2.2 Intro to Bases

MATH 294 FALL 1981 PRELIM 1 \# 3

2.2.1 a) Show that the set of vectors

$$
\left\{1+t, 1-t, 1-t^{2}\right\}
$$

is a basis for the vector space of all polynomials

$$
\vec{p}=a_{0}+a_{1} t+a_{2} t^{2}
$$

of degree less than three.
b) Express the vector

$$
2+3 t+4 t^{2}
$$

in terms of the above basis.
MATH 294 SPRING 1982 PRELIM 1 \# 2
2.2.2 Let V be the space of all solutions of

$$
\vec{x}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \vec{x} .
$$

Consider the vectors

$$
\vec{x}_{1}(t)=\left(\begin{array}{c}
e^{-t} \\
0 \\
-e^{-t}
\end{array}\right), \vec{x}_{2}(t)=\left(\begin{array}{c}
e^{t} \\
0 \\
e^{t}
\end{array}\right)
$$

a) Do $\vec{x}_{1}(t), \vec{x}_{2}(t)$ belong to V ?
b) Are $\vec{x}_{1}(t), \vec{x}_{2}(t)$ linearly independent? Give reasons for your answer.
c) Do the vectors $\vec{x}_{1}(t), \vec{x}_{2}(t)$ form a basis for V ? Give reasons for your answer.

MATH 294 SPRING 1983 FINAL \# 10
2.2.3 a) Find a basis for the vector space of all 2×2 matrices.
b) A is the matrix given below, \vec{v} is an eigenvector of A. Find any eigenvalue of A.

$$
A=\left[\begin{array}{llll}
3 & 0 & 4 & 2 \\
8 & 5 & 1 & 3 \\
4 & 0 & 9 & 8 \\
2 & 0 & 1 & 6
\end{array}\right] \text { with } \vec{v}=[\text { an eigenvector of } \mathrm{A}]=\left(\begin{array}{l}
0 \\
2 \\
0 \\
0
\end{array}\right)
$$

c) Find one solution to each system of equations below, if possible. If not possible, explain why not. $\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4\end{array}\right] \cdot \vec{x}=\vec{b}, \vec{b}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$ and $\vec{b}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]$
d) Read carefully. Solve for \vec{x} in the equation $A \cdot \vec{b}=\vec{x}$ with: $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 0 & 1\end{array}\right]$ and $\vec{b}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$.
e) Find the inverse of the matrix $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.

MATH 294 SPRING 1984 FINAL \# 2

2.2.4 Determine whether the given vectors form a basis for S, and find the dimension of the subspace. S is the set of all vectors of the form $(a, b, 2 a, 2 b)$ in \Re^{4}. The given set is $\{(1,0,2,0),(0,1,0,3),(1,-1,2,-3)\}$.

MATH 294 FALL 1986 FINAL \# 1

2.2.5 The vectors $(1,0,2,-1,3),(0,1,-1,2,4),(-1,1,-2,1,-3),(0,1,1,-2,-4)$, and $(1,4,2,-1,3)$ span a subspace S of \Re^{5}.
a) What is the dimension of S ?
b) Find a basis for S.

MATH 294 FALL 1986 FINAL \# 2
2.2.6 a) Solve the linear system $A \vec{x}=\vec{b}$, where $A=\left[\begin{array}{cccc}1 & 0 & -2 & 4 \\ 2 & 1 & -4 & 6 \\ -1 & 2 & 5 & -3 \\ 3 & 3 & -5 & 4\end{array}\right]$ and $\vec{b}=$ $\left[\begin{array}{c}4 \\ 9 \\ 9 \\ 15\end{array}\right]$.
b) Solve the linear system $A \vec{x}=\overrightarrow{0}$, where $A=\left[\begin{array}{ccccc}-3 & -1 & 0 & 1 & -2 \\ 1 & 2 & -1 & 0 & 3 \\ 2 & 1 & 1 & -2 & 1 \\ 1 & 5 & 2 & -5 & 4\end{array}\right]$ Express your answer in vector form, and give a basis for the space of solutions.

MATH 294 FALL 1987 PRELIM 3 \# 6

2.2.7 Find an orthonormal basis for the subspace of \Re^{3} consisting of all 3-vectors $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ such that $x+y+z=0$.

