1.1. INTRODUCTION TO LINEAR SYSTEMS AND ROW REDUCTION 1

1.1 Introduction to Linear Systems and Row Reduction

MATH 294 FALL 1981 PRELIM 1 \# 4 294FA81P1Q4.tex

1.1.1 Solve the following systems of linear equations. If there is no solution, show why. If there are infinitely many solutions, give a general expression.
a) $\left[\begin{array}{rrr}2 & 0 & 1 \\ -1 & 2 & 1 \\ 1 & 4 & 3\end{array}\right]\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{r}3 \\ 4 \\ -1\end{array}\right)$
b) $\left[\begin{array}{rrr}2 & 1 & 1 \\ 1 & 3 & -2 \\ -1 & 2 & -3\end{array}\right]\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{r}-1 \\ 1 \\ 3\end{array}\right)$
c) $\left[\begin{array}{rrr}2 & 1 & 1 \\ 1 & 3 & -2 \\ -1 & 2 & -3\end{array}\right]\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$

MATH 294 FALL 1982 FINAL \# $1 \quad{ }^{294 F A 82 F Q 1 . t e x}$
1.1.2 a) Find all possible solutions \vec{x} of $B \vec{x}=\vec{c}$, where

$$
B=\left[\begin{array}{lll}
1 & 0 & 1 \\
2 & 1 & 0 \\
0 & 1 & 0
\end{array}\right] \text { and } \vec{c}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

b) For the system $C \vec{x}=\vec{b}$, where

$$
C=\left[\begin{array}{lll}
1 & 1 & 2 \\
0 & 1 & 2 \\
1 & 1 & 2
\end{array}\right]
$$

determine all vectors \vec{b} for which the system possesses nontrivial solutions \vec{x}.
MATH 294 SPRING 1983 PRELIM 1 \# 2 294SP83P1Q2.tex
1.1.3 Consider the system

$$
\begin{gathered}
x+y-z+w+0 \\
x+3 z+w=0 \\
2 x+y+2 z+2 w=0 \\
3 x+2 y+z+3 w=0
\end{gathered}
$$

a) Find all the solutions to this system.
b) Find a basis for the vector space of solutions to the system above. You need not prove this is a basis.
c) What is the dimension of the vector space of solutions above?
d) Is the the vector $\left[\begin{array}{l}x \\ y \\ z \\ w\end{array}\right]=\left[\begin{array}{r}-2 \\ 1 \\ 1 \\ 2\end{array}\right]$ a solution to the above system?

MATH 294 SPRING 1984 FINAL \# 3 ${ }^{2945 P 84 F Q 3 . t e x ~}$
1.1.4 Find the general solution, or else show that the system has no solutions:

$$
\begin{aligned}
7 x_{1}-3 x_{2} & +4 x_{3} \\
2 x_{1}+x_{2} & -x_{3}+4 x_{4}
\end{aligned}=\frac{-7}{}=6
$$

MATH 294 FALL 1985 FINAL \# 2 294FA85FQ2.tex
1.1.5 Find the general solution of the system

$$
\begin{aligned}
& -x_{2}+3 x_{3}+2 x_{4}=1 \\
& -2 x_{1}+3 x_{2}+5 x_{3}+4 x_{4}=-5 \\
& x_{1}+x_{2}-2 x_{3}+x_{4}=8
\end{aligned}
$$

and express your answer in vector form.
MATH 294 FALL 1986 FINAL \# 2 294FA86FQ2.tex
1.1.6 a) Solve the linear system $A \vec{x}=\vec{b}$, where

$$
A=\left[\begin{array}{rrrr}
1 & 0 & -2 & 4 \\
2 & 1 & -4 & 6 \\
-1 & 2 & 5 & -3 \\
3 & 3 & -5 & 4
\end{array}\right] \text { and } \vec{b}=\left[\begin{array}{r}
4 \\
9 \\
9 \\
15
\end{array}\right]
$$

b) Solve the linear system $A \vec{x}=\overrightarrow{0}$, where

$$
A=\left[\begin{array}{rrrrr}
-3 & -1 & 0 & 1 & -2 \\
1 & 2 & -1 & 0 & 3 \\
2 & 1 & 1 & -2 & 1 \\
1 & 5 & 2 & -5 & 4
\end{array}\right]
$$

