Orthogonal Projection / Gram Schmidt 2.10

MATH 293 FALL 1995 PRELIM 1

- a) Find the orthogonal (scalar) projection of the vector $\vec{v} = \vec{i} + \vec{j} + \vec{k}$ in the direction 2.10.1of the vector $\vec{w} = 5\vec{i} + 12\vec{j}$
 - Consider the two vectors

$$\vec{a} = 3\vec{i} - 4\vec{j}$$

$$\vec{b} = 3\vec{i} + 4\vec{i}$$

The vector \vec{u} has orthogonal projections $-\frac{1}{5}$ and $\frac{7}{5}$ along the vectors \vec{a} and \vec{b} , respectively. Find \vec{u} .

Hint: Let $\vec{u} = u_1 \vec{i} + u_2 \vec{j}$

MATH 293 SPRING 1995 FINAL # 8

What is the formula for the scalar orthogonal projection of a vector $\vec{v} \in \Re^n$ onto 2.10.2the line spanned by a vector \vec{w} . Let

$$\vec{b}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $\vec{b}_2 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$.

Suppose \vec{v}_1 has orthogonal projection 3 and 7 onto the lines spanned by \vec{b}_1 and \vec{b}_2 respectively.

- **b**) Find \vec{v}_1 .
- c) Suppose \vec{v}_2 has orthogonal projections -6 and -14 onto the lines spanned by \vec{b}_1 and \vec{b}_2 respectively. Find \vec{v}_2 . Are \vec{v}_1 and \vec{v}_2 linearly independent.

85

MATH 294 FALL 1997 PRELIM 3 # 6

2.10.3 As part of their plan to take over the world, lab assistant Pinky has collected 100 points of data

$$(x_1, y_1), (x_2, y_2), \ldots, (x_{100}, y_{100},$$

(which represent some devious no-good data) which his partner, Brain, will analyze. A computer program boils down this data into the following set of numbers:

$$\sum_{i=1}^{100} x_i = 10, \sum_{i=1}^{100} x_i^2 = 20, \sum_{i=1}^{100} x_i^3 = 100, \sum_{i=1}^{100} x_i^6 = 200,$$

and

$$\sum_{1}^{100} y_i = 200, \sum_{1}^{100} x_i y_i = 230, \sum_{1}^{100} x_i^2 y_i = 250, \sum_{1}^{100} x_i^3 y_i = 300.$$

Brain has determined that the data is probably of the form $y = a + bx^3$. Your job is to find the least-squares solution to this problem (i.e. find the a and b that gives the least-squares solution).

MATH 294 FALL 1997 PRELIM 3 # 4

2.10.4 Consider W, a subspace of \Re^4 , defined as $\exists \{\vec{v}_1, \vec{v}_2\}$ where $\vec{v}_1 = \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \end{bmatrix}$

$$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}.$$

 $\overline{\mathcal{W}}$ is a "plane" in \Re^4 .

a) Find a basis for a subspace \mathcal{U} of \Re^4 which is orthogonal to \mathcal{W} .

Hint: Find all vectors $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$ that are perpendicular to both \vec{v}_1 and \vec{v}_2 .

b) What is the geometrical nature of \mathcal{U} ?

c) Find the vector in \mathcal{W} that is closest to the vector $\vec{y} = \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$

MATH 294 FALL 1997 FINAL # 8

86

2.10.5 The following figure shows numerical results y_i , for i = 1, 2, ..., n. It is known that the exact solution of the problem is a formula of the form y = c, for some constant c. Find the least squares solution for the constant c in terms of $y_1, y_2, ..., y_n$, and n.