MATH 294 FALL 1989 PRELIM 3 \# 3
2.2.8 Let W be the following subspace of \Re^{3},

$$
W=\operatorname{Comb}\left(\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
3 \\
3 \\
-3
\end{array}\right]\right)
$$

a) Show that $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$, is a basis for W

For b) and c) below, let T be the following linear transformation $T: W \rightarrow \Re^{3}$.

$$
T\left(\left[\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right]\right)=\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right]
$$

for those $\left[\begin{array}{l}w_{1} \\ w_{2} \\ w_{3}\end{array}\right]$ in \Re^{3} which belong to W. [You are allowed to use a) even if you did not solve it.]
b) What is the dimension of Range (T) ? (Complete reasoning, please.)
c) What is the dimension of $\operatorname{Ker}(T)$? (Complete reasoning, please.)

MATH 293 SPRING 1990 PRELIM 1 \# 3

2.2.9 Find the dimension and a basis for the following spaces
a) The space spanned by $\{(1,0,-2,1),(0,3,1,-1),(2,3,-3,1),(3,0,-6,-1)\}$
b) The set of all polynomials $p(t)$ in P^{3} satisfying the two conditions
i) $\frac{d^{3}}{d t^{3}} p(t)=0$ for all t
ii) $p(t)+\frac{d}{d t} p(t)=0$ at $t=0$
c) The subspace of the space of functions of t spanned by $\left\{e^{a t}, e^{b t}\right\}$ if $a \neq b$.
d) The space spanned by $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right\}$ in W, given that $\left\{\vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right\}$ is a basis for W.
MATH 293 SPRING 1990 PRELIM 1 \# 4
2.2.10 a) Show that $B=\left\{t^{2}-1, t^{2}+1, t\right\}$ is a basis for P^{2}
b) Express the vectors in $\left\{1, t, t^{2}\right\}$ in terms of those in B and find the components of $p(t)=(1+t)^{2}$ with respect to B.
c) Find the components of the vector $\vec{x}=(1,2,3)$ with respect to the basis $\{(1,0,0),(1,1,0),(1,1,1)\}$.

MATH 293 FALL 1990 PRELIM $2 \quad \# 1$
2.2.11 a) Express the vectors \vec{u}, \vec{v} in terms of \vec{a}, \vec{b}, given that

$$
3 \vec{u}+2 \vec{v}=\vec{a}, \vec{u}-\vec{v}=\vec{b}
$$

b) If \vec{a}, \vec{b} are linearly independent, find a basis for the span of $\{\vec{u}, \vec{v}, \vec{a}, \vec{b}\}$
c) Find \vec{u}, \vec{v}, if $\vec{a}=(-1,2,8), \vec{b}=(-2,-1,1)$

MATH 293 FALL 1991
 PRELIM 3 \# 1

2.2.12 Consider the matrix

$$
A=\left(\begin{array}{cccc}
2 & -1 & 1 & 3 \\
-1 & 2 & -2 & -2 \\
2 & 5 & -4 & 1 \\
1 & 4 & -4 & 0
\end{array}\right)
$$

a) Find a basis for the row space of A.
b) Find a basis for the column space of A.

MATH 293 SPRING 1992 PRELIM 3 \# 6
2.2.13 Given $A=\left(\begin{array}{cccc}1 & 0 & 2 & 3 \\ 0 & 1 & 1 & 2 \\ 1 & 1 & 3 & 5 \\ 2 & -1 & 3 & 4\end{array}\right)$.
a) Find a basis for the null space of A.
b) Find the rank of A.

MATH 293 SUMMER 1992 PRELIM 7/21 \# 3
2.2.14 Given a matrix $A=\left(\begin{array}{cccc}1 & 0 & 1 & -1 \\ 0 & 2 & 1 & 2 \\ 1 & 2 & 2 & 1 \\ 1 & -2 & 0 & -3\end{array}\right)$.
a) Find a basis for the row space W_{1} of A.
b) Find a basis for the range W_{2} of A.
c) Find the rank of A.
d) Are the two space W_{1} and W_{2} the same subspace of V_{4} ? Explain your answer carefully in order to get credit for this part.

