1.5 Linear Independence

MATH 294 FALL 1987 MAKE UP PRELIM ? \# 2 294FA87MUP×Q2.tex
1.5.1 In parts (a) - (g), answer true or false.
a) $\operatorname{Span}\left(\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right)=\Re^{3}$, where

$$
\vec{v}_{1}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right), \vec{v}_{2}=\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right), \vec{v}_{3}=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right), \vec{v}_{4}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

b) The 4 vectors in (a) are independent.
c) Referring to (a) again, all vectors, $\vec{v}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ in $\operatorname{Span}\left(\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right)$ satisfy a linear equation $a x_{1}+b x_{2}+c x_{3}=0$ for scalars a,b,c not all 0 .
d) The rank of the matrix $\left(\begin{array}{ccc}1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1\end{array}\right)$ is 3 .
e) In \Re^{n}, n distinct vectors are independent.
f) $\mathrm{n}+1$ distinct vectors always span \Re^{n}, for $\mathrm{n} i 1$.
g) If the vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ span \Re^{n}, then they are a basis for \Re^{n}.

MATH 294 SPRING 1989 PRELIM 2 \#3 294SP89P2Q3.tex
1.5.2 Consider the system of equations,

$$
\begin{aligned}
& -x_{1}+2 x_{2}+3 x_{3}=-1 \\
& 2 x_{1}+5 x_{2}-3 x_{3}=2 \\
& 11 x_{1}+14 x_{2}-21 x_{3}=11
\end{aligned}
$$

a) Find all solutions, if any exist, of the system.
b) Is the set of vectors given by,

$$
\left[\begin{array}{c}
-1 \\
2 \\
11
\end{array}\right],\left[\begin{array}{c}
2 \\
5 \\
14
\end{array}\right], \text { and }\left[\begin{array}{c}
3 \\
-3 \\
-21
\end{array}\right]
$$

linearly independent or dependent?
MATH 294 SPRING 1989 PRELIM 2 \# 6 294SP89P2R6.tex
1.5.3 Consider the following two vectors in \Re^{3} :

$$
\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right] \text { and } \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{c}
-1 \\
4 \\
3
\end{array}\right]
$$

a) Find a third non-zero vector $\mathbf{v}_{\mathbf{3}}$ so that the set $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$ is linearly dependent. (explain)
b) Find a third vector $\mathbf{v}_{\mathbf{3}}$ so that the set $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$ is linearly independent. (explain)

MATH 293 FALL 1995 PRELIM 2 \# $4 \quad$ 293FA95P2Q4.tex
1.5.4 Consider the following wing set of vectors in \Re^{3} :

$$
v_{1}=\left[\begin{array}{l}
0 \\
2 \\
3
\end{array}\right], v_{2}=\left[\begin{array}{c}
-4 \\
6 \\
7
\end{array}\right], v_{3}=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]
$$

a) Is the set linearly independent or dependent? Give reasons for your answer.
b) Find $W=\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}$, i.e., give any correct formula for a typical element of W.
c) What geometrical object is W ? (e.g., point, line, plane, space, etc.

MATH 293 SPRING 1996 FINAL \# $1 \quad{ }^{293 S P 96 F Q 1 . t e x ~}$
1.5.5 Let
$\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}1 \\ -1 \\ -2\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{c}5 \\ -4 \\ -7\end{array}\right], \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{c}-3 \\ 1 \\ 0\end{array}\right], \mathbf{y}=\left[\begin{array}{c}-4 \\ 3 \\ h\end{array}\right]$.
The value of h for which \mathbf{y} is in $\operatorname{Span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ is:
a) -5
b) 5
c) 0
d) 1
e) none of the above.

