2.2 Intro to Bases

MATH 294 FALL 1981 PRELIM 1 # 3

2.2.1 a) Show that the set of vectors

$$\{1+t, 1-t, 1-t^2\}$$

is a basis for the vector space of all polynomials

$$\vec{p} = a_0 + a_1 t + a_2 t^2$$

of degree less than three.

b) Express the vector

$$2 + 3t + 4t^2$$

in terms of the above basis.

MATH 294 SPRING 1982 PRELIM 1 # 2

2.2.2 Let V be the space of all solutions of

$$\vec{x} = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right] \vec{x}.$$

Consider the vectors

$$\vec{x}_1(t) = \left(\begin{array}{c} e^{-t} \\ 0 \\ -e^{-t} \end{array} \right), \vec{x}_2(t) = \left(\begin{array}{c} e^t \\ 0 \\ e^t \end{array} \right).$$

- **a**) Do $\vec{x}_1(t)$, $\vec{x}_2(t)$ belong to V?
- **b**) Are $\vec{x}_1(t)$, $\vec{x}_2(t)$ linearly independent? Give reasons for your answer.
- c) Do the vectors $\vec{x}_1(t)$, $\vec{x}_2(t)$ form a basis for V? Give reasons for your answer.

MATH 294 SPRING 1983 FINAL # 10

2.2.3 a) Find a basis for the vector space of all 2×2 matrices.

b) A is the matrix given below, \vec{v} is an eigenvector of A. Find any eigenvalue of A.

 $A = \begin{bmatrix} 3 & 0 & 4 & 2 \\ 8 & 5 & 1 & 3 \\ 4 & 0 & 9 & 8 \\ 2 & 0 & 1 & 6 \end{bmatrix} \text{ with } \vec{v} = [\text{an eigenvector of A}] = \begin{pmatrix} 0 \\ 2 \\ 0 \\ 0 \end{pmatrix}$

c) Find one solution to each system of equations below, if possible. If not possible, $\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$

explain why not.
$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 \end{bmatrix} \cdot \vec{x} = \vec{b}, \ \vec{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} \text{ and } \vec{b} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

d) Read carefully. Solve for \vec{x} in the equation $A \cdot \vec{b} = \vec{x}$ with: $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 0 & 1 \end{bmatrix}$ and

$$\vec{b} = \begin{bmatrix} 1\\0\\1 \end{bmatrix}$$

e) Find the inverse of the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

MATH 294 SPRING 1984 FINAL # 2

2.2.4 Determine whether the given vectors form a basis for S, and find the dimension of the subspace. S is the set of all vectors of the form (a, b, 2a, 2b) in \Re^4 . The given set is $\{(1, 0, 2, 0), (0, 1, 0, 3), (1, -1, 2, -3)\}$.

MATH 294 FALL 1986 FINAL # 1

- **2.2.5** The vectors (1,0,2,-1,3), (0,1,-1,2,4), (-1,1,-2,1,-3), (0,1,1,-2,-4), and (1,4,2,-1,3) span a subspace S of \Re^5 .
 - **a**) What is the dimension of S?
 - **b**) Find a basis for S.

MATH 294 FALL 1986 FINAL # 2

2.2.6	a) Solve the linear system $A\vec{x} = \vec{b}$, where $A =$	=		$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array} $	$-2 \\ -4 \\ 5 \\ -5 \\ -5$	$\begin{bmatrix} 4 \\ 6 \\ -3 \\ 4 \end{bmatrix}$	and $\vec{b} =$
	$\left[\begin{array}{c}4\\9\\9\\15\end{array}\right].$						
	b) Solve the linear system $A\vec{x} = \vec{0}$, where $A = \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix}$	$ \begin{array}{c} -3 \\ 1 \\ 2 \\ 1 \end{array} $	$-1 \\ 2 \\ 1 \\ 5$	$\begin{array}{c} 0 \\ -1 \\ 1 \\ 2 \end{array}$	$ \begin{array}{c} 1 \\ 0 \\ -2 \\ -5 \end{array} $	$\begin{array}{c} -2 \\ 3 \\ 1 \\ 4 \end{array}$	Express

your answer in vector form, and give a basis for the space of solutions.

MATH 294 FALL 1987 PRELIM 3 # 6

Find an <u>orthonormal</u> basis for the subspace of \Re^3 consisting of all 3-vectors $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ 2.2.7

such that x + y + z = 0.