MATH 294 FALL 1998 FINAL # 6

- **2.10.6** a) Find orthonormal eigenvectors $\{\vec{v}_1, vecv_2\}$ of A. [Hint: do not go on to parts debelow until you have double checked that you have found two orthogonal unit vectors that are eigenvectors of A.
 - b) Use the eigenvectors above to diagonalize A.
 - c) Make a clear sketch that shows the standard basis vectors $\{\vec{e}_1, \vec{e}_2\}$ of \Re^2 and the eigenvectors \vec{v}_1, \vec{v}_2 of A.
 - d) Give a geometric interpretation of the change of coordinates matrix, P, that maps coordinates of a vector with respect to the eigen basis to coordinates with respect to the standard basis.
 - e) Let $\vec{b} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$. Using orthogonal projection express \vec{b} in terms of $\{\vec{v}_1, \vec{v}_2\}$ the eigenvectors of A.

MATH 294 FALL 1998 PRELIM 3 # 1

2.10.7 Consider the following three vectors in \Re^3 :

$$\vec{y} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \vec{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \text{ and } \vec{u}_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}.$$

[Note: \vec{u}_1 and \vec{u}_2 are orthogonal.].

- a) Find the orthogonal projection of \vec{y} onto the subspace of \Re^3 spanned by \vec{u}_1 and \vec{v}_2
- **b**) What is the distance between \vec{y} and $span \{\vec{u}_1, \vec{u}_2\}$?
- c) In terms of the standard basis for \Re^3 , find the matrix of the linear transformation that orthogonally projects vectors onto $span\{\vec{u}_1,\vec{u}_2\}$.

MATH 293 FALL 1994 PRELIM 3 # 14

2.10.8 The vectors $\{(1,0,0,-1),(1,-1,0,0),(0,1,0,1)\}$ are linearly independent and span a subspace S of \Re^4 . Use the Gram-Schmidt process to find an orthogonal basis for the subspace of S that is orthogonal to the first vector of the given set, (1,0,0,-1).

MATH 293 FALL 1995 FINAL # 7

- **2.10.9** a) Find an orthonormal basis for the space of vectors in \Re^3 having the form $\begin{bmatrix} c_1-c_2\\c_2\\2c_2 \end{bmatrix}$. You may use Gram-Schmidt or any other method.
 - **b**) If $\{\vec{b}_1, \vec{b}_2, \vec{b_3}, \vec{b_4}\}$ is an orthonormal basis for \Re^4 ,

$$\begin{bmatrix} 1 \\ -9 \\ 0 \\ \sqrt{5} \end{bmatrix} = c_1 \vec{b}_1 + c_2 \vec{b}_2 + c_3 \vec{b}_3 + c_4 \vec{b}_4, \text{ and } \vec{b}_2 = \begin{bmatrix} 0.5 \\ 0 \\ \alpha \\ 0 \end{bmatrix},$$

(where c_i are real constants), find the possible values of c_2 and α

MATH 294 FALL 1997 PRELIM 3 # 1 2.10.10 Let

$$A = \left(\begin{array}{ccc} 1 & 1 & -1 & 1 \\ 2 & 1 & 2 & 1 \end{array}\right).$$

- a) Find an orthogonal basis for the null space of A.
- b) Find a basis for the orthogonal complement of Nul(A), i.e. find $(Nul(A))^T$.

MATH 294 FALL 1997 PRELIM 3 # 12

2.10.11 Let $A = [\vec{v}_1 \vec{v}_2]$ be a 1000×2 matrix, where \vec{v}_1, \vec{v}_2 are the columns of A. You aren't given A. Instead you are given only that

$$A^T A = \left(\begin{array}{cc} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{array}\right).$$

Find an **orthonormal**basis $\{\vec{u}_1, \vec{u}_2\}$ of the column space of A. Your formulas for \vec{u}_1 and \vec{u}_2 should be written as linear combinations of \vec{v}_1, \vec{v}_2 . (Hint: what do the entries of the matrix A^TA have to so with dot products?)

MATH 293 SPRING? FINAL # 2

2.10.12 a) Find a basis for the row space of the matrix

$$A = \left(\begin{array}{cccc} 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 2 \\ 0 & 0 & 4 & 0 \\ 1 & 2 & 0 & 0 \end{array}\right)$$

- **b**) Find the rank of A and a basis for its column space, noting that $A = A^T$.
- c) Construct an orthonormal basis for the row space of A.