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2.3 Vector Spaces

MATH 294 FALL 1982 PRELIM 1 # 3a

2.3.1 Let C[0, 1] denote the space of continuous functions defined on the interval [0,1]
(i.e. f(x) is a member of C[0, 1] if f(x) is continuous for 0 ≤ x ≤ 1). Which one of
the following subsets of C[0, 1] does not form a vector space? Find it and explain
why it does not.
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2.3.2 a)
i) The subset of functions f which belongs to C[0, 1] for which

∫ 1

0
f(s)ds = 0.

ii) The set of functions f in C[0, 1] which vanish at exactly one point (i.e. f(x) = 0
for only one x with 0 ≤ x ≤ 1). Note different functions may vanish at different
points within the interval.

iii) The subset of functions f in C[0, 1] for which f(0) = f(1).
b) Let f(x) = x3 + 2x + 5. Consider the four vectors ~v1 = f(x), ~v2 = f ′(x)

,~v3 = f ′′(x) , ~v4 = f ′′′(x), f ′ means df
dx .

i) What is the dimension of the space spanned by the vectors? Justify your answer.
ii) Express x2 + 1 as a linear combination of the ~vi’s.
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2.3.3 a) Determine which of the following subsets are subspaces of the indicated vector
spaces, and for each subspace determine the dimension of th- space. Explain your
answer, giving proofs or counterexamples.
i) The set of all vectors in <2 with first component equal to 2.
ii) The set of all vectors ~x = (x1, x2, x3) in <3 for which x1 + x2 + x3 = 0.
iii) The set of all vectors in <3 satisfying x2

1 + x2
2 − x2

3 = 0.
iv) The set of all functions f(x) in C[0, 1] such that

∫ 1

0
f(x)dx = 0. Recall that

C[0, 1] denotes the space of all real valued continuous functions defined on the
closed interval [0,1].

b) Find the equation of the plane passing through the points (0,1,0), (1,1,0) and
(1,0,1), and find a unit vector normal to this plane.
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2.3.4 Vectors ~f and ~g both lie in <n. The vector ~h = ~f + ~g
a) Also lies in <n.
b) May or may not lie in <n.
c) Lies in <n

2 .
d) Does not lie in <n.
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2.3.5 The vector space <n

a) Contains the zero vector.
b) May or may not contain the zero vector.
c) Never contains the zero vector.
d) Is a complex vector space.
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2.3.6 Any set of vectors which span a vector space
a) Always contains a subset of vectors which form a basis for that space.
b) May or may not contain a subset of vectors which form a basis for that space.
c) Is a linearly independent set.
d) Form an orthonormal basis for the space.
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2.3.7 For what values of the constant a are the functions {sin t and sin(t + a)} in C1
∞

linearly independent?
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2.3.8 For problems (a) - (c) use the bases B and B′ below:

B =
{(

1
0

)
,

(
1
−1

)}
and B′ =

{(
1
1

)
,

(
0
1

)}
.

a) Given that [~v]B =
(

2
3

)
what is [~v]B′?

b) Using the standard relation between <2 and points on the plane make a sketch

with the point ~v clearly marked. Also mark the point ~w, where [~w]B =
(

0
−1

)
.

c) Draw the line defined by the points ~v and ~w. Do the points on this line represent
a subspace of <2?
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2.3.9 In parts (a) - (g) answer “true” if V is a vector space and “false” if it is not (no
partial credit):
a) V = set of all x(t) in C∞ such that x(0) = 0.
b) V = set of all x(t) in C∞ such that x(0) = 1.
c) V = set of all x(t) in C∞ such that (D + 1)x(t) = 0.
d) V = set of all x(t) in C∞ such that (D + 1)x(t) = et.
e) V = set of all polynomials of degree less than or equal to one with real coefficients.
f) V = set of all rational numbers (a rational number can be written as the ratio of

two integers, e.g., 4
17 is a rational number while π = 3.14 . . . is not)

g) V = set of all rational numbers with the added restriction that scalars must also
be rational numbers.
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2.3.10 Consider the boundary-value problem
X ′′ + λX = 0 0 < x < π, X(0) = X(π) = 0, where λ is a given real number.
a) Is the set of all solutions of this problem a subspace of C∞[0, π]? Why?
b) Let W = set of all functions X(x) in C∞[0, π] such that X(0) = X(π) = 0. Is