FALL 1989 MATH 294 PRELIM 3 # 3

2.2.8Let W be the following subspace of \Re^3 ,

$$W = Comb\left(\begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 2\\1\\0 \end{bmatrix}, \begin{bmatrix} 3\\3\\-3 \end{bmatrix} \right)$$

a) Show that $\begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1 \end{bmatrix}$, is a basis for W

For b) and c) below, let T be the following linear transformation $T: W \to \Re^3$.

$$T\left(\left[\begin{array}{c}w_1\\w_2\\w_3\end{array}\right]\right) = \left[\begin{array}{cc}1&0&-1\\0&0&0\\0&0&0\end{array}\right]\left[\begin{array}{c}w_1\\w_2\\w_3\end{array}\right]$$

for those $\begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}$ in \Re^3 which belong to W. [You are allowed to use a) even if you did not solve it.]

- **b**) What is the dimension of $\operatorname{Range}(T)$? (Complete reasoning, please.)
- c) What is the dimension of Ker(T)? (Complete reasoning, please.)

SPRING 1990 **MATH 293** PRELIM 1 # 3

2.2.9 Find the dimension and a basis for the following spaces

- a) The space spanned by $\{(1, 0, -2, 1), (0, 3, 1, -1), (2, 3, -3, 1), (3, 0, -6, -1)\}$
- **b**) The set of all polynomials p(t) in P^3 satisfying the two conditions

 - i) $\frac{d^3}{dt^3}p(t) = 0$ for all t ii) $p(t) + \frac{d}{dt}p(t) = 0$ at t = 0
- c) The subspace of the space of functions of t spanned by $\{e^{at}, e^{bt}\}$ if $a \neq b$. d) The space spanned by $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$ in W, given that $\{\vec{v}_2, \vec{v}_3, \vec{v}_4\}$ is a basis for W.

MATH 293 SPRING 1990 PRELIM 1 # 4

- **a**) Show that $B = \{t^2 1, t^2 + 1, t\}$ is a basis for P^2 2.2.10
 - **b**) Express the vectors in $\{1, t, t^2\}$ in terms of those in B and find the components of $p(t) = (1+t)^2$ with respect to B.
 - c) Find the components of the vector $\vec{x} = (1,2,3)$ with respect to the basis $\{(1,0,0),(1,1,0),(1,1,1)\}.$

MATH 293 FALL 1990 PRELIM 2 # 1 2.2.11 a) Express the vectors \vec{u}, \vec{v} in terms of \vec{a}, \vec{b} , given that

 $3\vec{u} + 2\vec{v} = \vec{a}, \vec{u} - \vec{v} = \vec{b}$

b) If \vec{a}, \vec{b} are linearly independent, find a basis for the span of $\{ \vec{u}, \vec{v}, \vec{a}, \vec{b} \}$

PRELIM 3 # 1

c) Find \vec{u}, \vec{v} , if $\vec{a} = (-1, 2, 8), \vec{b} = (-2, -1, 1)$

 MATH 293
 FALL 1991

 2.2.12
 Consider the matrix

 $A = \begin{pmatrix} 2 & -1 & 1 & 3 \\ -1 & 2 & -2 & -2 \\ 2 & 5 & -4 & 1 \\ 1 & 4 & -4 & 0 \end{pmatrix}$

a) Find a basis for the row space of A.

b) Find a basis for the column space of A.

MATH 293 SPRING 1992 PRELIM 3 # 6
2.2.13 Given
$$A = \begin{pmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & 1 & 2 \\ 1 & 1 & 3 & 5 \\ 2 & -1 & 3 & 4 \end{pmatrix}$$
.
a) Find a basis for the null space of A .

b) Find the rank of A.

MATH 293 SUMMER 1992 PRELIM 7/21 # 3 2.2.14 Given a matrix $A = \begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & 2 & 1 & 2 \\ 1 & 2 & 2 & 1 \\ 1 & -2 & 0 & -3 \end{pmatrix}$. a) Find a basis for the row space W_1 of A.

- **b**) Find a basis for the range W_2 of A.
- **c**) Find the rank of A.
- d) Are the two space W_1 and W_2 the same subspace of V_4 ? Explain your answer carefully in order to get credit for this part.

