1.8 Matrix Inverse

MATH 294 SPRING 1983 PRELIM 1 \# 4 294SP83P1Q4.tex
1.8.1 Let

$$
A=\left[\begin{array}{lll}
1 & 0 & 2 \\
2 & 1 & 0 \\
3 & 1 & 1
\end{array}\right]
$$

a) Find A^{-1}. Us any method you wish. check your result.
b) Use your inverse above to find all solutions to $A \mathbf{x}=\mathbf{b}$, where

$$
\mathbf{b}=\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right]
$$

MATH 294 SPRING 1983 PRELIM 1 \# 5 294SP83P1Q5.tex
1.8.2 a) consider the 2×2 matrix

$$
B=\left[\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]-k\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right]
$$

Find all values of k for which B has no inverse.
b) In the vector space of polynomials of degree two or less are the vectors

$$
\left\{1-x, 2+x^{2}, x^{2}-x-1\right\}
$$

linearly independent? Give a reason. (You may assume that $\left\{1, x, x^{2}\right\}$ are linearly independent.)
c) In the vector space S of solutions to the differential equation

$$
y "-3 y^{\prime}+2 y=0
$$

Are the vectors $y=3 e^{-2 t}, y=e^{-t}-e^{-2 t}$, and $y=-e^{-t}$ linearly independent? Give a reason.

MATH 294 SPRING 1983 FINAL \# 10 294SP83FQ10.tex
1.8.3 a) Find a basis for the vector space of all 2 x 2 matrices.
b) $\underline{\underline{A}}$ is the matrix given below, \underline{v} is an eigenvector of $\underline{\underline{A}}$. Find any eigenvalue of $\underline{\underline{A}}$.
$\underline{\underline{A}}=\left[\begin{array}{llll}3 & 0 & 4 & 2 \\ 8 & 5 & 1 & 3 \\ 4 & 0 & 9 & 8 \\ 2 & 0 & 1 & 6\end{array}\right]$ with $\underline{v}=[$ an eigenvector of $\underline{\underline{A}}]=\left[\begin{array}{l}0 \\ 2 \\ 0 \\ 0\end{array}\right]$
c) Find one solution to each system of equations below, if possible. If not possible, explain why not.

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 \\
3 & 3 & 3 & 3 \\
4 & 4 & 4 & 4
\end{array}\right] \cdot \underline{x}=\underline{b}, \underline{b}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right] \text { and } \underline{b}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

d) Read carefully. Solve for $\underline{\mathbf{x}}$ in the equation $\underline{\underline{A}} \cdot \underline{b}=\underline{\mathbf{x}}$ with:

$$
\underline{\underline{A}}=\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1 \\
1 & 0 & 1
\end{array}\right] \text { and } \underline{b}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

e) Find the inverse of the matrix

$$
\underline{\underline{A}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

MATH 294 FALL 1984 FINAL \# 2 294FA84FQ2.tex
1.8.4 a) Find the eigenvalues and eigenvectors of the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

b) Find A^{-1} and A^{T}.
c) Find the general solution of

$$
\frac{d}{d x}=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)
$$

MATH 294 SPRING 1985 FINAL \# 2 294SP85FQ2.tex
1.8.5 For the case $\vec{b}=\overrightarrow{0}$, the vector $\vec{x}=\overrightarrow{0}$
a) Is always a solution.
b) May or may not be a solution depending on $\underline{\underline{A}}$.
c) Is always the only solution.
d) Is never a solution.

MATH 294 FALL 1985 FINAL \# 4 294FA85FQ4.tex
1.8.6 Find an elementary matrix E so that $E A$ is in reduced form, where

$$
A=\left(\begin{array}{cccc}
1 & 0 & 2 & 1 \\
-1 & 1 & 2 & 3 \\
3 & 0 & 1 & 0
\end{array}\right)
$$

MATH 294
FALL 1987 FINAL \# 3 ${ }^{294 F A 87 F Q 3 . t e x}$
1.8.7 Either compute the inverse of the matrix $\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 2 \\ 1 & 1 & 1 & 1\end{array}\right]$, or show that no inverse exists.
MATH 294 SUMMER 1989 PRELIM 2 \# 5 294SU89P2Q5.tex
1.8.8 Let A be a 2×2 matrix with real entries. Assume that A has an inverse Q and $Q=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.
a) Find all vectors \vec{x} in \Re^{2} such that $A \vec{x}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.
b) Find the matrix A.