MATH 293 SPRING 1996 FINAL \# 5 293SP96FQ5.tex
1.5.6 Let
$\mathbf{u}=\left[\begin{array}{c}3 \\ 2 \\ -4\end{array}\right], \mathbf{v}=\left[\begin{array}{c}-6 \\ 1 \\ 7\end{array}\right], \mathbf{w}=\left[\begin{array}{c}0 \\ -5 \\ 2\end{array}\right], \mathbf{y}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right], \mathbf{z}=\left[\begin{array}{c}3 \\ 7 \\ -5\end{array}\right]$.
Which one of the following is true?
a) $\{\mathbf{u}, \mathbf{z}\}$ is linearly dependent.
b) $\{\mathbf{v}, \mathbf{w}, \mathbf{y}\}$ is linearly independent.
c) $\{\mathbf{v}, \mathbf{w}, \mathbf{z}\}$ is linearly dependent.
d) $\{\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{z}\}$ is linearly dependent.
e) None of the above.

MATH 293 SPRING 1996 FINAL \# 31 293SP96FQ31.tex
1.5.7 Let $S=\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ be a set of three vectors in \Re^{3}. If none of the vectors in S in a multiple of another vector in S, then S is linearly independent. True or false.

MATH 293 SPRING 1996 FINAL \# 32 293SP96FQ32.tex
1.5.8 In special cases, it is possible for a set of four vectors in \Re^{6} to span \Re^{6}. True or false.

MATH 294 SPRING 1997 PRELIM 2 \# 2 294SP97P2Q2.tex
1.5.9 For what value(s) of the parameters s and t is the set of vectors

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
s \\
t \\
2
\end{array}\right]\right\}
$$

linearly dependent?
MATH 294 SPRING 1997 PRELIM 2 \# 3 294SP97P2Q3.tex
1.5.10 Which of the following sets of vectors span all of \Re^{2} ? You do not need to explain your answers.

$$
\begin{gathered}
S_{1}=\left\{\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right\}, S_{2}=\left\{\left[\begin{array}{l}
2 \\
1
\end{array}\right],\left[\begin{array}{l}
-1 \\
-2
\end{array}\right]\right\}, S_{3}=\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
3
\end{array}\right],\left[\begin{array}{l}
3 \\
4
\end{array}\right]\right\} \\
S_{4}=\left\{\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
3 \\
4
\end{array}\right]\right\}, S_{5}=\left\{\left[\begin{array}{l}
2 \\
1
\end{array}\right],\left[\begin{array}{l}
-2 \\
-1
\end{array}\right]\right\} .
\end{gathered}
$$

MATH 294 FALL 1997 PRELIM 1 \# 2 294FA97P1Q2.tex
1.5.11 Consider three vectors in \Re^{4} :

$$
v_{1}=\left(\begin{array}{c}
1 \\
0 \\
-1 \\
2
\end{array}\right), \quad v_{2}=\left(\begin{array}{c}
-1 \\
1 \\
0 \\
-2
\end{array}\right), \quad v_{3}=\left(\begin{array}{c}
5 \\
-2 \\
a \\
b
\end{array}\right)
$$

a) For what values of a and b does v_{3} lie in $\operatorname{span}\left\{v_{1}, v_{2}\right\}$?
b) For what values of a and b is the set $S=\left\{v_{1}, v_{2}, v_{3}\right\}$ linearly independent in \Re^{3} ?
c) For what values of a and b does

$$
\left(\begin{array}{cc}
1 & -1 \\
0 & 1 \\
-1 & 0 \\
2 & -2
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{c}
5 \\
-2 \\
a \\
b
\end{array}\right)
$$

have at least one solution x ?

MATH 294
FALL 1998
PRELIM 1 \# 2 294FA98P1Q2.tex
1.5.12 a)

$$
\text { Let } A=\left[\begin{array}{cccc}
1 & -7 & 2 & 2 \\
-6 & 5 & 8 & 12 \\
12 & 0 & -4 & 12
\end{array}\right]
$$

Are the columns of A linearly independent? Why or why not.
b) Determine if the columns of the given matrix form a linearly dependent set. Hint: one way to do this is by row operations.