MATH 293 SPRING 1992 FINAL # 2

2.2.15 a) Find a basis for V_4 that contains at least two of the following vectors:

$$\vec{v}_1 = \begin{pmatrix} 1\\0\\1\\-1 \end{pmatrix}, \vec{v}_2 = \begin{pmatrix} 0\\1\\1\\1 \end{pmatrix}, \vec{v}_3 = \begin{pmatrix} 1\\1\\2\\0 \end{pmatrix}$$

b) *A* is a 3 × 3 matrix. If $A \begin{pmatrix} 1\\1\\3 \end{pmatrix} = \begin{pmatrix} 0\\4\\7 \end{pmatrix}$ and $\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix} \right\}$ is a basis for the nullspace of *A*, then find the general solution \vec{x} of the equation $A\vec{x} = \begin{pmatrix} 0\\4 \end{pmatrix}$.

the nullspace of A, then find the general solution \vec{x} of the equation $A\vec{x}$ $\left(\begin{array}{c} \frac{1}{7} \right)^{\cdot}$

Find, also, the determinant of A.

SUMMER 1992 PRELIM 7/21 **MATH 293** #4 **2.2.16** Given four vectors in V_4

$$\vec{v}_1 = \begin{pmatrix} 2\\ 4\\ -2\\ -4 \end{pmatrix}, \vec{v}_2 = \begin{pmatrix} 1\\ 2\\ -1\\ -2 \end{pmatrix}, \vec{v}_3 = \begin{pmatrix} 4\\ 4\\ 0\\ -6 \end{pmatrix}, \vec{v}_4 = \begin{pmatrix} 1\\ 0\\ 1\\ -1 \end{pmatrix}$$

- **a**) Find the space W spanned by the vectors $(\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4)$
- **b**) Find a basis for W.
- c) Find a basis for V_4 that contains as many of the vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3$ and \vec{v}_4 as possible.

MATH 293 FALL 1992

PRELIM 3 # 2 **2.2.17** Consider the matrix

$$A = \begin{pmatrix} 1 & 1 & -1 & 1 \\ 0 & 1 & 2 & 2 \\ 2 & 0 & -6 & -2 \\ -1 & 1 & 5 & 3 \end{pmatrix}$$

- **a**) Find a basis for the column space of A from among the set of column vectors.
- **b**) Find a basis for the row space of A.
- c) Find a basis for the null space of A.
- d) What is the rank of A and the dimension of the null space (the nullity)?

MATH 293 FALL 1992 PRELIM 3 # 3

2.2.18 Let $C(-\pi,\pi)$ be the vector space of continuous functions on the interval $-\pi \leq x \leq \pi$. Which of the following subsets S of $C(-\pi,\pi)$ are subspaces? If it is not a subspace say why. If it is, then say why and find a basis. Note: You must show that the basis you choose consists of linearly independent

vectors. In what follows a_0 , a_1 and a_2 are arbitrary scalars unless otherwise stated. **a**) S is the set of functions of the form $f(x) = 1 + a_1 \sin(x) + a_2 \cos(x)$

- b) S is the set of functions of the form $f(x) = 1 + a_1 \sin(x) + a_2 \cos(x)$, subject to the condition $\int_{-\pi}^{\pi} f(x) dx = 2\pi$
- c) S is the set of functions of the form $f(x) = 1 + a_1 \sin(x) + a_2 \cos(x)$, subject to the condition $\int_{-\pi}^{\pi} f(x) dx = 0$

MATH 293 FALL 1992 FINAL # 3

2.2.19 a) Let A be an $n \times n$ nonsingular matrix. Prove that $\det(A^{-1}) = \frac{1}{\det(A)}$. Hint: You may use the fact that if A and B are $n \times n$ matrices $\det(AB) = \det(A) \det(B)$.

b) An $n \times n$ matrix A has a nontrivial null space. Find det(A) and explain your answer.

c) Given two vectors
$$\vec{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 and $\vec{v}_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ in V_3 . Find a vector (or vectors)

 $\vec{w}_1, \vec{w}_2, \dots$ in V_3 such that the set $\{ \vec{v}_1, \vec{v}_2, \vec{w}_1, \dots \}$ is a basis for V_3 .

d) Let S be the set of all vectors of the form $\vec{v} = a\vec{i} + b\vec{j} + c\vec{k}$ where \vec{i}, \vec{j} and \vec{k} are the usual mutually perpendicular unit vectors. Let W be the set of all vectors that are perpendicular to the vector $\vec{v} = \vec{i} + \vec{j} + \vec{k}$. Is W a vector subspace of V_3 ? Explain your answer.

