{\bar{Q}-144}{4} & \frac{10 \bar{Q}-2512}{45}
\end{array}\right]\left[\begin{array}{l}
C_{1} \\
C_{2} \\
C_{3}
\end{array}\right]=\overline{0}
$$

Set $\operatorname{det}=0 \Rightarrow$

$$
\begin{aligned}
& 5 \bar{Q}^{3}-72324 \bar{Q}^{2}+35392896 \bar{Q}-426746880=0 \\
& \bar{Q}=12.369,494.322,13958.107
\end{aligned}
$$

ExACT:

$$
\begin{array}{ll}
\bar{w}_{1} \leq \sqrt{\bar{Q}}=3.517 & \text { (vs. } \left.1.8851^{2}=3.516\right) \\
\bar{w}_{2} \leq \sqrt{\bar{Q}}=22.233 & \left(\text { vs. } 4.6441^{2}=22.03\right) \\
\bar{w}_{3} \leq \sqrt{\bar{Q}}=118.144 & \text { (vs. } \left.7.8544^{2}=61.69\right)
\end{array}
$$

where $w_{i}=\bar{w}_{i} \sqrt{E I}$

HW \#9 Solution
(1) ${ }^{\text {a) }} u^{\prime \prime}+\frac{2}{\rho} u^{\prime}+u=0, \quad 1=\frac{d}{d \rho}$
b) $u=a_{0}+a_{1} \rho+a_{2} \rho^{2}+\cdots$

Substitute, collect tums, set coefficient of $f^{n}=0$
Fid $a_{1}=0$ and all $a_{o d d}=0$

$$
\begin{aligned}
& a_{2}=\frac{-a_{0}}{6}, \quad a_{4}=\frac{a_{0}}{120}\left(=-\frac{a_{2}}{20}\right) \\
& a_{6}=-\frac{a_{4}}{42}=-\frac{a_{0}}{5040}=-\frac{a_{0}}{7!}, a_{8}=\frac{a_{0}}{9!} \\
& u(\rho)=a_{0}\left(1-\frac{\rho^{2}}{3!}+\frac{\rho 4}{5!}-\frac{\rho}{7!}+\frac{\rho^{8}}{9!}+\cdots\right) \\
& \left(=a_{0} \frac{\sin \rho}{\rho}\right)
\end{aligned}
$$

c)

$$
\begin{aligned}
& \frac{d u(\rho)}{d \rho}=0=a_{0}\left(-\frac{2 \rho}{3!}+\frac{4 \rho^{3}}{5!}-\frac{6 \rho^{5}}{7!}+\frac{8 \rho^{\frac{7}{7}}}{9!}+\cdots\right) \\
& \rho=0 \text { and }-\frac{\rho}{3}+\frac{\rho^{3}}{30}-\frac{\rho^{5}}{840}+\frac{\rho^{7}}{45360}-\cdots=0
\end{aligned}
$$

a root solver gives $\rho=4.14$

$$
\Rightarrow \quad \rho=\frac{w_{1} R}{c}=4.4, \quad w_{1}=\frac{4_{1} 14 c}{R}
$$

Lord Raylagh (1872) gives $1.43 \pi=4.49$
(2) $x^{2} J_{0}^{\prime \prime}+x J_{0}^{\prime}+x^{2} J_{0}=0$
diviletg $x^{2}: J_{0}^{\prime \prime}=-\frac{J_{0}^{\prime}}{x}-J_{0}$
D_{1} ffientiate $\Rightarrow J_{0}^{\prime \prime \prime}=-\frac{J_{0}^{\prime \prime}}{x}+\frac{J_{0}^{\prime}}{x^{2}}-J_{0}^{\prime}$
Muct by $x^{2}: \quad x^{2} J_{0}^{\prime \prime \prime}+x J_{0}^{\prime \prime}-\left(1-x^{2}\right) J_{0}^{\prime}=0$
Let $f=-J_{0}^{\prime}$

$$
\left.\begin{array}{rl}
-x^{2} f^{\prime \prime}-x f^{\prime}+\left(1-x^{2}\right) f & =0 \\
x^{2} f^{\prime \prime}+x f^{\prime}+\left(x^{2}-1\right) f & =0
\end{array}\right\}
$$

$$
\left.J_{1} \text { satisfeis } \quad x^{2} J_{1}^{\prime \prime}+x J_{1}^{\prime}+\left(x^{2}-1\right) J_{1}=0\right\}
$$

Compasion of eqs $\Rightarrow J_{1}$ and f satigy the same $O D E$
Both Jo and J_{1} ODE'SA adpit ino ineasly indyemenent Solutions, one bounded as $x \rightarrow 0$, one unbourded.