Express your answer in vector form, and give a basis for the space of solutions.
MATH 294 SPRING 1987 PRELIM 2 \# 3 294SP87P2Q3.tex
1.1.7* Find all solutions to:

$$
\begin{aligned}
x+z & =0 \\
-y+4 z & =0 \\
2 y-8 z & =0
\end{aligned}
$$

1.1. INTRODUCTION TO LINEAR SYSTEMS AND ROW REDUCTION 3

MATH 294 FALL 1987 PRELIM 2 \# 4 294FA87P2Q4.tex
1.1.8 a) Determine the row-reduced form of the matrix:

$$
A=\left[\begin{array}{rrrrr}
0 & 2 & 3 & 5 & 0 \\
0 & 2 & 6 & 8 & -3 \\
0 & 4 & 6 & 10 & 0 \\
0 & 4 & 9 & 13 & -4
\end{array}\right]
$$

b) Find the general solution of $A \vec{u}=\overrightarrow{0}$, where

$$
\vec{u}=\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4} \\
u_{5}
\end{array}\right] \text { and } \overrightarrow{0}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

MATH 294 FALL 1987 MAKE-UP 2 \# 4 294FA87MU2Q4.tex
1.1.9 Use row reduction to either find the solution or show that no solution exists for the system

$$
\begin{aligned}
x_{1}-2 x_{2} & =-2 \\
3 x_{1} & +x_{2}+7 x_{3}
\end{aligned}=-1
$$

MATH 294 SPRING 1989 PRELIM 2 \# 3 294SP89P2Q3.tex
1.1.10 Consider the system of equations,

$$
\begin{aligned}
&-x_{1}+2 x_{2}+3 x_{3}= \\
& 2 x_{1}+1 \\
& 11 x_{1}+14 x_{2}
\end{aligned}-3 x_{3}=21 x_{3}=r \quad 11
$$

a) Find all solutions, if any exist, of the system.
b) Is the set of vectors given by,

$$
\left[\begin{array}{c}
-1 \\
2 \\
11
\end{array}\right],\left[\begin{array}{c}
2 \\
5 \\
14
\end{array}\right], \text { and }\left[\begin{array}{c}
3 \\
-3 \\
-21
\end{array}\right]
$$

linearly independent or dependent?
MATH 294 SUMMER 1989 PRELIM 2 \# 1 294SU89P2Q1.tex
1.1.11 a) Find all solutions to

$$
\begin{array}{r}
x_{1}+2 x_{2}-4 x_{3}+3 x_{4}=1 \\
x_{1}+2 x_{2}-2 x_{3}+2 x_{4}=1 \\
2 x_{1}+4 x_{2}-2 x_{3}+3 x_{4}=2
\end{array}
$$

using only the row reduction method.

MATH 293 SPRING 1990 PRELIM 1 \# 1 293SP90P1Q1.tex
1.1.12* Find all the solutions. Write your answers in vector form.
a) $2 x_{1}-4 x_{2}-2 x_{3}=0$ $5 x_{1}-x_{2}-x_{3}=6$ $-3 x_{1}+2 x_{2}+x_{3}=-2$
b) $-x_{1}+3 x_{2}+2 x_{3}=1$ $3 x_{1}-2 x_{2}-x_{3}=3$ $x_{1}+4 x_{2}+3 x_{3}=5$
c) $x_{1}+3 x_{2}-4 x_{3}=0$ $2 x_{1}-x_{2}-x_{3}=0$ $3 x_{1}-4 x_{2}+x_{3}=3$

MATH 293 SPRING 1990 PRELIM 2 \# 2 293SP90P2Q2.tex
1.1.13 Consider $A \vec{x}=\vec{b}$.

$$
\text { Where } A \text { is }\left(\begin{array}{rrrr}
1 & 3 & 5 & -1 \\
-1 & -2 & -5 & 4 \\
0 & 1 & 1 & -1 \\
1 & 4 & 6 & -2
\end{array}\right)
$$

a) Solve for \vec{x} given $\vec{b}=\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 5\end{array}\right)$.
b) Find a basis for the null space of A.
c) Without carrying out explicit calculation, does a solution exist for any \vec{b} in \mathbf{V}^{4} ?

MATH 293 FALL 1991 PRELIM 3 \# 2 293FA91P3Q2.tex
1.1.14 Solve for the 2×2 matrix X if

$$
\left(\begin{array}{ll}
2 & 3 \\
3 & 5
\end{array}\right) X=\left(\begin{array}{cc}
-5 & 1 \\
0 & 4
\end{array}\right)
$$

MATH 294 SPRING 1992 PRELIM 3 \# 2 293SP92P3Q2.tex
1.1.15 Here $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$.
a) Find A^{-1}.
b) Find X if $A X=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.
c) Find \vec{v} if $A \vec{v}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$.

