2.10 Orthogonal Projection / Gram Schmidt

MATH 293 FALL 1995 PRELIM 1 \# 3
2.10.1 a) Find the orthogonal (scalar) projection of the vector $\vec{v}=\vec{i}+\vec{j}+\vec{k}$ in the direction of the vector $\vec{w}=5 \vec{i}+12 \vec{j}$
b) Consider the two vectors

$$
\vec{a}=3 \vec{i}-4 \vec{j}
$$

$$
\vec{b}=3 \vec{i}+4 \vec{j}
$$

The vector \vec{u} has orthogonal projections $-\frac{1}{5}$ and $\frac{7}{5}$ along the vectors \vec{a} and \vec{b}, respectively. Find \vec{u}.
Hint: Let $\vec{u}=u_{1} \vec{i}+u_{2} \vec{j}$
MATH 293 SPRING 1995 FINAL \# 8
2.10.2 a) What is the formula for the scalar orthogonal projection of a vector $\vec{v} \in \Re^{n}$ onto the line spanned by a vector \vec{w}.
Let

$$
\vec{b}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text { and } \vec{b}_{2}=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

Suppose \vec{v}_{1} has orthogonal projection 3 and 7 onto the lines spanned by \vec{b}_{1} and \vec{b}_{2} respectively.
b) Find \vec{v}_{1}.
c) Suppose \vec{v}_{2} has orthogonal projections -6 and -14 onto the lines spanned by \vec{b}_{1} and \vec{b}_{2} respectively. Find \vec{v}_{2}.
d) Are \vec{v}_{1} and \vec{v}_{2} linearly independent.

MATH 294 FALL 1997 PRELIM 3 \# 6

2.10.3 As part of their plan to take over the world, lab assistant Pinky has collected 100 points of data

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{100}, y_{100}\right.
$$

(which represent some devious no-good data) which his partner, Brain, will analyze. A computer program boils down this data into the following set of numbers:

$$
\sum_{1}^{100} x_{i}=10, \sum_{1}^{100} x_{i}^{2}=20, \sum_{1}^{100} x_{i}^{3}=100, \sum_{1}^{100} x_{i}^{6}=200
$$

and

$$
\sum_{1}^{100} y_{i}=200, \sum_{1}^{100} x_{i} y_{i}=230, \sum_{1}^{100} x_{i}^{2} y_{i}=250, \sum_{1}^{100} x_{i}^{3} y_{i}=300
$$

Brain has determined that the data is probably of the form $y=a+b x^{3}$. Your job is to find the least-squares solution to this problem (i.e. find the a and b that gives the least-squares solution).
MATH 294 FALL 1997 PRELIM 3 \# 4
2.10.4 Consider \mathcal{W}, a subspace of \Re^{4}, defined as $\sqsupseteq\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ where $\vec{v}_{1}=\left[\begin{array}{c}0 \\ -1 \\ 1 \\ 0\end{array}\right], \vec{v}_{2}=$ $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$.
\mathcal{W} is a "plane" in \Re^{4}.
a) Find a basis for a subspace \mathcal{U} of \Re^{4} which is orthogonal to \mathcal{W}.

Hint: Find all vectors $\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$ that are perpendicular to both \vec{v}_{1} and \vec{v}_{2}.
b) What is the geometrical nature of \mathcal{U} ?
c) Find the vector in \mathcal{W} that is closest to the vector $\vec{y}=\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ 1\end{array}\right]$

MATH 294 FALL 1997 FINAL \# 8
2.10.5 The following figure shows numerical results y_{i}, for $i=1,2, \ldots, n$. It is known that the exact solution of the problem is a formula of the form $y=c$, for some constant c. Find the least squares solution for the constant c in terms of $y_{1}, y_{2}, \ldots, y_{n}$, and n.