MATH 293 SPRING 1992 FINAL \# 2
2.2.15 a) Find a basis for V_{4} that contains at least two of the following vectors:

$$
\vec{v}_{1}=\left(\begin{array}{c}
1 \\
0 \\
1 \\
-1
\end{array}\right), \vec{v}_{2}=\left(\begin{array}{c}
0 \\
1 \\
1 \\
1
\end{array}\right), \vec{v}_{3}=\left(\begin{array}{c}
1 \\
1 \\
2 \\
0
\end{array}\right)
$$

b) A is a 3×3 matrix. If $A\left(\begin{array}{l}1 \\ 1 \\ 3\end{array}\right)=\left(\begin{array}{l}0 \\ 4 \\ 7\end{array}\right)$ and $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)\right\}$ is a basis for the nullspace of A, then find the general solution \vec{x} of the equation $A \vec{x}=\left(\begin{array}{l}0 \\ 4 \\ 7\end{array}\right)$. Find, also, the determinant of A.

MATH 293 SUMMER 1992 PRELIM 7/21 \# 4

2.2.16 Given four vectors in V_{4}

$$
\vec{v}_{1}=\left(\begin{array}{c}
2 \\
4 \\
-2 \\
-4
\end{array}\right), \vec{v}_{2}=\left(\begin{array}{c}
1 \\
2 \\
-1 \\
-2
\end{array}\right), \vec{v}_{3}=\left(\begin{array}{c}
4 \\
4 \\
0 \\
-6
\end{array}\right), \vec{v}_{4}=\left(\begin{array}{c}
1 \\
0 \\
1 \\
-1
\end{array}\right)
$$

a) Find the space W spanned by the vectors $\left(\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right)$
b) Find a basis for W.
c) Find a basis for V_{4} that contains as many of the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ and \vec{v}_{4} as possible.

MATH 293 FALL 1992 PRELIM 3 \# 2
2.2.17 Consider the matrix

$$
A=\left(\begin{array}{cccc}
1 & 1 & -1 & 1 \\
0 & 1 & 2 & 2 \\
2 & 0 & -6 & -2 \\
-1 & 1 & 5 & 3
\end{array}\right)
$$

a) Find a basis for the column space of A from among the set of column vectors.
b) Find a basis for the row space of A.
c) Find a basis for the null space of A.
d) What is the rank of A and the dimension of the null space (the nullity)?

MATH 293 FALL 1992 PRELIM 3 \# 3
2.2.18 Let $C(-\pi, \pi)$ be the vector space of continuous functions on the interval $-\pi \leq$ $x \leq \pi$. Which of the following subsets S of $C(-\pi, \pi)$ are subspaces? If it is not a subspace say why. If it is, then say why and find a basis.
Note: You must show that the basis you choose consists of linearly independent vectors. In what follows a_{0}, a_{1} and a_{2} are arbitrary scalars unless otherwise stated.
a) S is the set of functions of the form $f(x)=1+a_{1} \sin (x)+a_{2} \cos (x)$
b) S is the set of functions of the form $f(x)=1+a_{1} \sin (x)+a_{2} \cos (x)$, subject to the condition $\int_{-\pi}^{\pi} f(x) \mathrm{d} x=2 \pi$
c) S is the set of functions of the form $f(x)=1+a_{1} \sin (x)+a_{2} \cos (x)$, subject to the condition $\int_{-\pi}^{\pi} f(x) \mathrm{d} x=0$

MATH 293 FALL 1992 FINAL \# 3
2.2.19 a) Let A be an $n \times n$ nonsingular matrix. Prove that $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$. Hint: You may use the fact that if A and B are $n \times n$ matrices $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
b) An $n \times n$ matrix A has a nontrivial null space. Find $\operatorname{det}(A)$ and explain your answer.
c) Given two vectors $\vec{v}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ and $\vec{v}_{2}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ in V_{3}. Find a vector (or vectors) $\vec{w}_{1}, \vec{w}_{2}, \ldots$ in V_{3} such that the set $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{w}_{1}, \ldots\right\}$ is a basis for V_{3}.
d) Let S be the set of all vectors of the form $\vec{v}=a \vec{i}+b \vec{j}+c \vec{k}$ where \vec{i}, \vec{j} and \vec{k} are the usual mutually perpendicular unit vectors. Let W be the set of all vectors that are perpendicular to the vector $\vec{v}=\vec{i}+\vec{j}+\vec{k}$. Is W a vector subspace of V_{3} ? Explain your answer.