1.1. INTRODUCTION TO LINEAR SYSTEMS AND ROW REDUCTION 5

MATH 293 FALL 1990 PRELIM 2 \# 2 293FA90P2Q2.tex
1.1.16 Find all solutions of the system $A \vec{x}=\vec{b}$ if $A=\left[\begin{array}{ccc}1 & 3 & -2 \\ 3 & -2 & 1 \\ 1 & -19 & 12\end{array}\right]$ and
a) $\vec{b}=0$.
b) $\vec{b}=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$

Express all answers in vector form.
MATH 293 FALL 1992 FINAL \# 4 293FA92FQ4.tex
1.1.17 a) Find the eigenvalues and eigenvectors of the matrix

$$
B=\left[\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right]
$$

b) Let $A=\left[\begin{array}{rr}4 & 2 \\ -1 & 1\end{array}\right]$. Find a non singular matrix C such that $C^{-1} A C=D$ where D is a diagonal matrix. Find C^{-1} and D.
c) For which value of a does the system of equations

$$
\begin{aligned}
x+2 y+3 z & =a \\
3 x+4 y+5 z & =2 \\
-x & +z=0
\end{aligned}
$$

has at least one solution? Explain your answer.

MATH 293 SPRING 1993 FINAL \# 1 293SP93FQ1.tex

1.1.18 a) Find the general solution, and write your answer as a particular solution plus the general solution of the associated homogeneous system.

$$
\begin{gathered}
x-5 y+4 z=3 \\
2 x-3 y+z=-1 \\
-3 x+y+2 z=5
\end{gathered}
$$

b) Check your answer for part a.
c) Find the inverse of the matrix

$$
\left(\begin{array}{ccc}
1 & 2 & 3 \\
2 & 5 & 7 \\
-1 & -2 & -2
\end{array}\right)
$$

d) Check your answer for part c.

MATH 293 SPRING 1993 FINAL \# 3 293SP93FQ3.tex
1.1.19 Consider the matrix

$$
A=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1 \\
-1 & 1 & 0
\end{array}\right)
$$

a) Find the vectors $b=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$ such that a solution x of the equation $A \vec{x}=\vec{b}$ exists.
b) Find a basis for the column space $\Re(A)$ of A.
c) It is claimed that $\Re(A)$ is a plane in \Re^{3}. If you agree, find a vector \vec{n} in \Re^{3} that is normal to this plane. Check you answer.
d) Show that \vec{n} is perpendicular to each of the columns of A. Explain carefully why this is true.

MATH 293 SPRING 1994 PRELIM 2 \# 2 293SP94P2Q2.tex
1.1.20 (True/false) The following properties hold for the matrix

$$
A=\left(\begin{array}{ccc}
2 & -3 & 7 \\
-1 & 4 & 0
\end{array}\right):
$$

a) If $A M=A N$ then $M=N$, where M and N are 3×2 matrices.
b) A has an inverse.
c) A is in reduced row echelon form.
d) A is equal to the matrix $B=\left(\begin{array}{ccc}-1 & 4 & 0 \\ 2 & -3 & 7\end{array}\right)$.
e) A and B are row equivalent.
f) A and B have the same row reduced form.
g) $\left(A^{T}\right)^{T}=A$.
h) $B^{T} A=B A^{T}$.

1.1. INTRODUCTION TO LINEAR SYSTEMS AND ROW REDUCTION 7

MATH 293 SPRING 1994 PRELIM 2 \# 3 293SP94P2Q3.tex
1.1.21* If the reduced row echelon form of
$\left(\begin{array}{ccccccc}1 & -1 & 2 & -2 & 3 & -2 & 6 \\ 2 & 0 & 3 & -4 & 1 & -1 & 4 \\ 1 & -3 & -1 & -2 & 2 & -5 & -1\end{array}\right)$ is $\left(\begin{array}{ccccccc}1 & 0 & 0 & -2 & -7 / 4 & -1 / 2 & -29 / 8 \\ 0 & 1 & 0 & 0 & -7 / 4 & 3 / 2 & -17 / 8 \\ 0 & 0 & 1 & 0 & 3 / 2 & 0 & 15 / 4\end{array}\right)$
then the general solution of the system

$$
\begin{aligned}
x-y+2 z-2 w & =-2 \\
2 x+0 y+3 z-4 w & =-1 \\
x-3 y-z-2 w & =-5
\end{aligned}
$$