MATH 293 SPRING 1993 PRELIM 3 # 2
2.2.20 Given the matrix
$$B = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 5 & 7 \\ 0 & 1 & 2 & 3 \\ 3 & 3 & 4 & 5 \end{pmatrix}$$

a) Find a basis for the row space of B

b) Find a basis for the null space of B

2.2.21 Consider the following vectors in \Re^4

$$\vec{v}_1 = \begin{pmatrix} 1\\0\\-1\\1 \end{pmatrix}, \vec{v}_2 = \begin{pmatrix} 2\\-3\\-8\\2 \end{pmatrix}, \vec{v}_3 = \begin{pmatrix} 0\\1\\2\\0 \end{pmatrix}, \vec{v}_4 = \begin{pmatrix} 3\\1\\-1\\3 \end{pmatrix}$$

Let W be the subspace of \Re^4 spanned by the vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3$ and \vec{v}_4 . Find a basis for W which is contained in (is a subset of) the set { $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$.}

MATH 293 SPRING 1993 PRELIM 3 # 5

2.2.22 a) Consider the vector space V whose elements are 3×3 matrices.

- i) Find a basis for the subspace W₁ of V which consists of all upper-triangular 3×3 matrices.
 ii) Find a basis for the subspace W₁ of V which consists of all upper-triangular 3×3
- ii) Find a basis for the subspace W_1 of V which consists of all upper-triangular 3×3 matrices with zero trace. The trace of a matrix is the sum of its diagonal elements.
- b) Consider the polynomial space P^3 of polynomials with degree ≤ 3 on $0 \leq t \leq 1$. Find a basis for the subspace W of P^3 which consists of polynomials of degree ≤ 3 with the constraint

$$\left[\frac{d^2p}{dt^2} + \frac{dp}{dt}\right]_{t=0} = 0.$$

MATH 293 FALL 1994 PRELIM 3 # 1

2.2.23 Let A be the matrix
$$\begin{bmatrix} 1 & 2 & -1 & 3 \\ 2 & 2 & -1 & 2 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

- **a**) Find a basis for the Null Space of A. What is the nullity of A?
- **b**) Find a basis for the Row Space of A. What is its dimension?
- c) Find a basis for the Column Space of A. What is its dimension?
- **d**) What is the rank of *A*?

- **2.2.24** a) Find a basis for the space spanned by: $\{(1,0,1),(1,1,0),(-1,-4,-3)\}$.
 - **b**) Show that the functions $e^{2x} \cos(x)$ and $e^{2x} \sin(x)$ are linearly independent.

MATH 293 SPRING 1995 PRELIM 3 # 3

2.2.25 Let P_3 be the space of polynomials p(t) of degree ≤ 3 . Consider the subspace $S \subset P_3$ of polynomials that satisfy

$$p(0) + \frac{dp}{dt}\bigg|_{t=0} = 0$$

- **a**) Show that S is a subspace of P_3 .
- **b**) Find a basis for S.
- c) What is the dimension of S?

MATH 293 SPRING 1995 PRELIM 3 # 5

2.2.26 a) Find a basis for the plane $P \subset \Re^3$ of equation

$$x + 2y + 3z = 0$$

b) Find an orthonormal basis for P.

MATH 293 FALL 1995 PRELIM 3 # 5

Let P_3 be the space of polynomials $p(t) = a_0 + a_1t + a_2t^2 + a_3t^3$ of degree ≤ 3 . Consider the subset S of polynomials that satisfy 2.2.27

$$p''(0) = 4p(0) = 0$$

- Here p''(0) means, as usual, $\frac{d^2p}{dt^2}\Big|_{t=0}$. **a**) Show that S is a subspace of P_3 . Give reasons.
- **b**) Find a basis for S.
- c) What is the dimension of S? Give reasons for your answer.

Hint: What constraint, if any, does the given formula impose on the constants a_0, a_1, a_2 , and a_3 of a general p(t)?