$$
A=\left[\begin{array}{ccc}
1 & -3 & 0 \\
3 & -5 & 5 \\
-2 & 6 & -6
\end{array}\right]
$$

c) Let
$A=\left[\begin{array}{cc}1 & -1 \\ -1 & 1 \\ 1 & 0\end{array}\right]$ and $\vec{b}=\left[\begin{array}{c}3 \\ -3 \\ 1\end{array}\right]$. Given that $\vec{x}=\left[\begin{array}{c}1 \\ -2\end{array}\right]$
is a solution to $A \vec{x}=\vec{b}$, is this solution unique?
d) For the matrix in (c) is there a solution to $A \vec{x}=\vec{b}$ for all \vec{b} in \Re^{3} ? Why or why not?
MATH 294 FALL 1998 PRELIM 3 \# 3 294FA98P3Q3.tex
1.5.13 If A is a (possibly not square) matrix with $A^{T} A$ invertible, are the columns of A linearly independent? (yes, no, maybe).
MATH 293 Unknown FINAL \#5 5 293x×FQ5.tex
1.5.14 a) Let A be an $\mathrm{n} \times \mathrm{n}$ matrix. Show that if $A \mathbf{x}=\mathbf{b}$ has a solution then \mathbf{b} is a linear combination of the column vectors of A.
b) Let A be a 4×4 matrix whose column space is the span of vectors $\mathbf{v}=$ $\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}, \mathbf{v}_{\mathbf{4}}\right)^{t}$, satisfying $v_{1}-2 v_{2}+v_{3}-v_{4}=0$. Let $\mathbf{b}=\left(1, b_{2}, b_{3}, 0\right)^{t}$. Find all values of $\mathbf{b}_{\mathbf{2}}, \mathbf{b}_{\mathbf{3}}$ for which the matrix equation $A \mathbf{x}=\mathbf{b}$ has a solution.
MATH 294 SPRING 1996 PRELIM 2 \# 2b 294 SP96P2Q2b.tex
1.5.15 The following matrix applies to the next 2 questions Let

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right), B=\left(\begin{array}{cccc}
-1 & 2 & 3 & 4 \\
0 & 1 & 1 & -2 \\
0 & 0 & 0 & 1
\end{array}\right), C=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 4 \\
-1 & 0 & 2 \\
1 & 1 & 1
\end{array}\right)
$$

Are the columns of B linearly independent? Explain why or why not.
MATH 293 SPRING 1996 PRELIM 2 \# 3 ${ }^{293 S P 96 P 2 Q 3 . t e x ~}$
1.5.16 Is the span of the columns of A equal to all of \Re^{3} ? Explain why or why not.

MATH 294 SPRING 1999 PRELIM 1 \# 2 294SP99P1Q2.tex
1.5.17 a) Is the set $\left\{\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}2 \\ 2 \\ 6\end{array}\right)\right\}$ linearly independent (why or why not)?
b) Is the set $\left\{\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 7\end{array}\right)\right\}$ linearly independent (why or why not)?
c) What is the inverse of $A=\left[\begin{array}{lll}1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$?
d) What (in vector form) is the general solution to $\left[\begin{array}{llll}1 & 2 & 3 & 0 \\ 4 & 3 & 6 & 2 \\ 3 & 4 & 3 & 8\end{array}\right] \mathbf{x}=\left[\begin{array}{l}4 \\ 1 \\ 6\end{array}\right]$?

The Matlab dialogue below may or may not be useful to you.

$$
\begin{aligned}
& \gg B=[\\
& 12304 \text {; } \\
& 4362 \text { 1; } \\
& 34386 \text {; } \\
& \text {]; } \\
& \gg \operatorname{rref}(\mathrm{B}) \\
& \text { ans }= \\
& \begin{array}{lllll}
1 & 0 & 0 & 2 & -2
\end{array} \\
& \begin{array}{lllll}
0 & 1 & 0 & 2 & 3
\end{array} \\
& \begin{array}{lllll}
0 & 0 & 1 & -2 & 0
\end{array}
\end{aligned}
$$