is

$$
\begin{gathered}
\text { a) } \left.\left.\left(\begin{array}{c}
-1 / 2 \\
3 / 2 \\
0
\end{array}\right)+t\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right), \mathbf{b}\right) 1 / 2\left(\begin{array}{c}
-1 \\
3 \\
0 \\
0
\end{array}\right)+t\left(\begin{array}{l}
2 \\
0 \\
0 \\
1
\end{array}\right), \mathbf{c}\right)\left(\begin{array}{c}
-2 \\
0 \\
0
\end{array}\right)+t\left(\begin{array}{c}
-7 / 4 \\
-7 / 4 \\
3 / 2
\end{array}\right) \\
\text { d) }\left(\begin{array}{l}
2 \\
0 \\
0 \\
1
\end{array}\right)+t\left(\begin{array}{c}
-1 \\
3 \\
0 \\
0
\end{array}\right), \text { e) }\left(\begin{array}{c}
1 \\
-1 \\
2 \\
-2
\end{array}\right)+t\left(\begin{array}{c}
1 \\
-3 \\
-1 \\
-2
\end{array}\right)
\end{gathered}
$$

MATH 293 SPRING 1994 PRELIM 2 \# 4 293SP94P2Q4.tex
1.1.22* The reduced row echelon for of $A=\left(\begin{array}{cccc}1 & 0 & -1 & 3 \\ 2 & 2 & 0 & 4 \\ 1 & 4 & 3 & -1\end{array}\right)$ is
a) $\left(\begin{array}{cccc}1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1\end{array}\right)$, $\left.\left.\mathbf{b}\right)\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right), \mathbf{c}\right)\left(\begin{array}{cccc}1 & 0 & 0 & 3 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0\end{array}\right)$,
d) $\left(\begin{array}{cccc}1 & 0 & -1 & 3 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0\end{array}\right)$, e) $\left(\begin{array}{cccc}1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0\end{array}\right)$.
(Note! There is one and only one correct answer.)
MATH 293 FALL 1994 PRACTICE 2 \# 2 293FA94PP2Q2.tex
1.1.23 Find the general solution in vector form for the equations

$$
\begin{gathered}
x+2 y+2 z-w=1 \\
3 x+6 y+z+2 w=3 \\
-x-2 y+z-2 w=-1
\end{gathered}
$$

MATH 293 FALL 1994 PRELIM 2 \# 2 293FA94P2Q2.tex
1.1.24 Use Gauss-Jordan elimination to find all solutions of

$$
\begin{aligned}
& x+2 y+3 z=b_{1} \\
& x+y+z=b_{2} \\
& 5 x+7 y+9 z=b_{3}
\end{aligned}
$$

in the cases that
(a) $\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 4\end{array}\right) \quad$ and
(b) $\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)=\left(\begin{array}{l}0 \\ 2 \\ 6\end{array}\right)$

MATH 293 SPRING 1995 PRELIM 2 \# 3 ${ }^{293 S P 95 P 2 Q 3 . t e x ~}$
1.1.25 Find the general solution of the wystem of equations

$$
\begin{aligned}
& 2 x_{1}+4 x_{3}=10 \\
& 2 x_{1}+x_{2}+3 x_{3}=14 \\
& 4 x_{1}+x_{2}+7 x_{3}+x_{4}=27 \\
& -2 x_{1}+2 x_{2}-6 x_{3}+x_{4}=1
\end{aligned}
$$

MATH 293 SPRING 1995 FINAL \# 5 293SP95FQ5.tex
1.1.26 Find the general solution of the system of equations

$$
\begin{aligned}
& \begin{aligned}
-x_{2} & +3 x_{3}+2 x_{4}
\end{aligned}=0 \quad 0 \\
& x_{1}+x_{2}-2 x_{3}+x_{4}=8
\end{aligned}
$$

MATH 293 FALL 1995 PRELIM 2 \# $1 \quad$ 293FA95P2Q1.tex
1.1.27* a) Find the general solution of the wystem of equations

$$
\begin{aligned}
2 x_{1} & +4 x_{3} \\
& =10 \\
2 x_{1}+x_{2}+3 x_{3} & =14 \\
4 x_{1}+x_{2}+7 x_{3}+x_{4} & =27 \\
-2 x_{1}+2 x_{2}-6 x_{3}+x_{4} & =1
\end{aligned}
$$

b) Verify your solution.