MATH 293 FALL 1995 FINAL # 2

2.2.28 Consider the subspace W of \Re^4 which is defined as

$$W = span\left\{ \begin{bmatrix} 0\\ -1\\ 1\\ 0 \end{bmatrix}, \begin{bmatrix} 1\\ -1\\ 0\\ 1 \end{bmatrix} \right\}$$

- **a**) Find a basis for W.
- **b**) What is the dimension of W?
- c) It is claimed that W is a "plane" in \Re^4 . Do you agree? Give reasons for your answer.
- d) It is claimed that the "plane" W can be described as the intersection of two 3-D regions S - 1 and S_2 in \Re^4 . The equations of S - 1 and S_2 are:

$$S_1: \qquad x - u = 0$$

$$S_2: \quad ax + by + cz + du = 0$$

where $\begin{bmatrix} x \\ y \\ z \\ u \end{bmatrix}$ is a generic point in \Re^4 and a, b, c, d are real constants.

Find one possible set of values for the constants a, b, c, and d.

MATH 293 SPRING 1996 PRELIM 3 #1

- **2.2.29** The set W of vectors in \Re^3 of the form (a, b, c), where a + b + c = 0, is a subspace of \Re^3 . **a**) Verify that the sum of any two vectors in W is again in W.

 - **b**) The set of vectors

$$S = (1, -1, 0), (1, 1, -2), (-1, 1, 0), (1, 2, -3)$$

is in W. Show that S is linearly dependent.

- c) Find a subset of S which is a basis for W.
- d) If the condition a + b + c = 0 above is replaced with a + b + c = 1, is W still a subspace? Why/ why not?

2 SPRING 1996 **MATH 293** PRELIM 3

2.2.30 Which of the following subsets are bases for \Re^2 ? Show any algebra involved or state a theorem to justify your answer.

$$S_1 = \left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right\}, S_2 = \left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 3\\4 \end{bmatrix} \right\}, S_3 = \left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} -3\\-6 \end{bmatrix} \right\}.$$

MATH 293

2.2.31 Let

$$W = Span\left\{ \left[\begin{array}{c} 1\\1\\1 \end{array} \right], \left[\begin{array}{c} \frac{1}{3}\\\frac{1}{3}\\-\frac{2}{3} \end{array} \right] \right\}.$$

. _

Then an orthonormal basis for W is

MATH 294 FALL 1997 PRELIM 2 # 2

2.2.32Consider the vector space P_2 of all polynomials of degree ≤ 2 . Consider two bases of P_2 : $S: \{1, t, t^2\}$, the standard basis, and $S: \{1, t, t^2\}$, the standard basis basis, and

 $H: \{1, 2t, -2 + 4t^2\},$ the Hermite basis.

- **a**) Find the matrices $P_{S\leftarrow H}$ and $P_{H\leftarrow S}$.
- **b**) Consider $p_1(t) = 1 + 2t + 3t^2$ in P_2 , and $p_2(t) = \frac{d}{dt}p_1(t)$. Find

 $[p_1(t)]_S, [p_2(t)]_S, [p_1(t)]_H, [p_2(t)]_H,$

i.e. the coordinates of p_1 and p_2 in the bases S and H.

MATH 294 FALL 1997 PRELIM 2 # 3 **2.2.33** Let W be the subspace of \Re^4 defined as

$$W = span\left(\left(\begin{array}{c} 1\\1\\-2\\0 \end{array} \right), \left(\begin{array}{c} 1\\1\\0\\-2 \end{array} \right), \left(\begin{array}{c} 1\\1\\-6\\4 \end{array} \right) \right)$$

- **a**) Find a basis for W. What is the dimension of W?
- **b**) It is claimed that W can be described as the intersection of two linear spaces S_1 and S_2 in \Re^4 . The equations of S_1 and S_2 are

$$S_1: x - y = 0,$$

and

$$S_2: ax + by + cz + dw = 0,$$

where a, b, c, d are real constants that must be determined. Find one possible set of values of a, b, c and d.

MATH 294 FALL 1997 PRELIM 2 # 6

- **2.2.34** Let V be the vector space of 2×2 matrices.
 - **a**) Find a basis for V.
 - **b**) Determine whether the following subsets of V are subspaces. If so, find a basis. If not, explain why not.
 - i) { $A \text{ in } V | \det A = 0$ }

ii) {
$$A \text{ in } V | A \begin{pmatrix} 0 \\ 1 \end{pmatrix} = A \begin{pmatrix} 1 \\ 0 \end{pmatrix} }.$$

- c) Determine whether the following are linear transformations. Give a short justification for your answers.
 - i) $T: V \to V$, where $T(A) = A^T$,
 - ii) $T: V \to \Re^1$, where $T(A) = \det A$,

