Chapter 2

More Linear Algebra

2.1 Determinants

MATH	293	FALL 1981	PRELIM 1	# 2
2.1.1*	Consid	ler the matrices		

$A = \left[\begin{array}{rrr} 2 & 4 & 1 \\ 1 & 1 & 1 \\ 2 & 3 & 1 \end{array} \right], B =$	$\begin{bmatrix} 1\\2\\1\\1 \end{bmatrix}$	$2 \\ 3 \\ 3 \\ 4$	${3 \atop {5} \atop {4} \atop {5}}$	$\begin{array}{c} 4 \\ 6 \\ 6 \\ 8 \end{array}$	
--	--	--------------------	-------------------------------------	---	--

- **a**) Find det A and det B.
- b) Find A^{-1} and B^{-1} If they exist. If you think that either of the inverses does not exist, give a reason.

MATH 294 SPRING 1982 PRELIM 1 # 1 $x_1 + 2x_2 + 3x_3 = 1$ 2.1.2* a) Write the system of equations $2x_1 + 3x_2 + 4x_3 = -2$ in the form $3x_1 + 4x_2 + 6x_3 = 0$ $A\vec{x} = B$. b) Find det A for A in part (a) above. c) Does A^{-1} exist? d) Solve the above system of equations for $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ e) Let $B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 2 & -1 & 1 \end{bmatrix}$. Find $A \cdot B$ (i.e. calculate the product AB).

MATH 293 FALL 1991 PRELIM 3 # 4

2.1.3* Compute the determinants of the following matrices:

2 3 0 a) $3 \ 5 \ 0$ 0 0 1 $\begin{pmatrix} 0 & 0 & 1 \\ 2 & 3 & 0 & 0 \\ 3 & 5 & 0 & 0 \\ 0 & 0 & -11 & -3 \\ 0 & 0 & 4 & 1 \end{pmatrix}$ $\begin{pmatrix} 2 & -5 & 17 & 31 \\ 2 & -5 & 0 & 14 \end{pmatrix}$ $\mathbf{b})$ -19 0 3 14 $\mathbf{c})$ 7 0 0 -10 0 0 4

MATH 293 FALL 1991 PRELIM 3 # 6

2.1.4* True/False

- **a**) All three row operations preserve the absolute value of the determinant of a square matrix.
- **b**) A singular $n \times n$ matrix has a zero determinant.
- c) If A is a $n \times n$ matrix det $(A^t) = det(A)$.
- d) If each entry in a square matrix A is replaced by its reciprocal (inverse), producing a new matrix B, then $\det(B) = (\det(A))^{-1}$.
- e) If a matrix A is nonsingular, then $det(A^{-1}) = (det(A))^{-1}$
- **f**) For a square matrix A and a scalar k, det(kA) = k det(A)
- **g**) Let A and B by $n \times n$ matrices

$$\det \begin{pmatrix} A & O_n \\ O_n & B \end{pmatrix} = \det(A) \det(B)$$

where O_n is a $n \times n$ matrix with all elements equal to zero.

MATH	293		SPR	IΝ	G 1	.992	2	PRELIM 3	# 1
2.1.5*	Co	mput	е						
	$\mathbf{a})$	det	$\begin{bmatrix} 0\\ 1\\ 5 \end{bmatrix}$	$\begin{array}{c} 2 \\ 0 \\ 0 \end{array}$	0 3 8				
	$\mathbf{b})$	det	 	$\sin heta$ $\sin heta$	5) c	$\sin \theta$ $\cos \theta$)]		
	c)	det	$\begin{bmatrix} 1 \\ 1 \\ 5 \\ 6 \\ 6 \end{bmatrix}$	$ \begin{array}{c} 1 \\ 1 \\ 5 \\ 6 \\ 6 \end{array} $	7 0 1 1 1	$\begin{array}{c} 0 \\ 3 \\ 8 \\ 0 \\ 0 \end{array}$	$\begin{bmatrix} 0\\3\\9\\1\\1 \end{bmatrix}$		

MATH 293 SUMMER 1992 PRELIM 7_21 # 2 2.1.6* Compute the following determinants:

$$\mathbf{a}) \begin{vmatrix} 1 & 2 & 1 & 1 \\ 0 & 1 & -1 & -1 \\ 2 & 3 & 2 & 3 \\ -3 & -5 & 0 & -1 \\ 3 - \lambda & 0 & 1 \\ 2 & 1 - \lambda & -4 \\ 1 & 0 & -1 - \lambda \end{vmatrix}$$