T ≡ D2 − λ linear as a transformation of W into C∞[0, π]? Why?
c) For what values of λ is Ker(T ) nontrivial?
d) Choose one of those values of λ and determine Ker(T )

MATH 293 SPRING 1990? PRELIM 2 # 3

2.3.11 Is the set of vectors {~v1 = e−t, ~v2 = et} in C∞ linearly independent or dependent?
(Justify your answer.)
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2.3.12 W is the subspace of V4 spanned by the vectors


1
0
2
0

 ,


1
1
2
0

 ,


0
1
0
0

. Find

the dimension of W and give a basis.
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2.3.13 V is the vector space consisting of vector-valued functions ~x(t) =
(

x1(t)
x2(t)

)
where

x1(t) and x2(t) are continuous functions of t in 0 ≤ t ≤ 1. W is the subset of V
where the functions satisfy the differential equations
dx1
dt = x1 + x2 and dx2

dt = x1 − x2

Is W a subspace of V ?
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2.3.14 V is the vector space consisting of all 2×2 matrices A =
[

a11 a12

a21 a22

]
. Here the aij

are arbitrary real numbers and the addition and scalar multiplication are defined
by

A + B =
[

a11 + b11 a12 + b12

a21 + b21 a22 + b22

]
and cA =

[
ca11 ca12

ca21 ca22

]
a) Is W1 =

{
all

[
a11 a12

0 1

]}
a subspace? If so give a basis for W1.

b) Same as part (a) for W2 =
{[

a11 −a12

a12 a11

]}
.

c) Show that
(

1 3
0 0

)
,
(

0 0
1 0

)
, and

(
0 0
0 2

)
are linearly independent.

d) What is the largest possible number of linearly independent vectors in V ?
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2.3.15 A “plane” in V4 means, by definition, the set of all points of the form ~u + ~x where
~u is a constant (fixed) vector and ~x varies over a fixed two-dimensional subspace of
V4. Two planes are “parallel” if their subspaces are the same. It is claimed that
the two planes:

1st plane: 
1
0
0
0

+


0
x2

x3

0


2nd plane: 

2
0
0
0

+


0
x2

0
x4


(where x2, x3 and x4 can assume any scalar values) do not intersect and are not
parallel. Do you agree or disagree with this claim? You have to give very clear
reasons for your answer in order to get credit for this problem.

MATH 293 SUMMER 1992 FINAL # 3

2.3.16 a) Let V be the vector space of all 2 matrices of the form
(

a11 a12

a21 a22

)
where aij , i, j = 1, 2, are real scalars.

Consider the set S of all 2times2 matrices of the form
(

a + b a− b
b a

)
where a and b are real scalars.
i) Show that S is a subspace. Call it W .
ii) Find a basis for W and the dimension of W .

b) Consider the vector space V {f(t) = a + b sin t + c cos t}, for all real scalars a, b
and c and 0 ≤ t ≤ 1
Now consider a subspace W of V in which df(t)

dt + f(t) = 0 at t = 0
Find a basis for the subspace W .

MATH 293 FALL 1992 PRELIM 3 # 3

2.3.17 Let C(−π, π) be the vector space of continuous functions on the interval −π ≤
x ≤ π. Which of the following subsets S of C(−π, π) are subspaces? If it is not a
subspace say why. If it is, then say why and find a basis.
Note: You must show that the basis you choose consists of linearly independent
vectors. In what follows a0, a1 and a2 are arbitrary scalars unless otherwise stated.
a) S is the set of functions of the form f(x) = 1 + a1 sinx + a2 cos x
b) S is the set of functions of the form f(x) = 1 + a1 sinx + a2 cos x, subject to the

condition
∫ π

−π
f(x)dx = 2π

c) S is the set of functions of the form f(x) = 1 + a1 sinx + a2 cos x, subject to the
condition

∫ π

−π
f(x)dx = 0
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2.3.18 Consider all polynomials of degree ≤ 3

P3 = {p(t) = a0 + a1t + a2t
2 + a3t

3},−∞ < t <∞

They Form a vector space. Now consider the subset S of P3 consisting of polyno-
mials of degree ≤ 3 with the conditions

p(0) = 0,
dp

dt
(0) = 0

Is S a subspace W of P3? Carefully explain your answer.