MATH 293 FALL 1995 FINAL \#3 ${ }^{293 F A 95 F Q 3 . t e x ~}$
1.1.28* a) Find the general solution, in vector form, of the equation $A \vec{x}=\vec{b}$ where

$$
A=\left[\begin{array}{cccc}
0 & 1 & 2 & 1 \\
1 & 2 & 0 & 1 \\
1 & 4 & 4 & 3 \\
0 & -2 & -4 & -2
\end{array}\right] \text { and } \vec{b}=\left[\begin{array}{c}
1 \\
3 \\
5 \\
-2
\end{array}\right]
$$

Verify your solution.

1.1. INTRODUCTION TO LINEAR SYSTEMS AND ROW REDUCTION 9

MATH 293 SPRING 1996 FINAL \# 2 293SP96FQ2.tex

1.1.29* Consider the system

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}-2 x_{4} & =3 \\
2 x_{1}+x_{2}+3 x_{3}+2 x_{4} & =5 \\
& -x_{2}+x_{3}+6 x_{4}
\end{aligned}
$$

A solution of these equations is:
a) The trivial soution.
b) $x_{1}=9, x_{2}=0, x_{3}=0, x_{4}=1$
c) $x_{1}=0, x_{2}=3, x_{3}=0, x_{4}=1$
d) The system has no solution.
e) None of the above.

MATH 293 SPRING 1996
1.1.30* Consider the system

$$
\begin{array}{clccc}
x+ & & z & = & 4 \\
2 x+y & y & 3 z & = & 5 \\
-3 x-3 y & + & \left(a^{2}-5 a\right) z & = & a-8
\end{array}
$$

The value of a for which the system has infinitely many solution is:
a) 2
b) 3
c) none
d) 1
e) none of the above.

MATH 293 FALL 1996 PRELIM 2 \# 2 293FA96P2Q2.tex

1.1.31* Matrix algebra. Let $[A]$ be the matrix

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & -1 \\
0 & 1 & 2
\end{array}\right] \text { and let } \vec{b}=\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right] \text { and let } \vec{c}=\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]
$$

a) Find all solutions \vec{x} to $A \vec{x}=\vec{b}$ and check your answer by substitution.
b) Find all solutions \vec{x} to $A \vec{x}=\vec{c}$ and check your answer by substitution.
c) Give a reason why you believe that A^{-1} does or does not exist.

MATH 294 SPRING 1997 PRELIM 2 \# 1 294SP97P2R1.tex
1.1.32 Find the general solution of the linear system

$$
\begin{aligned}
& -2+x_{1}+2 x_{2}+2 x_{3}+2 x_{4}=0 \\
& x_{3}+x_{4}=1
\end{aligned}
$$

$\begin{array}{lc}\text { MATH } 293 & \text { SPRING 1997 } \\ \text { 1.1.33* Let } A=\left[\begin{array}{ccc}9 & 0 & 0 \\ 1 & 0 & -2 \\ 1 & 2 & 0\end{array}\right], \vec{b}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \text { and } \vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] .\end{array}$
a) Find the characteristic polynomial $\operatorname{det}(A-\lambda I)$ of A, and find all eigenvalues. (hint : $\lambda-9$ is one factor of the polynomial.)
b) find an eigenvector for each eigenvalue.
c) Write the augmented matrix for the system of equations $A \vec{x}=\vec{b}$ and solve the system by row operations.

MATH 294 SPRING 1997 FINAL \# 3 294SP97FQ3.tex
1.1.34 Solve the following system for $x_{1}, x_{2}, x_{3}, x_{4}$ and express the general solution in parametric form.

$$
\begin{aligned}
3 x_{2}+x_{1}-2 x_{3} & =2 \\
-1+x_{2}+x_{4} & =0 \\
x_{3}-x_{1} & =1
\end{aligned}
$$

MATH 294 FALL 1997 PRELIM 1 \# $1 \quad$ 294FA97P1Q1.tex
1.1.35 a) Consider the problem $A \vec{x}=\vec{b}$, where

$$
A=\left(\begin{array}{cccc}
0 & 1 & 1 & -1 \\
1 & -1 & 0 & 2 \\
-1 & 2 & 1 & -3
\end{array}\right), \text { and } \vec{b}=\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right)
$$

Determine the general solution to this problem, in vector form.
b) Find a 2 by 2 matrix B, which is not the zero matrix, with $B^{2}=0$.