MATH 293 SPRING 1993 PRELIM 3 \# 2
2.2.20 Given the matrix $B=\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ 2 & 3 & 5 & 7 \\ 0 & 1 & 2 & 3 \\ 3 & 3 & 4 & 5\end{array}\right)$
a) Find a basis for the row space of B
b) Find a basis for the null space of B

MATH 293 SPRING 1993 PRELIM 3 \# 14
2.2.21 Consider the following vectors in \Re^{4}

$$
\vec{v}_{1}=\left(\begin{array}{c}
1 \\
0 \\
-1 \\
1
\end{array}\right), \vec{v}_{2}=\left(\begin{array}{c}
2 \\
-3 \\
-8 \\
2
\end{array}\right), \vec{v}_{3}=\left(\begin{array}{l}
0 \\
1 \\
2 \\
0
\end{array}\right), \vec{v}_{4}=\left(\begin{array}{c}
3 \\
1 \\
-1 \\
3
\end{array}\right)
$$

Let W be the subspace of \Re^{4} spanned by the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ and \vec{v}_{4}.
Find a basis for W which is contained in (is a subset of) the set $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}.\right\}$

MATH 293 SPRING 1993 PRELIM 3 \# 5

2.2.22 a) Consider the vector space V whose elements are 3×3 matrices.
i) Find a basis for the subspace W_{1} of V which consists of all upper-triangular 3×3 matrices.
ii) Find a basis for the subspace W_{1} of V which consists of all upper-triangular 3×3 matrices with zero trace. The trace of a matrix is the sum of its diagonal elements.
b) Consider the polynomial space P^{3} of polynomials with degree ≤ 3 on $0 \leq t \leq 1$.

Find a basis for the subspace W of P^{3} which consists of polynomials of degree ≤ 3 with the constraint

$$
\left[\frac{d^{2} p}{d t^{2}}+\frac{d p}{d t}\right]_{t=0}=0
$$

MATH 293 FALL 1994 PRELIM 3 \# 1
2.2.23 Let A be the matrix $\left[\begin{array}{cccc}1 & 2 & -1 & 3 \\ 2 & 2 & -1 & 2 \\ 1 & 0 & 0 & -1\end{array}\right]$
a) Find a basis for the Null Space of A. What is the nullity of A ?
b) Find a basis for the Row Space of A. What is its dimension?
c) Find a basis for the Column Space of A. What is its dimension?
d) What is the rank of A ?

MATH 293 FALL 1994 FINAL \# 4

2.2.24 a) Find a basis for the space spanned by: $\{(1,0,1),(1,1,0),(-1,-4,-3)\}$.
b) Show that the functions $e^{2 x} \cos (x)$ and $e^{2 x} \sin (x)$ are linearly independent.

MATH 293 SPRING 1995 PRELIM 3 \# 3

2.2.25 Let P_{3} be the space of polynomials $p(t)$ of degree ≤ 3. Consider the subspace $S \subset P_{3}$ of polynomials that satisfy

$$
p(0)+\left.\frac{d p}{d t}\right|_{t=0}=0
$$

a) Show that S is a subspace of P_{3}.
b) Find a basis for S.
c) What is the dimension of S ?

MATH 293 SPRING 1995 PRELIM 3 \# 5
2.2.26 a) Find a basis for the plane $P \subset \Re^{3}$ of equation

$$
x+2 y+3 z=0
$$

b) Find an orthonormal basis for P.

MATH 293 FALL 1995 PRELIM 3 \# 5
2.2.27 Let P_{3} be the space of polynomials $p(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}$ of degree ≤ 3. Consider the subset S of polynomials that satisfy

$$
p^{\prime \prime}(0)=4 p(0)=0
$$

Here $p^{\prime \prime}(0)$ means, as usual, $\left.\frac{d^{2} p}{d t^{2}}\right|_{t=0}$.
a) Show that S is a subspace of P_{3}. Give reasons.
b) Find a basis for S.
c) What is the dimension of S ? Give reasons for your answer.

Hint: What constraint, if any, does the given formula impose on the constants a_{0}, a_{1}, a_{2}, and a_{3} of a general $p(t)$?
MATH 293 FALL 1995 FINAL \# 2
2.2.28 Consider the subspace W of \Re^{4} which is defined as

$$
W=\operatorname{span}\left\{\left[\begin{array}{c}
0 \\
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
0 \\
1
\end{array}\right]\right\}
$$

a) Find a basis for W.
b) What is the dimension of W ?
c) It is claimed that W is a "plane" in \Re^{4}. Do you agree? Give reasons for your answer.
d) It is claimed that the "plane" W can be described as the intersection of two 3-D regions $S-1$ and S_{2} in \Re^{4}. The equations of $S-1$ and S_{2} are:

$$
\begin{array}{cc}
S_{1}: & x-u=0 \\
S_{2}: & a x+b y+c z+d u=0
\end{array}
$$

where $\left[\begin{array}{l}x \\ y \\ z \\ u\end{array}\right]$ is a generic point in \Re^{4} and a, b, c, d are real constants.
Find one possible set of values for the constants a, b, c, and d.