MATH 293FALL 1992PRELIM 3# 12.1.7*Compute the determinant of the matrix

$$A = \begin{pmatrix} b & a & a & a & a \\ b & b & a & a & a \\ b & b & b & a & a \\ b & b & b & b & a \\ b & b & b & b & b \end{pmatrix}$$

MATH 293 FALL 1992 PRELIM 3 # 4

2.1.8* Let A be an $n \times n$ matrix. Assume that it is known that the equation Ax = 0 has nontrivial solutions if and only if det(A) = 0Let

$$A = \left(\begin{array}{rrrr} 3-s & 0 & 1\\ 2 & 1-s & -4\\ 1 & 0 & -(1+s) \end{array}\right)$$

where s is an arbitrary scalar.

- **a**) Compute det(A)
- b) Find those values of s for which the equation Ax = 0 has nontrivial solutions.

MATH 293 FALL 1992 FINAL # 3 2.1.9*

- a) Let A be an $n \times n$ nonsingular matrix. Prove that det $(A^{-1}) = \frac{1}{\det(A)}$. Hint: You may use the fact that if A and B are $n \times n$ matrices, det $(AB) = \det(A) \det(B)$.
- b) An $n \times n$ matrix A has a nontrivial null space. Find det(A) and explain your answer.

 MATH 293
 SPRING 1993
 PRELIM 3
 # 1

 2.1.10* Given the matrix
 $A = \begin{pmatrix} -2 & 1 & 2 \\ -2 & 2 & 2 \\ -9 & 3 & 7 \end{pmatrix}$

Find $\det A$.

MATH 293 SPRING 1994 PRELIM 2 # 6 2.1.11*

- a) Compute the determinant of the matrix $A(\lambda) = \begin{pmatrix} 1-\lambda & 1 & 0\\ 2 & 2-\lambda & 1\\ 0 & 1 & 2-\lambda \end{pmatrix}$, writ
 - ing your result as a function of λ .
- **b**) Partially check your result by computing the determinant of A(0), and compare this value with the value of the function you found in a) when $\lambda = 0$

MATH 293	FALL 1994	PRELIM	2	# 3	
2.1.12* Comp	oute				
		[1	-2	3
		\det	-3	5	-8

1	-2	3	
-3	5	-8	
2	2	5	
	$ \begin{array}{c} 1 \\ -3 \\ 2 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 1 & -2 & 3 \\ -3 & 5 & -8 \\ 2 & 2 & 5 \end{bmatrix}$

by the following two methods:

- a) Use row ops to change the matrix into an upperright triangular matrix with the same det Use cofactors of entries in the first row
- **b**)

MATH 293 FALL 1994 PRELIM 2 # 5

- **2.1.13*** Let A and B be $N \times N$ matrices.
 - **a**) Complete the following statement: A is singular if and only if $det(A) = \dots$
 - **b**) Use the result of part (a) to find the value of λ for which the matrix $_{\sim}$) is singular $(\lambda - 1)$ 3

$$(2 \lambda - 2)^{-18}$$

- c) Complete the following statement: $det(AB) = \dots$
- **d**) Use the result of part (c) to show that if A is invertible, det $(A^{-1}) = \frac{1}{\det A}$. (Hint: $AA^{-1} = I$

MATH 293 FALL 1994 PRELIM 2 # 6

2.1.14* Compute

 $\det \left(\begin{array}{rrrr} 0 & 0 & -1 & 3 \\ 0 & 1 & 2 & 1 \\ 2 & -2 & 5 & 2 \\ 3 & 3 & 0 & 0 \end{array} \right).$

MATH 293 FALL 1994 PRELIM 3 # 3

2.1.15* Let A be an *nbyn* matrix. Which of the following is equivalent to the statement: A is singular?

- **a**) The det(A) = n.
- **b**) Ax = 0 has a nontrivial solution.
- c) The rows of A are linearly independent.
- **d**) The rank of A is n.
- The det A = 0. **e**)
- Ax = B has a unique solution x for each B. **f**)
- g) A has non-zero nullity.