MATH 294 FALL 1997 FINAL \# 1 294FA97FQ1.tex
1.1.36 Find the general solution of these equations in vector parametric form.

$$
\begin{gathered}
x_{3}-x_{1}=1 \\
-x_{2}+x_{4}=2 \\
x_{2}-x_{1}=3
\end{gathered}
$$

1.1. INTRODUCTION TO LINEAR SYSTEMS AND ROW REDUCTION11

MATH 294 SPRING 1998 PRELIM 2 \# 1 294SP98P2Q1.tex

1.1.37 a) Write the solution set of the system

$$
\begin{aligned}
x_{1}-3 x_{2}-2 x_{3} & =0 \\
x_{2} & -x_{3}=0 \\
-2 x_{1}+3 x_{2}+7 x_{3} & =0
\end{aligned}
$$

in parametric form.
b) With

$$
A \equiv\left[\begin{array}{ccc}
1 & -3 & -2 \\
0 & 1 & -1 \\
-2 & 3 & 7
\end{array}\right]
$$

find all solutions to the system

$$
A \vec{x}=\left[\begin{array}{c}
0 \\
1 \\
-3
\end{array}\right]
$$

c) True or False?
i) The columns of A are linearly independent.
ii) The solution set of $A \vec{x}=\vec{b}$ is all vectors of the form $\vec{w}=\vec{p}+\overrightarrow{v_{h}}$ where $\overrightarrow{v_{h}}$ is any solution of $A \overrightarrow{v h}=\overrightarrow{0}$ and $A \vec{p}=\vec{b}$.

MATH 293 SPRING 1998 PRELIM 2 \# 3 293SP98P2Q3.tex
1.1.38* Find all solution to the following matrix equation $A \vec{x}=\vec{b}$ where

$$
A=\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 0 \\
1 & 2 & 2
\end{array}\right]
$$

for each of the following values of \vec{b} :
a) $\vec{b}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
b) $\vec{b}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$
c) $\vec{b}=\left[\begin{array}{l}1 \\ 4 \\ 1\end{array}\right]$

MATH 294 FALL 1998 PRELIM 1 \# 3 294FA98P1Q3.tex
1.1.39 a) Write the following system of equations as (i) a vector equation (ii) as a matrix equation.

$$
\begin{array}{clllll}
-5 x_{1} & + & & x_{3} & & = \\
2 x_{1} & -x_{2} & + & 9 x_{4} & = & 1 \\
6 x_{1} & +2 x_{2} & -5 x_{3}+ & x_{4} & = & 6
\end{array}
$$

b) Find all solutions to the linear system

$$
\begin{gathered}
2 x_{1}+4 x_{2} 0 x_{3}=4 \\
x_{1}+2 x_{2}+x_{3}=1 \\
x_{1}+2 x_{2}+x_{3}=0
\end{gathered}
$$

c) Does the above (b) have a solution for any right hand side?
d) Let

$$
\vec{u}_{1}=\left[\begin{array}{c}
2 \\
0 \\
-4
\end{array}\right], \vec{u}_{2}=\left[\begin{array}{c}
2 \\
-1 \\
-7
\end{array}\right], \vec{b}=\left[\begin{array}{c}
h \\
-3 \\
-5
\end{array}\right]
$$

For what value(s) of h is \vec{b} in the plane spanned by $\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$?
MATH 293 SPRING 1996 PRELIM 2 \# $1 \quad{ }^{293 S P 96 P 2 Q 1 . t e x ~}$
1.1.40 Let

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right], B=\left[\begin{array}{cccc}
-1 & 2 & 3 & 4 \\
0 & 1 & 1 & -2 \\
0 & 0 & 0 & 1
\end{array}\right], C=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 4 \\
-1 & 0 & 2 \\
1 & 1 & 1
\end{array}\right]
$$

a) Find all \vec{x} for which $C \vec{x}=\vec{b}$, where

$$
\vec{b}=\left[\begin{array}{l}
0 \\
2 \\
0 \\
1
\end{array}\right]
$$

1.1. INTRODUCTION TO LINEAR SYSTEMS AND ROW REDUCTION13

MATH 294
1.1.41* The reduced echelon form of the matrix $A=\left[\begin{array}{cccc}3 & 3 & 2 & 3 \\ -2 & 2 & 0 & 2 \\ 1 & 0 & 1 & -2 \\ 0 & -3 & 2 & -1\end{array}\right]$ is $B=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$.
a) What is the rank of A.
b) What is the dimenstion of the column space of A ?
c) What is the dimension of the null space of A?
d) Find a solution to $A \vec{x}=\left[\begin{array}{c}3 \\ -2 \\ 1 \\ 0\end{array}\right]$.
e) Find the general solution to $A \vec{x}=\left[\begin{array}{c}3 \\ -2 \\ 1 \\ 0\end{array}\right]$.
f) What is the row space of A ?
\mathbf{g}) Would any of your answers above change if you changed A by randomly changing 3 of its entries in the 2 nd, third, and fourth columns to different small integers and the corresponding reduced echelon form for B was presented? (yes?, no?, probaly? probaly not?, ?)