MATH 293 SPRING 1996 PRELIM 3 \# 1
2.2.29 The set W of vectors in \Re^{3} of the form (a, b, c), where $a+b+c=0$, is a subspace of \Re^{3}.
a) Verify that the sum of any two vectors in W is again in W.
b) The set of vectors

$$
S=(1,-1,0),(1,1,-2),(-1,1,0),(1,2,-3)
$$

is in W. Show that S is linearly dependent.
c) Find a subset of S which is a basis for W.
d) If the condition $a+b+c=0$ above is replaced with $a+b+c=1$, is W still a subspace? Why/ why not?

MATH 293 SPRING 1996 PRELIM 3 \# 2
2.2.30 Which of the following subsets are bases for \Re^{2} ? Show any algebra involved or state a theorem to justify your answer.

$$
S_{1}=\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}, S_{2}=\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
3 \\
4
\end{array}\right]\right\}, S_{3}=\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
-3 \\
-6
\end{array}\right]\right\} .
$$

MATH 293
2.2.31 Let

SPRING 1996
 FINAL \# 22

$$
W=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
\frac{1}{3} \\
\frac{1}{3} \\
-\frac{2}{3}
\end{array}\right]\right\} .
$$

Then an orthonormal basis for W is
a)
$\left\{\left[\begin{array}{c}\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}}\end{array}\right],\left[\begin{array}{c}\frac{1}{3} \\ \frac{1}{3} \\ -\frac{2}{3}\end{array}\right]\right\}$
b)

c)

e) none of the above

MATH 294 FALL 1997 PRELIM 2 \# 2
2.2.32 Consider the vector space P_{2} of all polynomials of degree ≤ 2. Consider two bases of P_{2} :
$S:\left\{1, t, t^{2}\right\}$, the standard basis, and
$H:\left\{1,2 t,-2+4 t^{2}\right\}$, the Hermite basis.
a) Find the matrices $P_{S \leftarrow H}$ and $P_{H \leftarrow S}$.
b) Consider $p_{1}(t)=1+2 t+3 t^{2}$ in P_{2}, and $p_{2}(t)=\frac{d}{d t} p_{1}(t)$. Find

$$
\left[p_{1}(t)\right]_{S},\left[p_{2}(t)\right]_{S},\left[p_{1}(t)\right]_{H},\left[p_{2}(t)\right]_{H}
$$

i.e. the coordinates of p_{1} and p_{2} in the bases S and H.

MATH 294 FALL 1997 PRELIM 2 \# 3
2.2.33 Let W be the subspace of \Re^{4} defined as

$$
W=\operatorname{span}\left(\left(\begin{array}{c}
1 \\
1 \\
-2 \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
1 \\
0 \\
-2
\end{array}\right),\left(\begin{array}{c}
1 \\
1 \\
-6 \\
4
\end{array}\right)\right)
$$

a) Find a basis for W. What is the dimension of W ?
b) It is claimed that W can be described as the intersection of two linear spaces S_{1} and S_{2} in \Re^{4}. The equations of S_{1} and S_{2} are

$$
S_{1}: x-y=0
$$

and

$$
S_{2}: a x+b y+c z+d w=0
$$

where a, b, c, d are real constants that must be determined. Find one possible set of values of a, b, c and d.
MATH 294 FALL 1997 PRELIM 2 \# 6
2.2.34 Let V be the vector space of 2×2 matrices.
a) Find a basis for V.
b) Determine whether the following subsets of V are subspaces. If so, find a basis. If not, explain why not.
i) $\quad\{A \operatorname{in} V \mid \operatorname{det} A=0\}$
ii) $\left\{A\right.$ in $\left.V \left\lvert\, A\binom{0}{1}=A\binom{1}{0}\right.\right\}$.
c) Determine whether the following are linear transformations. Give a short justification for your answers.
i) $T: V \rightarrow V$, where $T(A)=A^{T}$,
ii) $T: V \rightarrow \Re^{1}$, where $T(A)=\operatorname{det} A$,