MATH 294 SPRING 1992 PRELIM 3 \# 2 293SP92P3Q2.tex
1.8.9 Here $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$.
a) Find A^{-1}.
b) Find X if $A X=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.
c) Find \vec{v} if $A \vec{v}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$.

MATH 293 SPRING 1993 PRELIM 3 \# 1 293SP93P3Q1.tex
1.8.10 Given the matrix

$$
A=\left(\begin{array}{lll}
-2 & 1 & 2 \\
-2 & 2 & 2 \\
-9 & 3 & 7
\end{array}\right)
$$

a) Find $\operatorname{det} A$.
b) Find A^{-1} and check your answer.

MATH 293 SPRING 1993 FINAL \# $1 \quad{ }^{293 S P 93 F Q 1 . t e x ~}$
1.8.11 a) Find the general solution, and write your answer as a particular solution plus the general solution of the associated homogeneous system.

$$
\begin{array}{cccc}
x-5 y+4 z & =3 \\
2 x-3 y+z & = & -1 \\
-3 x+y & +2 z & =5
\end{array}
$$

b) Check your answer for part a.
c) Find the inverse of the matrix

$$
\left(\begin{array}{ccc}
1 & 2 & 3 \\
2 & 5 & 7 \\
-1 & -2 & -2
\end{array}\right)
$$

d) Check your answer for part c.

MATH 293 SPRING 1994 PRELIM 2 \# 6 293SP94P2Q6.tex
1.8.12 a) Find the inverse of the matrix $\left(\begin{array}{lll}1 & 3 & 5 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right)$.
b) Explain what you do to check your result in part (a), and then do it.
c) Compute the determinant of the matrix $A(\lambda)=\left(\begin{array}{ccc}1-\lambda & 1 & 0 \\ 2 & 2-\lambda & 1 \\ 0 & 1 & 2-\lambda\end{array}\right)$, writing your result as a function of λ.
d) Partially check your result by computing the determinant of $A(0)$, and compare this value with the value of the function you found in (c) when $\lambda=0$.

MATH 293
FALL 1994
PRELIM 2 \# 3 293FA94P2Q3.tex
1.8.13
a) Find A^{-1} if $A=\left(\begin{array}{ccc}1 & 2 & 0 \\ 0 & 1 & 0 \\ 3 & 1 & -1\end{array}\right)$.
b) Use the result of part (a) to solve $A \vec{x}=\vec{b}$ where $\vec{b}=\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)$.
c) Suppose B and C are $N \times N$ invertible matrices and you know B^{-1} and C^{-1}. What is $(B C)^{-1}$ equal to?

MATH 293 FALL 1994 FINAL \# 6 293FA94FQ6.tex
1.8.14 The inverse of the matrix $\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$ is
a) $\left[\begin{array}{cc}-3 & 2 \\ 2 & -1\end{array}\right]$
b) $\left[\begin{array}{cc}3 & 2 \\ 2 & -1\end{array}\right]$
c) $\left[\begin{array}{cc}-3 & 2 \\ 0 & 0\end{array}\right]$
d) $\left[\begin{array}{cc}-3 & 2 \\ 2 & 1\end{array}\right]$
e) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

MATH 293 SPRING 1995 FINAL \# 4 293SP95FQ4.tex
1.8.15 Give a formula for

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}
$$

when it exists, and prove that your answer is correct.
MATH 293 SPRING 1995 PRELIM 2 \# 4 293SP95P2Q4.tex
1.8.16 a) Find the inverse of the matrix

$$
A=\left[\begin{array}{ccc}
1 & -1 & 2 \\
-1 & 2 & 4 \\
2 & 1 & 0
\end{array}\right]
$$

b) Check your result by computing $A^{-1} A$.
c) Use the result to find the solution of

$$
\begin{aligned}
x-y+2 z & =5 \\
-x+2 y+4 z & =-2 \\
2 x+y & =7
\end{aligned}
$$