MATH 294 FALL 1998 FINAL \# 5 294FA98FQ5.tex
1.1.42 Consider $A \vec{x}=\vec{b}$ with $A=\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ -1 & 2 & 5 & 8\end{array}\right]$ and $b=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$. The augmented matrix of this system is $\left[\begin{array}{ccccc}1 & 2 & 3 & 4 & 0 \\ 0 & 1 & 2 & 3 & 1 \\ -1 & 2 & 5 & 8 & 1\end{array}\right]$ which is row equivalent to $\left[\begin{array}{ccccc}1 & 0 & -1 & -2 & 0 \\ 0 & 1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$.
a) What are the rank of A and dim nul A ? (Justify your answers.)
b) Find bases for $\operatorname{col} A$, row A, and nul A.
c) What is the general solution \vec{x} to $A \vec{x}=\vec{b}$ with the given A and \vec{b} ?
d) Select another \vec{b} for which the above system has a solution. Give the general solution for that \vec{b}.

MATH 293 SPRING ? FINAL \# 1 293SPUFQ1.tex
1.1.43* Find the general soliution of the following linear system and express it in vector form

$$
\left.\begin{array}{c}
2 x-3 y+0 z-w \\
-5 x+2 y-3 z+2 w \\
-5 x+2 \\
2 x+0 y+2 z-w
\end{array}\right) 4
$$

MATH 293 ??? FINAL \# 3 293UFQ3.tex
1.1.44* a) Give all solutions of the following system in vector form.

$$
\begin{gathered}
6 x_{1}+ \\
5 x_{1}-x_{2}+5 x_{3}=1 \\
x_{1}+ \\
3 x_{3}= \\
3 x_{3}=
\end{gathered}
$$

b) What is the null space of the matrix of coefficients of the unknowns in \mathbf{a})?

MATH 294 SPRING 1982 PRELIM 1 \# $1 \quad$ 294SP82P1Q1.tex
1.1.45 a) Write the system of equations

$$
\begin{aligned}
x_{1}+2 x_{2}+3 x_{3} & =1 \\
2 x_{1}+3 x_{2}+4 x_{3} & =-2 \\
3 x_{1}+4 x_{2}+6 x_{3} & =0
\end{aligned}
$$

in the form $A \vec{x}=\vec{b}$.
b) Find the $\operatorname{det} A$ for A in part (a) above.
c) Does A^{-1} exist?
d) Solve the above system of equations for $\vec{x}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$.
e) Let $B=\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 0 \\ 2 & -1 & 1\end{array}\right]$. Find $A \cdot B$ (i.e. calculate the product $A B$).

MATH 293 FALL 1991 FINAL \# 1 293FA91FQ1.tex
1.1.46 Write the general solution in vector form:

$$
\begin{gathered}
2 x-y+z+3 w=2 \\
4 x+y-3 z+5 w=6 \\
-x+2 y-3 z-2 w=0 \\
x+4 y-7 z+0 w=4
\end{gathered}
$$

1.1. INTRODUCTION TO LINEAR SYSTEMS AND ROW REDUCTION15

MATH 293 SPRING 1992 PRELIM 2 \# 2 293SP92P2Q2.tex
1.1.47 Find the general solution solution in vector form for the equations

$$
\begin{aligned}
x+2 y+2 z-w & =1 \\
3 x+6 y+z+2 w & =3 \\
-x-2 y+z-2 w & =-1
\end{aligned}
$$

MATH 293 SUMMER 1992 PRELIM 6/30 \# 2 293SU92P630Q2.tex
1.1.48 Find the general solution of the equations

$$
\begin{gathered}
2 x-y+z+3 w=2 \\
4 x+y-3 z+5 w=6 \\
-x+2 y-3 z-2 w=0 \\
x+4 y-7 z+0 w=4
\end{gathered}
$$