MATH 294 FALL 1998 FINAL \# 4
2.2.35 Here we consider the vector spaces P_{1}, P_{2}, and P_{3} (the spaces of polynomials of degree 1,2 and 3$)$.
a) Which of the following transformations are linear? (Justify your answer.)
i) $T: P_{1} \rightarrow P_{3}, T(p) \equiv t^{2} p(t)+p(0)$
ii) $T: P_{1} \rightarrow P_{1}, T(p) \equiv p(t)+t$
b) Consider the linear transformation $T: P_{2} \rightarrow P_{2}$ defined by $T\left(a_{0}+a_{1} t+a_{2} t^{2}\right) \equiv$ $\left(-a_{1}+a_{2}\right)+\left(-a_{0}+a_{1}\right) t+\left(a_{2}\right) t^{2}$. With respect to the standard basis of P_{2}, $B=\left\{1, t, t^{2}\right\}$, is $A=\left[\begin{array}{ccc}0 & -1 & 1 \\ -1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$. Note that an eigenvalue/eigenvector pair of A is $\lambda=1, \vec{v}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$. Find an eigenvalue/eigenvector (or eigenfunction) pair of T. That is, find λ and $g(t)$ in P_{2} such that $T(g(t))=\lambda g(t)$.
c) Is the set of vectors in $P_{2}\left\{3+t,-2+t, 1+t^{2}\right\}$ a basis of P_{2} ? (Justify your answer.)

MATH 293 SPRING ? FINAL \# C

2.2.36 Give a definition for addition and for scalar multiplication which will turn the set of all pairs (\vec{u}, \vec{v}) of vectors, for \vec{u}, \vec{v} in V_{2}, into a vector space V.
a) What is the zero vector of V ?
b) What is the dimension of V ?
c) What is a basis for V ?

MATH 294 FALL 1987 PRELIM 3 \# 2 MAKE-UP

2.2.37 On parts (a) - (g), answer true or false.
a) $\operatorname{span}\left(\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right)=\Re^{3}$, where $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right], \vec{v}_{3}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right], \vec{v}_{4}=$ $\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$.
b) The four vectors in (a) are independent.
c) Referring to a again, all vectors $\vec{v}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ in $\operatorname{span}\left(\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right)$ satisfy a linear equation $a x_{1}+b x_{2}+c x_{3}=0$ for scalars a,b,c not all 0 .
d) The rank of the matrix $\left(\begin{array}{ccc}1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1\end{array}\right)$ is 3 .
e) In $R e^{n} \mathrm{n}$ distinct vectors are independent.
f) $n+1$ distinct vectors always span \Re^{n}, for $n>1$.
g) If the vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ span \Re^{n}, then they are a basis for \Re^{n}.

MATH 293 UNKNOWN PRACTICE \# 4a
2.2.38 a) Find a basis for the row space of the matrix

$$
A=\left[\begin{array}{cccc}
1 & 2 & -1 & 4 \\
3 & 6 & 1 & 12 \\
9 & 18 & 1 & 36
\end{array}\right]
$$

UNKNOWN UNKNOWN UNKNOWN \# ?
2.2.39 If A is an $m \times n$ matrix show that $B=A^{T} A$ and $C=A A^{T}$ are both square. What are their sizes? Show that $B=B^{T}, C=C^{T}$

MATH 294 FALL ? FINAL \# 1 MAKE-UP
2.2.40 Consider the homogeneous system of equations $B \vec{x}=\overrightarrow{0}$, where

$$
B=\left[\begin{array}{rrrrr}
0 & 1 & 0 & -3 & 1 \\
2 & -1 & 0 & 3 & 0 \\
2 & -3 & 0 & 0 & 4
\end{array}\right], \vec{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right], \text { and } \overrightarrow{0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

a) Find a basis for the subspace $W \subset \Re^{5}$, where $W=$ set of all solutions of $B \vec{x}=\overrightarrow{0}$
b) Is B $1-1$ (as a transformation of $\Re^{5} \rightarrow \Re^{3}$)? Why?
c) Is $B: \Re^{5} \rightarrow \Re^{3}$ onto why?
d) Is the set of all solutions of $B \vec{x}=\left[\begin{array}{l}3 \\ 0 \\ 0\end{array}\right]$ a subspace of \Re^{5} ? Why?

