Chapter 2

More Linear Algebra

2.1 Determinants

MATH 293 FALL 1981 PRELIM 1 \# 2

2.1.1* Consider the matrices

$$
A=\left[\begin{array}{lll}
2 & 4 & 1 \\
1 & 1 & 1 \\
2 & 3 & 1
\end{array}\right], B=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 5 & 6 \\
1 & 3 & 4 & 6 \\
1 & 4 & 5 & 8
\end{array}\right]
$$

a) Find $\operatorname{det} A$ and $\operatorname{det} B$.
b) Find A^{-1} and B^{-1} If they exist. If you think that either of the inverses does not exist, give a reason.

MATH 294 SPRING 1982 PRELIM 1 \# 1
2.1.2* a) Write the system of equations $\begin{gathered}x_{1}+2 x_{2}+3 x_{3}=1 \\ 2 x_{1}+3 x_{2}+4 x_{3}=-2 \\ 3 x_{2}+4 x^{2}\end{gathered}$ in the form $A \vec{x}=B$.
b) Find $\operatorname{det} A$ for A in part (a) above.
c) Does A^{-1} exist?
d) Solve the above system of equations for $\vec{x}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$
e) Let $B=\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 0 \\ 2 & -1 & 1\end{array}\right]$. Find $A \cdot B$ (i.e. calculate the product $A B$).

MATH 293 FALL 1991 PRELIM 3 \# 4
2.1.3* Compute the determinants of the following matrices:
a) $\left(\begin{array}{lll}2 & 3 & 0 \\ 3 & 5 & 0 \\ 0 & 0 & 1\end{array}\right)$
b) $\left(\begin{array}{cccc}2 & 3 & 0 & 0 \\ 3 & 5 & 0 & 0 \\ 0 & 0 & -11 & -3 \\ 0 & 0 & 4 & 1\end{array}\right)$
c) $\left(\begin{array}{cccc}2 & -5 & 17 & 31 \\ 0 & 3 & 9 & 14 \\ 0 & 0 & -1 & 7 \\ 0 & 0 & 0 & 4\end{array}\right)^{-1}$

MATH 293 FALL 1991 PRELIM 3 \# 6

2.1.4* True/False
a) All three row operations preserve the absolute value of the determinant of a square matrix.
b) A singular $n \times n$ matrix has a zero determinant.
c) If A is a $n \times n$ matrix $\operatorname{det}\left(A^{t}\right)=\operatorname{det}(A)$.
d) If each entry in a square matrix A is replaced by its reciprocal (inverse), producing a new matrix B, then $\operatorname{det}(B)=(\operatorname{det}(\mathrm{A}))^{-1}$.
e) If a matrix A is nonsingular, then $\operatorname{det}\left(\mathrm{A}^{-1}\right)=(\operatorname{det}(\mathrm{A}))^{-1}$
f) For a square matrix A and a scalar $k, \operatorname{det}(k A)=k \operatorname{det}(A)$
g) Let A and B by $n \times n$ matrices

$$
\operatorname{det}\left(\begin{array}{cc}
A & O_{n} \\
O_{n} & B
\end{array}\right)=\operatorname{det}(A) \operatorname{det}(B)
$$

where O_{n} is a $n \times n$ matrix with all elements equal to zero.
MATH 293 SPRING 1992 PRELIM 3 \# 1
2.1.5* Compute
a) $\operatorname{det}\left[\begin{array}{lll}0 & 2 & 0 \\ 1 & 0 & 3 \\ 5 & 0 & 8\end{array}\right]$
b) $\operatorname{det}\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$
c) $\operatorname{det}\left[\begin{array}{lllll}1 & 1 & 7 & 0 & 0 \\ 1 & 1 & 0 & 3 & 3 \\ 5 & 5 & 1 & 8 & 9 \\ 6 & 6 & 1 & 0 & 1 \\ 6 & 6 & 1 & 0 & 1\end{array}\right]$

MATH 293 SUMMER 1992 PRELIM 7_21 \# 2

2.1.6* Compute the following determinants:
a) $\left|\begin{array}{cccc}1 & 2 & 1 & 1 \\ 0 & 1 & -1 & -1 \\ 2 & 3 & 2 & 3 \\ -3 & -5 & 0 & -1\end{array}\right|$

MATH 293 FALL 1992 PRELIM 3 \# 1
2.1.7* Compute the determinant of the matrix

$$
A=\left(\begin{array}{ccccc}
b & a & a & a & a \\
b & b & a & a & a \\
b & b & b & a & a \\
b & b & b & b & a \\
b & b & b & b & b
\end{array}\right)
$$

MATH 293 FALL 1992 PRELIM 3 \# 4
2.1.8* Let A be an $n \times n$ matrix. Assume that it is known that the equation $A x=0$ has nontrivial solutions if and only if $\operatorname{det}(A)=0$
Let

$$
A=\left(\begin{array}{ccc}
3-s & 0 & 1 \\
2 & 1-s & -4 \\
1 & 0 & -(1+s)
\end{array}\right)
$$

where s is an arbitrary scalar.
a) Compute $\operatorname{det}(A)$
b) Find those values of s for which the equation $A x=0$ has nontrivial solutions.