MATH 293 SUMMER 1992 FINAL \# 1 293SU92FQ1.tex
1.1.49* a) Find the general solution, in vector form, of the equations $A \vec{x}=\vec{b}$ where

$$
A=\left(\begin{array}{cccc}
-1 & -3 & 4 & -2 \\
0 & 2 & 5 & 1 \\
0 & 1 & -3 & 0
\end{array}\right), \vec{b}=\left(\begin{array}{c}
5 \\
2 \\
4
\end{array}\right)
$$

b) Solve $A X=B$ where

$$
A=\left(\begin{array}{ccc}
-1 & 2 & -3 \\
2 & 1 & 0 \\
4 & -2 & 5
\end{array}\right) \text { and } B=\left(\begin{array}{ccc}
1 & 2 & 3 \\
3 & 2 & 1 \\
1 & 3 & 2
\end{array}\right)
$$

MATH 293 SPRING 1993 PRELIM 2 \# 3 293SP93P2Q3.tex
1.1.50 a) Solve the linear system:

$$
\begin{aligned}
& 2 w-3 x+y-z=-1 \\
& 4 w+x-3 y-z=1 \\
& w+2 x-3 y-2 z=-2 \\
& 2 w-3 x-y-5 z=-7
\end{aligned}
$$

Write the general solution in vector form as the sum of a particular solution plus the general solution of the associated homogeneous equation.
b) Check your answer, and explain what you do to check.

MATH 294 SPRING 1997 PRELIM 2 \# $10 \quad$ 294SP97P2Q10.tex
1.1.51 Two chemicals A and B, are reacting with each other. After one second has elapsed, 90% of chemical A stays chemical A, while 10% turns into chemical B; also, 80% of chemical B stays chemical B, while 20% turns into chemical A. Suppose that the system is in equilibrium, i.e. that there is no change in the amount in grams of chemical A or B from one second to the next. If there are 10 grams of chemical A at equilibrium, how many grams of chemical B must there be?

MATH 294 FALL 1997 PRELIM 1 \# $6 \quad{ }^{294 F A 97 P 1 Q 6 . t e x ~}$
1.1.52 A spaceship operator operates daily spaceship service between three planets, A, B, and C. The matrix below shows the traffic during a Monday. The numbers are fractions of the total number of spaceships that start at one location, and go to another destination. For example, the .4 means that 40% of the spaceships that start at C travel to A that day.

$$
\text { from } \begin{array}{ccc}
A & B & C \\
\left(\begin{array}{ccc}
0 & 1 & .4 \\
.5 & 0 & .6 \\
.5 & 0 & 0
\end{array}\right)
\end{array} \begin{array}{ll}
A & \\
B & \text { to } \\
C &
\end{array}
$$

The distribution of spaceships at planets A, B, and C on Monday is $10, b, c$. Find b and c such that the same distribution of space ships reappears the next day, on Tuesday.

MATH 294 FALL 1998 PRELIM 1 \# 4 294FA98P1Q4.tex
1.1.53 Consider the chemical reaction (unbalanced as written below)

$$
\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Let x_{1}, x_{2}, x_{3}, and x_{4} be the number of molecules of each compound (in the order give above). Find integers $x_{1}, x_{2} . x_{3}, x_{4}$ that balance this reaction.
Hint: If you order your elements and hence equations as

$$
\left(\begin{array}{c}
\text { Oxygen } \\
\text { Carbon } \\
\text { Hydrogen }
\end{array}\right) \text {,or }\left(\begin{array}{c}
O \\
C \\
H
\end{array}\right)
$$

you will minimize th number of row operations.
MATH 294 FALL 1998 FINAL \# $7 \quad$ 294FA98FQ7.tex
1.1.54 The kingdom of Ferrgrad has three primary industrial sectors: iron, railroad, and coal. Suppose that:

- To produce $\$ 1$ of steel, the steel sector consumes $\$.2$ of steel, $\$.1$ of railroad, and $\$.2$ of coal.
- To produce $\$ 1$ of railroad transportation that rail sector consumes $\$.1$ of steel, $\$.2$ of rail, and $\$.4$ of coal.
- To produce $\$ 1$ of coal, the coal sector consumes $\$.2$ of steel, $\$.2$ of rail, and $\$.3$ of coal.

Ferrograd does not use all its production in the various sectors to maintain the others. Additionally it exports

$$
\begin{aligned}
& S_{0}=\$ 1.2 \times 10^{6} \text { of steel }, \\
& R_{0}=\$ 0.8 \times 10^{6} \text { of railroad transportational services, } \\
& C_{0}=\$ 1.5 \times 10^{6} \text { of coal. }
\end{aligned}
$$

Define S, R, and C to be the $\$$ values of annual production of steel, rail, and coal. Set and do not solve a matrix equation that will tell you S, R, and C, the values of the annual productions of the three sectors. [Hint: first write three simultaneous equations, one for each output, which relate production to output.]