MATH 294 FALL 1998 FINAL \# 6
2.10.6 a) Find orthonormal eigenvectors $\left\{\vec{v}_{1}, v e c v_{2}\right\}$ of A. [Hint: do not go on to parts d-e below until you have double checked that you have found two orthogonal unit vectors that are eigenvectors of A.
b) Use the eigenvectors above to diagonalize A.
c) Make a clear sketch that shows the standard basis vectors $\left\{\vec{e}_{1}, \vec{e}_{2}\right\}$ of \Re^{2} and the eigenvectors \vec{v}_{1}, \vec{v}_{2} of A.
d) Give a geometric interpretation of the change of coordinates matrix, P, that maps coordinates of a vector with respect to the eigen basis to coordinates with respect to the standard basis.
e) Let $\vec{b}=\left[\begin{array}{l}3 \\ 5\end{array}\right]$. Using orthogonal projection express \vec{b} in terms of $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ the eigenvectors of A.

MATH 294 FALL 1998 PRELIM 3 \# 1

2.10.7 Consider the following three vectors in \Re^{3} :

$$
\vec{y}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \vec{u}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \text { and } \vec{u}_{2}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]
$$

[Note: \vec{u}_{1} and \vec{u}_{2} are orthogonal.].
a) Find the orthogonal projection of \vec{y} onto the subspace of \Re^{3} spanned by \vec{u}_{1} and \vec{u}_{2}.
b) What is the distance between \vec{y} and $\operatorname{span}\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$?
c) In terms of the standard basis for \Re^{3}, find the matrix of the linear transformation that orthogonally projects vectors onto $\operatorname{span}\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$.

MATH 293 FALL 1994 PRELIM 3 \# 14
2.10.8 The vectors $\{(1,0,0,-1),(1,-1,0,0),(0,1,0,1)\}$ are linearly independent and span a subspace S of \Re^{4}. Use the Gram-Schmidt process to find an orthogonal basis for the subspace of S that is orthogonal to the first vector of the given set, $(1,0,0,-1)$.

MATH 293 FALL 1995 FINAL \# 7
2.10 .9 a) Find an orthonormal basis for the space of vectors in \Re^{3} having the form $\left[\begin{array}{c}c_{1}-c_{2} \\ c_{2} \\ 2 c_{2}\end{array}\right]$. You may use Gram-Schmidt or any other method.
b) If $\left\{\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}, \vec{b}_{4}\right\}$ is an orthonormal basis for \Re^{4},

$$
\left[\begin{array}{c}
1 \\
-9 \\
0 \\
\sqrt{5}
\end{array}\right]=c_{1} \vec{b}_{1}+c_{2} \vec{b}_{2}+c_{3} \vec{b}_{3}+c_{4} \vec{b}_{4}, \text { and } \vec{b}_{2}=\left[\begin{array}{c}
0.5 \\
0 \\
\alpha \\
0
\end{array}\right]
$$

(where c_{i} are real constants), find the possible values of c_{2} and α
MATH 294 FALL 1997 PRELIM $3 \quad \# 1$
2.10.10 Let

$$
A=\left(\begin{array}{cccc}
1 & 1 & -1 & 1 \\
2 & 1 & 2 & 1
\end{array}\right)
$$

a) Find an orthogonal basis for the null space of A.
b) Find a basis for the orthogonal complement of $\operatorname{Nul}(A)$, i.e. find $(\operatorname{Nul}(A))^{T}$.

MATH 294 FALL 1997 PRELIM 3 \# 12
2.10.11 Let $A=\left[\vec{v}_{1} \vec{v}_{2}\right]$ be a 1000×2 matrix, where \vec{v}_{1}, \vec{v}_{2} are the columns of A. You aren't given A. Instead you are given only that

$$
A^{T} A=\left(\begin{array}{cc}
1 & \frac{1}{2} \\
\frac{1}{2} & 1
\end{array}\right) .
$$

Find an orthonormalbasis $\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$ of the column space of A. Your formulas for \vec{u}_{1} and \vec{u}_{2} should be written as linear combinations of \vec{v}_{1}, \vec{v}_{2}. (Hint: what do the entries of the matrix $A^{T} A$ have to so with dot products?)

MATH 293 SPRING ? FINAL \# 2

2.10.12 a) Find a basis for the row space of the matrix

$$
A=\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 0 & 2 \\
0 & 0 & 4 & 0 \\
1 & 2 & 0 & 0
\end{array}\right)
$$

b) Find the rank of A and a basis for its column space, noting that $A=A^{T}$.
c) Construct an orthonormal basis for the row space of A.