MATH 293 FALL 1992 FINAL \# 3

2.1.9*
a) Let A be an $n \times n$ nonsingular matrix. Prove that $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$. Hint: You may use the fact that if A and B are $n \times n$ matrices, $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
b) An $n \times n$ matrix A has a nontrivial null space. Find $\operatorname{det}(A)$ and explain your answer.
MATH 293 SPRING 1993 PRELIM 3 \# 1
2.1.10* Given the matrix

$$
A=\left(\begin{array}{lll}
-2 & 1 & 2 \\
-2 & 2 & 2 \\
-9 & 3 & 7
\end{array}\right)
$$

Find $\operatorname{det} A$.

MATH 293 SPRING 1994 PRELIM 2 \# 6

2.1.11*
a) Compute the determinant of the matrix $A(\lambda)=\left(\begin{array}{ccc}1-\lambda & 1 & 0 \\ 2 & 2-\lambda & 1 \\ 0 & 1 & 2-\lambda\end{array}\right)$, writing your result as a function of λ.
b) Partially check your result by computing the determinant of $A(0)$, and compare this value with the value of the function you found in a) when $\lambda=0$

MATH 293 FALL 1994 PRELIM 2 \# 3

2.1.12* Compute

$$
\operatorname{det}\left[\begin{array}{ccc}
1 & -2 & 3 \\
-3 & 5 & -8 \\
2 & 2 & 5
\end{array}\right]
$$

by the following two methods:
a) Use row ops to change the matrix into an upperright triangular matrix with the same det
b) Use cofactors of entries in the first row

MATH 293 FALL 1994 PRELIM 2 \# 5
2.1.13* Let A and B be $N \times N$ matrices.
a) Complete the following statement: A is singular if and only if $\operatorname{det}(A)=\ldots$
b) Use the result of part (a) to find the value of λ for which the matrix $\left(\begin{array}{cc}\lambda-1 & 3 \\ 2 & \lambda-2\end{array}\right)$ is singular
c) Complete the following statement: $\operatorname{det}(A B)=$..
d) Use the result of part (c) to show that if A is invertible, $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det} A}$. (Hint: $A A^{-1}=I$)

MATH 293 FALL 1994 PRELIM 2 \# 6
2.1.14* Compute

$$
\operatorname{det}\left(\begin{array}{cccc}
0 & 0 & -1 & 3 \\
0 & 1 & 2 & 1 \\
2 & -2 & 5 & 2 \\
3 & 3 & 0 & 0
\end{array}\right)
$$

MATH 293 FALL 1994 PRELIM 3 \# 3
2.1.15* Let A be an nbyn matrix. Which of the following is equivalent to the statement: A is singular?
a) The $\operatorname{det}(A)=n$.
b) $A x=0$ has a nontrivial solution.
c) The rows of A are linearly independent.
d) The rank of A is n.
e) The $\operatorname{det} A=0$.
f) $A x=B$ has a unique solution x for each B.
g) A has non-zero nullity.

MATH 293 FALL 1994 FINAL \# 3
2.1.16* Evaluate the determinant $\left|\begin{array}{cccc}a & b & b & b \\ a & a & b & b \\ a & a & a & b \\ a & a & a & a\end{array}\right|$ by first using row reduction to convert it to upper triangular form.

MATH 293 FALL 1994 FINAL \# 12
2.1.17* If A is a 3 by 3 matrix and $\operatorname{det}(A)=3$, then $\operatorname{det}\left(\frac{1}{2} A^{-1}\right)$ is:
a) $\frac{1}{24}$
b) $\frac{2}{3}$
c)
d)
e) $\frac{3}{8}$

MATH 293 FALL 1994 FINAL \# 13

2.1.18* If $A B$ is singular, then
a) $\operatorname{det}(A)$ is zero,
b) $\operatorname{det}(B)$ is zero,
c) $\operatorname{det}(A)$ is zero and $\operatorname{det}(B)$ is zero,
d) $\operatorname{det}(A)$ is not zero and $\operatorname{det}(B)$ is not zero,
e) either $\operatorname{det}(A)$ is zero or $\operatorname{det}(B)$ is zero.