MATH 294 FALL 1998 FINAL #4

- **2.2.35** Here we consider the vector spaces P_1 , P_2 , and P_3 (the spaces of polynomials of degree 1,2 and 3).
 - a) Which of the following transformations are linear? (Justify your answer.) i) $T: P_1 \to P_3, T(p) \equiv t^2 p(t) + p(0)$
 - ii) $T: P_1 \rightarrow P_1, T(p) \equiv p(t) + t$
 - b) Consider the linear transformation $T: P_2 \to P_2$ defined by $T(a_0 + a_1t + a_2t^2) \equiv (-a_1 + a_2) + (-a_0 + a_1)t + (a_2)t^2$. With respect to the standard basis of P_2 , $\begin{bmatrix} 0 & -1 & 1 \end{bmatrix}$

 $B = \{1, t, t^2\}, \text{ is } A = \begin{bmatrix} 0 & -1 & 1 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}. \text{ Note that an eigenvalue/eigenvector pair } of A \text{ is } \lambda = 1, \vec{v} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}. \text{ Find an eigenvalue/eigenvector (or eigenfunction) pair }$

of T. That is, find
$$\lambda$$
 and $g(t)$ in P_2 such that $T(g(t)) = \lambda g(t)$.

c) Is the set of vectors in $P_2\{3+t, -2+t, 1+t^2\}$ a basis of P_2 ? (Justify your answer.)

MATH 293 SPRING ? FINAL # C

- **2.2.36** Give a definition for addition and for scalar multiplication which will turn the set of all pairs (\vec{u}, \vec{v}) of vectors, for \vec{u}, \vec{v} in V_2 , into a vector space V.
 - **a**) What is the zero vector of V?
 - **b**) What is the dimension of V?
 - c) What is a basis for V?

MATH 294 FALL 1987 PRELIM 3 # 2 MAKE-UP

2.2.37 On parts (a) - (g), answer true or false.

a)
$$span(\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4) = \Re^3$$
, where $\vec{v}_1 = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 3\\ 2\\ 1 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix}, \vec{v}_4 = \begin{bmatrix} 0\\ 1 \end{bmatrix}$.

- **b**) The four vectors in (a) are independent.
- c) Referring to a again, all vectors $\vec{v} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ in $span(\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4)$ satisfy a linear equation $ax_1 + bx_2 + cx_3 = 0$ for scalars a,b,c not all 0. d) The rank of the matrix $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 0 & -1 \end{pmatrix}$ is 3.

d) The rank of the matrix
$$\begin{pmatrix} 0 & -1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$
 is 3.

- e) In Re^n n distinct vectors are independent.
- $\mathbf{f}) \quad n+1 \text{ distinct vectors always span } \Re^n, \text{ for } n>1.$
- **g**) If the vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ span \Re^n , then they are a basis for \Re^n .

MATH 293UNKNOWNPRACTICE# 4a2.2.38a)Find a basis for the row space of the matrix

$$A = \left[\begin{array}{rrrr} 1 & 2 & -1 & 4 \\ 3 & 6 & 1 & 12 \\ 9 & 18 & 1 & 36 \end{array} \right]$$

UNKNOWN UNKNOWN #?

2.2.39 If A is an $m \times n$ matrix show that $B = A^T A$ and $C = AA^T$ are both square. What are their sizes? Show that $B = B^T, C = C^T$

MATH 294 FALL ? FINAL # 1 MAKE-UP

2.2.40 Consider the homogeneous system of equations $B\vec{x} = \vec{0}$, where

$$B = \begin{bmatrix} 0 & 1 & 0 & -3 & 1 \\ 2 & -1 & 0 & 3 & 0 \\ 2 & -3 & 0 & 0 & 4 \end{bmatrix}, \ \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}, \ \text{and} \ \vec{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

a) Find a basis for the subspace $W \subset \Re^5$, where W = set of all solutions of $B\vec{x} = \vec{0}$

- **b**) Is B 1-1 (as a transformation of $\Re^5 \to \Re^3$)? Why?
- c) Is $B: \Re^5 \to \Re^3$ onto why?

d) Is the set of all solutions of
$$B\vec{x} = \begin{bmatrix} 3\\ 0\\ 0 \end{bmatrix}$$
 a subspace of \Re^5 ? Why?