Sinie both J_{0} \& J_{1} are bounded, we have that f and J_{1} are at least a multigle of ore another. Normalezation givis

$$
\begin{aligned}
& f=J_{1}, B_{u} t f=-J_{0}^{\prime} \\
& \therefore-J_{0}^{\prime}=J_{1}
\end{aligned}
$$

HT \# 10 Solutions

1. $\frac{d^{2} x}{d t^{2}}+x=\alpha x^{5}$
$\operatorname{Set} x=A \cos n t$
$-A \omega^{2} \cos \omega t+A \cos \omega t=\alpha A^{5} \cos ^{5} \omega t$
Identity (maxima) : $\cos ^{5} \theta=\frac{5}{8} \cos \theta+\frac{5}{16} \cos 3 \theta+\frac{1}{16} \cos 5 \theta$
So $\alpha A^{5} \cos ^{5} \omega t=\frac{5}{8} A^{5} \cos \omega t+\underset{\substack{\text { nonresonant } \\ \text { terms }}}{ }$

$$
\begin{aligned}
& -A \omega^{2}+A=\frac{5}{8} A^{5} \alpha \\
& \Rightarrow \quad \omega^{2}=1-\frac{5}{8} \alpha A^{4}
\end{aligned}
$$

2. $\ddot{x}+x=0.1\left(1-2 x^{2}+6 x^{4}\right) \dot{x}$

2a. $x=A \cos \omega t$

$$
-A \omega^{2} \cos \omega t+A \cos \omega t=0.1\left(1-2 A^{2} \cos ^{2} \omega t+b A^{4} \cos ^{4} \omega t\right) * A
$$

$$
-A \omega \sin \omega t
$$

$$
\begin{aligned}
& \text { Identities (maxima): } \cos ^{2} \theta \sin \theta=\frac{1}{4} \sin \theta+\frac{1}{4} \sin 3 \theta \\
& \cos ^{4} \theta \sin \theta=\frac{1}{8} \sin \theta+\frac{3}{16} \sin 3 \theta+\frac{1}{16} \sin 5 \theta \\
&\left(-\omega^{2}+1\right) A \cos \omega t=0.1(-A \omega)(\sin \omega t)\left(1-2 A^{2}\left(\frac{1}{4}\right)+6 A^{4}\left(\frac{1}{8}\right)\right)
\end{aligned}
$$

thonresonant tums

Balancing the harmonies:
$\cos \omega t:\left(-\omega^{2}+1\right) A=0 \Rightarrow \omega=1$
sinnt: $A w\left(1-\frac{A^{2}}{2}+b \frac{A^{4}}{8}\right)=0$

$$
A^{2}=\frac{2}{b}(1 \pm \sqrt{1-2 b})
$$

2b. For $b>\frac{1}{2}$ there me no real coots, no LC's

$$
\begin{array}{r}
b<\frac{1}{2} \quad \text { " real positine poots } \\
(=2 \text { LC's })
\end{array}
$$

7or $b=\frac{1}{2}$ there is one degencrate $\angle C$

2c. Check with "pplane".
For $b=\frac{1}{4}$, theay gives $A^{2}=8 \pm 2^{5 / 2}=2.34,13.65$

$$
\Rightarrow A=1.53,3.70
$$

Agnees w/ pplane plot:

3.

$$
\begin{aligned}
& \dot{x}=y+1 x^{3}+\alpha x \\
& \dot{y}=-x+.1 \dot{x}^{3}-\beta \dot{x}
\end{aligned}
$$

Ba. Differentiate $i^{\text {st }}$ equation:

$$
\begin{aligned}
\ddot{x} & =\dot{y}+(.1)\left(3 x^{2} \dot{x}\right)+\alpha \dot{x} \\
& =-x+(.1) \dot{x}^{3}-\beta \dot{x}+(.1)\left(3 x^{2} \dot{x}\right)+\alpha \dot{x}
\end{aligned}
$$

02

$$
\ddot{x}+x=(\alpha-\beta) \dot{x}+(.1)\left(\dot{x}^{3}+3 x^{2} \dot{x}\right)
$$

3b. Harmonic balance: $x=A \cos \omega t$

$$
\begin{aligned}
-\omega^{2} A \cos \omega t+A \cos \omega t & =(\alpha-\beta)(-A \omega \sin \omega t) \\
& +(1)\left(A^{3}\right)\left(-\omega^{3} \sin ^{-3} \omega t\right. \\
& \left.-3 \cos ^{2} \omega t \sin \omega t\right)
\end{aligned}
$$

$\sin ^{3} \omega t=\frac{3}{4} \sin \omega t-\frac{1}{4} \sin 3 \omega t$
$\cos ^{2} \omega t \sin \omega t=\frac{1}{4} \sin \omega t+\frac{1}{4} \sin 3 \omega t$
$\cos \omega t:\left(-\omega^{2}+1\right) A=0 \Rightarrow \omega=1$
sin ω t: $O=(\alpha-\beta)(-A \omega)+(.1) A^{3}\left(-\frac{3}{4} \omega^{3}-\frac{3}{4}\right) \Rightarrow$
(Using $\omega=1$) $A^{2}=\frac{20}{3}(\beta-\alpha)$
72 a real solution, $A^{2}>0 \Rightarrow \beta>\alpha$
Example $\beta=.2, \alpha=.1, A^{2}=\frac{2}{3}, A \approx .82$
agrees w/ simulation on plane 6

Bc, A Hop bifurcation occurs for $\beta=\alpha$
The LC exists for $\beta>\alpha$.
What is the stability of the origin for $\beta>\alpha$? The $O D E$ becomes (linearize hear the ongin);

$$
\ddot{x}+x=(\alpha-\beta) \dot{x}+\text { nonlinear farms }
$$

for $\beta>\alpha$ this is a damping tam
\Rightarrow the origin is stable
\Rightarrow The LC is unstable:

Motions near the LC move away from it and head fowends the origin
\therefore The Hop bifurcation is SUBCRITICAL
(Thesis agrees with simulation using plane, Undu "OPTIONS" Choise"sOLUTION DIRECTION" as forward. You will see the LC as repelling (ie. unstable.)