MATH 293 FALL 1994 FINAL \# 14

2.1.19* Given the system $\left[\begin{array}{ll}1 & 2 \\ 3 & 3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}1 \\ 3\end{array}\right] . \quad$ With $p=\operatorname{det}\left|\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right|, q=$ $\operatorname{det}\left|\begin{array}{ll}1 & 2 \\ 3 & 3\end{array}\right|, r=\operatorname{det}\left|\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right|, s=\operatorname{det}\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|$, by Cramer's Rule, the solution for y is given by
a)
b)
c)
d) \underline{q}
e) $\frac{r}{q}$

MATH 293 SPRING 1995 PRELIM 2 \# 5
2.1.20* Let A be a 6×6 matrix.
a) Which of the following 3 terms will appear in $\operatorname{det} A$:

$$
a_{13} a_{22} a_{36} a_{45} a_{51} a_{64}, a_{15} a_{21} a_{36} a_{45} a_{52} a_{63}, a_{16} a_{25} a_{34} a_{43} a_{52} a_{61} ?
$$

b) For those which will appear, what will their signs be?
c) How many such terms will there be in all?

MATH 293 SPRING 1995 PRELIM 2 \# 6

2.1.21*

a) Calculate the determinant of the matrix

$$
A=\left[\begin{array}{cccc}
2 & 0 & 1 & -1 \\
1 & 2 & -1 & 1 \\
0 & 1 & 1 & -1 \\
-2 & -2 & 1 & 0
\end{array}\right]
$$

b) What can you say of the solutions to the equation

$$
A x=0
$$

MATH 293 SPRING 1996 PRELIM 3 \# 9
2.1.22* Let A be an n by n matrix. Which of the following are equivalent to the statement "the determinant of A is not zero"? You do not need to show any work. "
a) The columns of A are linearly independent.
b) The rank of A is equal to n.
c) The null space of A is empty.
d) $A \vec{x}=\vec{b}$ has a unique solution for each \vec{b} in \Re^{n}.
e) A is not onto.

MATH 293 SPRING 1996 FINAL \# 12
2.1.23* The determinant of the matrix below is:

$$
\left(\begin{array}{cccc}
1 & -3 & 1 & -2 \\
2 & -5 & -1 & -2 \\
0 & -4 & 5 & 1 \\
-3 & 10 & -6 & 8
\end{array}\right)
$$

a) 1
b) -1
c) 2
d) 0
e) none of above

MATH 294 SPRING 1997 FINAL \# 2
2.1.24* If the $\operatorname{det} A=2$. Find the $\operatorname{det} A^{-1}, \operatorname{det} A^{T}$.

MATH 294 FALL 1997 FINAL \# 6

2.1.25* The equation of a surface S in \Re^{3} is given as

$$
\operatorname{det}\left(\begin{array}{cccc}
x & y & z & 1 \\
a_{1} & a_{2} & a_{3} & 1 \\
b_{1} & b_{2} & b_{3} & 1 \\
c_{1} & c_{2} & c_{3} & 1
\end{array}\right)=0
$$

where the a_{i}, b_{i}, c_{i} are constants.
a) Does the point $a=\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)$ lie on S?
b) Do the points $b=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$ and $c=\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)$ lie on S ?
c) Find a relationship between the coordinates of a, b, and c such that if this relationship holds, then the origin lies on S.
MATH 294 SPRING 1998 PRELIM 2 \# 5
2.1.26* Use cofactor expansion to compute the determinant

$$
\left[\begin{array}{cccc}
1 & -2 & 5 & -2 \\
0 & 0 & 3 & 0 \\
2 & -6 & -7 & 5 \\
0 & 0 & 4 & 4
\end{array}\right]
$$

At each step choose a row or column that involves the least amount of computation.

MATH 294 SPRING 1998 PRELIM 2 \# 5

2.1.27 True or False?
a) The determinant of an $n \times n$ triangular matrix is the product of the entries on the main diagonal.
b) The cofactor expansion of an $n \times n$ matrix down a column is the negative of the cofactor expansion along a row.
MATH 294 FALL 1998 PRELIM 2 \# 2
2.1.28* Evaluate the determinant of $B=\left[\begin{array}{cccc}1 & 2 & -3 & 4 \\ -4 & 2 & 1 & 3 \\ 3 & 0 & 0 & 0 \\ 2 & 0 & -2 & 0\end{array}\right]$.

MATH 293
SPRING ? PRELIM 2 \# 3
2.1.29*
a) Compute $\operatorname{det}\left[\begin{array}{ccc}4 & -7 & 2 \\ 5 & 2 & 0 \\ 3 & 0 & 0\end{array}\right]$
b) If $F(x)=\operatorname{det}\left[\begin{array}{llll}1 & x & x^{2} & x^{3} \\ 1 & 2 & 2^{2} & 2^{3} \\ 1 & 3 & 3^{2} & 3^{3} \\ 1 & 1 & 1 & 1\end{array}\right]$, then show that $F(737)$ is not zero. (Hint: How many roots can the equation $F(x)=0$ have?)

MATH 293 UNKNOWN PRACTICE \# 2b
2.1.30 A $n \times n$ matrix C is said to be orthogonal if $C^{t}=C^{-1}$. Show that either $\operatorname{det} C=1$ or $\operatorname{det} C=-1$. Hint: $C C^{T}=I$.