MATH 293 FALL 1995 PRELIM 2 \# 5 293FA95P2Q5.tex
1.8.17 a) Find the inverse, if it exists, of the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 2 \\
1 & 1 & 2
\end{array}\right]
$$

b) Verify your answer for part (a).
c) Consider the matrix

$$
B=\left[\begin{array}{ll}
\lambda & 1 \\
1 & \lambda
\end{array}\right]
$$

where λ is an unspecified parameter. For what values of λ (if any) does B^{-1} not exist?
MATH 293 SPRING 1996 PRELIM 2 \# 5 293SP96P2Q5.tex
1.8.18

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right), B=\left(\begin{array}{cccc}
-1 & 2 & 3 & 4 \\
0 & 1 & 1 & -2 \\
0 & 0 & 0 & 1
\end{array}\right), C=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 4 \\
-1 & 0 & 2 \\
1 & 1 & 1
\end{array}\right)
$$

Is A invertible? If yes, explain why and find A^{-1}. If no, explain why?
MATH 293 SPRING 1996 PRELIM 2 \# 6 293SP96P2Q6.tex
1.8.19 Let I be the 3 -by- 3 identity matrix, let 0 be the 3 -by- 3 matrix consisting of all zeros, let A be the matrix in the question above, and let D be the 6 -by- 6 matrix given as four 3-by-3 blocks

$$
D=\left(\begin{array}{cc}
I & A \\
0 & I
\end{array}\right)
$$

Find D^{-1}.
MATH 293 SPRING 1996 FINAL \# $9 \quad{ }^{293 S P 96 F Q 9 . t e x ~}$
1.8.20 Let

$$
A=\left(\begin{array}{ccc}
1 & 2 & -1 \\
0 & 1 & 1 \\
1 & 0 & -1
\end{array}\right)
$$

Then the element in the 3 rd row, 2nd column of A^{-1} is:
a) -1
b) $-\frac{1}{2}$
c) 1
d) $\frac{1}{2}$
e) none of the above.

MATH 293 SPRING 1996 FINAL \# $10 \quad{ }^{293 S P 96 F Q 10 . t e x}$
1.8.21 Suppose

$$
A^{-1}=\left(\begin{array}{ccc}
1 & 0 & -2 \\
2 & 1 & 3 \\
4 & 2 & 5
\end{array}\right), \mathbf{b}=\left[\begin{array}{c}
2 \\
1 \\
3
\end{array}\right]
$$

What is the solution of $A \mathbf{x}=\mathbf{b}$?
a) $\left[\begin{array}{c}2 \\ 2 \\ -3\end{array}\right]$
b) $\left[\begin{array}{c}-2 \\ -2 \\ 3\end{array}\right]$
c) $\left[\begin{array}{c}2 \\ -2 \\ 3\end{array}\right]$
d) $\left[\begin{array}{c}-2 \\ -2 \\ -3\end{array}\right]$
e) none of the above

MATH 293 FALL 1996 PRELIM 2 \# 2 293FA96P2Q2.tex
1.8.22* Matrix algebra. Let $[A]$ be the matrix
$A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 2\end{array}\right]$ and let $\vec{b}=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$ and let $\vec{c}=\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]$
a) Find all solutions \vec{x} to $A \vec{x}=\vec{b}$ and check your answer by substitution.
b) Find all solutions \vec{x} to $A \vec{x}=\vec{c}$ and check your answer by substitution.
c) Give a reason why you believe that A^{-1} does or does not exist.

MATH 294 SPRING 1997 PRELIM 2 \# 7 294SP97P2Q7.tex
1.8.23 Let M be the 5 -by- 5 matrix

$$
M=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
100 & 0 & & & \\
200 & 0 & & A & \\
300 & 0 & & &
\end{array}\right) \text { where } A^{-1}=\left(\begin{array}{ccc}
0 & 2 & 0 \\
0 & 0 & 2 \\
2 & 0 & 0
\end{array}\right)
$$

Find the inverse of M.

