1.3 Vector and Matrix Equations

MATH 294 SPRING 1985 FINAL \# 8 294SP85FQ8.tex

1.3.1 Vector \vec{p} contains m elements, and vector \vec{q} contains n elements. The vector $\vec{r}=\vec{p}+\vec{q}$
a) Is always defined.
b) Is only defined when $\mathrm{m}=\mathrm{n}$.
c) Is never defined.
d) Is defined for $\mathrm{m}=\mathrm{n}$ and $\mathrm{m} ; \mathrm{n}$.

MATH 293 SPRING 1990 PRELIM 1 \#2 293 SP90P1Q2.tex
1.3.2 The following [question] refer to the real 2 x 2 matrix $\underline{\underline{A}}$.

Solve for the vector $\vec{u}+\vec{v}$ in V_{4} if

$$
\begin{aligned}
3 \vec{u}+4 \vec{v} & =(0,1,0,1) \\
-2 \vec{u}+7 \vec{v} & =(-1,2,-7,0)
\end{aligned} \text { and }
$$

MATH 293 FALL 1990 PRELIM 2 \# 1 293FA90P2Q1.tex
1.3.3 a) Express the vectors \mathbf{u}, \mathbf{v} in terms of \mathbf{a}, \mathbf{b}, given that

$$
3 \mathbf{u}+2 \mathbf{v}=\mathbf{a}, \mathbf{u}-\mathbf{v}=\mathbf{b}
$$

b) If \mathbf{a}, \mathbf{b} are linearly independent, find a basis for the span of $\{\mathbf{u}, \mathbf{v}, \mathbf{a}, \mathbf{b}\}$
c) Find \mathbf{u}, \mathbf{v}, if $\mathbf{a}=(-1,2,8), \mathbf{b}=(-2,-1,1)$.

MATH 293 FALL 1992 PRELIM 2 \#4 ${ }^{293 F A 92 P 2 Q 4 . t e x ~}$
1.3.4 If A is a $n \times n$ matrix and if x and y are ($n \times 1$) vector, that satisfy the equations

$$
A x=b, A y=c(1,2)
$$

find the solution z of the equation

$$
A z=2 b-3 c(3)
$$

and verify that z is a solution of (3).

MATH 293 FALL 1992 PRELIM 3 \# $5 \quad{ }_{293 F A 92 P 3 Q 5 . t e x ~}$

1.3.5 Fill in the blanks of the following statements.

In what follows A is an $m \times n$ matrix
a) The dimension of the row space is 2 .

The dimension of the null space is 3 .
The number of columns of A is ..
b) $A x=b$ has a solution x if and only if b is in the _ space of A.
c) If $A x=0$ and $A y=0$ and if C_{1} and C_{2} are arbitrary constants then $A\left(C_{1} x+\right.$ $\left.C_{2} y\right)={ }_{2}$.

MATH 293 SPRING 1994 PRELIM 2 \# 5 293SP94P2Q5.tex
1.3.6 Given that:
$A \mathbf{x}=\mathbf{b}$ has a particular solution $\mathbf{x}_{\mathbf{p}}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$, and $A \mathbf{x}=\mathbf{0}$ has the general
solution $\mathbf{x}_{\mathbf{h}}=s\left(\begin{array}{l}1 \\ 2 \\ 0 \\ 1\end{array}\right)+t\left(\begin{array}{c}2 \\ 0 \\ 1 \\ -1\end{array}\right)$, where s and t are arbitrary parameters,
determine which of the following vectors are solutions of $A \mathbf{x}=\mathbf{b}$.
a) $\mathbf{x}=\left(\begin{array}{l}0 \\ 3 \\ 0 \\ 3\end{array}\right)$,
b) $\mathbf{x}=\left(\begin{array}{l}1 \\ 3 \\ 1 \\ 2\end{array}\right)$.

MATH 294 SPRING 1999 PRELIM 1 \# 4 294SP99P1Q4.tex
1.3.7 One serving of Kellogg's Cracklin' Oat Bran supplies 110 calories, 3 g of protein, 21 g of carbohydrate, and 3 g of fat. One serving of Kellogg's Crispix supplies 110 calories, 2 g of protein, 25 g of carbohydrate, and 0.4 g of fat. It is desired to have b_{1}, b_{2}, b_{3} and b_{4} calories, and grams of proteins, carbohydrate, and fat, respectively.
a) Setup, but do not solve, a matrix equation that would tell you how many servings of each cereal to eat.
b) Find a \mathbf{b} (the column vector with $b_{1}, b_{2}, b_{3}, b_{4}$ as entries) where the matrix equation has a solution and find the solution.(One example with numbers is desired, not the general case.)
c) Is there a solution for all \mathbf{b} ? If so explain why, if not find $\mathbf{a} \mathbf{b}$ where there is no solution and explain why there is no solution.