MATH 293 FALL 1994 FINAL # 3 a b b ba a b bby first using row reduction to convert it 2.1.16* Evaluate the determinant ba a aa a aato upper triangular form. MATH 293 **FALL 1994** FINAL # 12**2.1.17*** If A is a 3 by 3 matrix and det(A) = 3, then det $(\frac{1}{2}A^{-1})$ is: **e**) MATH 293 **FALL 1994** FINAL # 13 2.1.18* If AB is singular, then **a**) det(A) is zero, **b**) det(B) is zero, c) det(A) is zero and det(B) is zero, **d**) det(A) is not zero and det(B) is not zero, e) either det(A) is zero or det(B) is zero. **MATH 293 FALL 1994** FINAL Given the system $\begin{bmatrix} 1 & 2 \\ 3 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$. With $p = \det \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix}$, $q = \det \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix}$, $r = \det \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix}$, $s = \det \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}$, by Cramer's Rule, the solution 2.1.19* Given the system for y is given by **a**) prpprqprqprq**b**) **c**) **d**) **e**) SPRING 1995 **MATH 293** PRELIM 2 # 5 **2.1.20*** Let A be a 6×6 matrix. **a**) Which of the following 3 terms will appear in $\det A$:

 $a_{13}a_{22}a_{36}a_{45}a_{51}a_{64}, a_{15}a_{21}a_{36}a_{45}a_{52}a_{63}, a_{16}a_{25}a_{34}a_{43}a_{52}a_{61}$?

b) For those which will appear, what will their signs be?

c) How many such terms will there be in all?

MATH 293 SPRING 1995 PRELIM 2 # 6 2.1.21*

a) Calculate the determinant of the matrix

$$A = \begin{bmatrix} 2 & 0 & 1 & -1 \\ 1 & 2 & -1 & 1 \\ 0 & 1 & 1 & -1 \\ -2 & -2 & 1 & 0 \end{bmatrix}$$

b) What can you say of the solutions to the equation

Ax = 0.

MATH 293 SPRING 1996 PRELIM 3 # 9

- **2.1.22*** Let A be an n by n matrix. Which of the following are equivalent to the statement "the determinant of A is not zero"? You do **not** need to show any work. "
 - **a**) The columns of A are linearly independent.
 - **b**) The rank of A is equal to n.
 - **c**) The null space of A is empty.
 - d) $A\vec{x} = \vec{b}$ has a unique solution for each \vec{b} in \Re^n .
 - e) A is not onto.

MATH 293 SPRING 1996 FINAL # 12

2.1.23* The determinant of the matrix below is:

- **a**) 1
- **b**) -1
- **c**) 2
- \mathbf{d}) 0
- e) none of above

MATH 294 SPRING 1997 FINAL # 2 2.1.24* If the det A = 2. Find the det A^{-1} , det A^{T} . MATH 294 FALL 1997 FINAL # 6

 $\mathbf{2.1.25^*}$ The equation of a surface S in \Re^3 is given as

$$\det \begin{pmatrix} x & y & z & 1\\ a_1 & a_2 & a_3 & 1\\ b_1 & b_2 & b_3 & 1\\ c_1 & c_2 & c_3 & 1 \end{pmatrix} = 0$$

where the a_i, b_i, c_i are constants.

a) Does the point
$$a = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
 lie on S?
b) Do the points $b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ and $c = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$ lie on S?

c) Find a relationship between the coordinates of a, b, and c such that if this relationship holds, then the origin lies on S.

MATH 294SPRING 1998PRELIM 2# 52.1.26* Use cofactor expansion to compute the determinant

At each step choose a row or column that involves the least amount of computation.

MATH 294 SPRING 1998 PRELIM 2 # 5

- 2.1.27 True or False?
 - **a**) The determinant of an $n \times n$ triangular matrix is the product of the entries on the main diagonal.
 - b) The cofactor expansion of an $n \times n$ matrix down a column is the negative of the cofactor expansion along a row.

MATH 294	FALL 1998	PRELIM	2	# 2	2		
			1	2	-3	4	1
9 1 99* El	t D	-4	2	1	3		
2.1.28** Evalu	te the determinal	[III O D =]	3	0	0	0	•
			2	0	-2	0	

PRELIM 2 SPRING ? **MATH 293** # 3 2.1.29*a) Compute det $\begin{bmatrix} 4 & -7 & 2 \\ 5 & 2 & 0 \\ 3 & 0 & 0 \end{bmatrix}$ b) If $F(x) = det \begin{bmatrix} 1 & x & x^2 & x^3 \\ 1 & 2 & 2^2 & 2^3 \\ 1 & 3 & 3^2 & 3^3 \\ 1 & 1 & 1 & 1 \end{bmatrix}$ many roots can the consting F(x), then show that F(737) is not zero. (Hint: How

many roots can the equation F(x) = 0 have?)

MATH 293 UNKNOWN PRACTICE # 2b

2.1.30 A $n \times n$ matrix C is said to be orthogonal if $C^t = C^{-1}$. Show that either det C = 1 or det C = -1. Hint: $CC^T = I$.