MATH 294 SPRING 1997 FINAL \#6 6 294SP97FQ6.tex
1.8.24 Find the inverse of matrix $M . A$ is a general matrix and I is the identity matrix.

$$
M=\left[\begin{array}{ll}
I & 0 \\
A & I
\end{array}\right]
$$

MATH 294 FALL 1997 PRELIM 1 \# 4 294FA97P1Q4.tex
1.8.25 Find the inverse of the matrix

$$
A=\left(\begin{array}{ccc}
1 & -2 & -1 \\
1 & 1 & 1 \\
-1 & 6 & 4
\end{array}\right)
$$

MATH 294 FALL 1997 PRELIM 1 \# 5 294FA97P1Q5.tex
1.8.26 Find the inverse of the matrix

$$
A=\left(\begin{array}{ccc}
I & B & 0 \\
0 & I & B \\
0 & 0 & I
\end{array}\right)
$$

where each block is a 3 by 3 matrix, and $I=I_{3}$ is the 3 by 3 identity matrix. Hint: the inverse is of the form

$$
A^{-1}=\left(\begin{array}{ccc}
I & E_{1} & E_{2} \\
0 & I & E_{3} \\
0 & 0 & I
\end{array}\right)
$$

for certain E_{1}, E_{2}, E_{3}.
MATH 294 SPRING 1998 PRELIM 2 \# 2 294SP98P2Q2.tex
1.8.27 a) Find the inverse of the matrix

$$
\left[\begin{array}{lll}
4 & 0 & 0 \\
0 & 1 & 2 \\
4 & 0 & 3
\end{array}\right]
$$

b) True or False?
i) If A and B are invertible, then $A^{-1} B^{-1}$ is the inverse of $A B$.
ii) If A is an invertible $n \times n$ matrix, then the equation $A \vec{x}=\vec{b}$ is consistent for each \vec{b} in \Re^{n}.
MATH 293 SPRING 1998 PRELIM 2 \#4 4 293SP98P2Q4.tex
1.8.28 Determine whether the following matrices are invertible. If they are invertible then find the inverse.

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right] \quad B=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

MATH 294 FALL 1998 PRELIM 2 \# 2bc ${ }^{294 F A 98 P 2 Q 2 b c . t e x ~}$

1.8.29 (b) Is $B=\left[\begin{array}{cc}-\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3}\end{array}\right]$ the inverse of $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$?
(c) Is the matrix $A=\left[\begin{array}{ccc}5 & 3 & 2 \\ 0 & 7 & 1 \\ 5 & 10 & 4\end{array}\right]$ invertible? (You need not calculate the inverse if it does exist.)
MATH 293 SPRING ?? PRELIM 2 \# 2 293SPxxP2Q2.tex
1.8.30 a) If A and B are 4×4 matrices such that

$$
A B=\left[\begin{array}{cccc}
2 & 1 & 1 & 0 \\
-1 & 2 & 2 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

show that the column space of A is at least three dimensional.
b) Find A^{-1} if $A=\left[\begin{array}{cccc}2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1\end{array}\right]$

MATH 293
1.8.31 a) Show that $A=\left(\begin{array}{ccc}1 & -2 & 1 \\ -2 & 5 & -4 \\ 1 & -4 & 6\end{array}\right)$ is nonsingular without finding A^{-1}.
b) Find A^{1}.
c) Solve $A \vec{x}=\vec{b}$ where $\vec{b}=(1,-2,1)$ by using part (b).

MATH 293 Unknown PRACTICE PRELIM ? \# 2 293UnknownPPQ2.tex
1.8.32 a) For what value of a does the matrix $B=\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & 1 & 2 \\ 1 & a & 0\end{array}\right] \underline{\text { not have an inverse? }}$
b) A $n \times n$ matrix C is said to be orthogonal if $C^{t}=C^{-1}$. Show that either $\operatorname{det} C$

$$
=1 \text { or } \operatorname{det} C=-1 . \text { Hint: } C C^{t}=I
$$

MATH 293 Unknown PRACTICE PRELIM 2 \# 4 293UnknownPP2Q4.tex
1.8.33

$$
A=\left[\begin{array}{ccc}
3 & -1 & -2 \\
4 & 1 & -2 \\
-1 & 1 & 1
\end{array}\right]
$$

calculate the inverse of A. Check your answer.
Find the 3×3 matrix X if $A X=B$ where A is the 3×3 matrix above and

$$
B=\left[\begin{array}{ccc}
2 & 1 & 7 \\
3 & -4 & 0 \\
-1 & 2 & 5
\end{array}\right]
$$