MATH 293 FALL 1992 PRELIM 2 # 6

2.3.19 Given a vector space V4 which is the space of all vectors of the form


x1

x2

x3

x4

 for

all real x1, x2, x3, x4,
consider the set S of vectors in V4 of the form

S =

a


1
0
2
1

+ b


2
1
3
−2

+ c


1
0
−2
1




for all values of scalars a, b and c.
Is the set S a subspace W of V4? Explain your answer carefully.

MATH 293 FALL 1992 FINAL # 3d

2.3.20 Let S be the set of all vectors of the form ~v = a~i + b~j + c~k where ~i, ~j, and ~k are the
usual mutually perpendicular unit vectors. Let W be the set of all vectors that are
perpendicular to the vector ~v1 =~i +~j + ~k. Is W a vector subspace of V3? Explain
your answer.

MATH 293 FALL 1994 PRELIM 2 # 5

2.3.21 In each of the following, you are given a vector space V and a subset W . Decide
whether W is a subspace of V , and prove that your answer is correct.
a) V is the space M2,2 of all 2 × 2 matrices, and W is the set of 2 × 2 matrices A

such that A2 = A
b) V is the space of differentiable functions, and W is the set of those differentiable

functions that satisfy f ′(3) = 0.
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2.3.22 a) Let M denote the set of ordered triples (x, y, z) of real numbers with the opera-
tions of addition and multiplication v=by scalars c defined by

(x, y, z)⊕ (x′, y′, z′) = (x + z′, y + y′, z + z′)

c� (x, y, z) = (2c, cy, cz).

Is M a vector space? Why?
b) Consider the vector space <4. Is the subset S of vectors of the form (x1, x2, x3, x4)

where x1, x2, and x3 are arbitrary and x4 ≤ 0 a subspace? Why?
c) Consider the vector space P2 of polynomials of degree ≤ 2. Is the subset S of

polynomials of the form p(t) = a0 + a1t + (a0 + a1)t2 a subspace? Why?

MATH 293 FALL 1994 PRELIM 3 # 5

2.3.23 Answer each of the following as True or False. If false, explain, by an example.
a) Every spanning set of <3 contains at least three vectors.
b) Every orthonormal set of vectors in <5 is a basis for <5.
c) Let A be a 3 by 5 matrix. Nullity A is at most 3.
d) Let W be a subspace of <4. Every basis of W contains at least 4 vectors.
e) In <n, ||cX|| = |c| ||X||
f) If A is an n× n symmetric matrix, then rank A = n.

MATH 293 FALL 1994 FINAL # 4

2.3.24 a) Find a basis for the space spanned by: {(1,0,1),(1,1,0),(-1,-4,3)}.
b) Show that the functions e2x cos(x) and e2x sin(x) are linearly independent.

MATH 293 FALL 1994 PRELIM 3 # 2

2.3.25 Which of the following sets of vectors is linearly independent? Show all work.
a) In P2: S = {1, t, t2}
b) In <3: S = {(1, 2,−1), (6, 3, 0), (4,−1, 2)}

MATH 293 SPRING 1995 PRELIM 3 # 3

2.3.26 Let P3 be the space of polynomials p(t) of degree ≤ 3. Consider the subspace
S ⊂ P3 of polynomials that satisfy

p(0) +
dp

dt

∣∣∣∣
t=0

= 0

a) Show that S is a subspace of P3.
b) Find a basis for S.
c) What is the dimension of S?
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2.3.27 Let P3 be the space of polynomials p(t) = a0 + a1t + a2t + a3t
3 of degree ≤ 3.

Consider the subset S of polynomials that satisfy

p′′(0) + 4p(0) = 0

Here p′′(0) means, as usual, d2p
dt2

∣∣∣
t=0

.

a) Show that S is a subspace of P3. Give reasons.
b) Find a basis for S.
c) What is the dimension of S? Give reasons for your answer.
Hint: What constraint, if any, does the given formula impose on the constants a0,
a1, a2, and a3 of a general p(t)?

MATH 293 FALL 1995 PRELIM 3 # 4

2.3.28 We define a new way of “adding” vectors by(
x1

x2

)
+
(

y1

y2

)
=
(

x1 + y1

x2y2

)
and use ordinary scalar multiplication.
a) Is the commutative axiom “x + y = y + x” satisfied?
b) Is the associative axiom “x + (y + z) = (x + y) + z” satisfied?
c) How about the distributive law “a(x + y) = ax + ay”?
d) Is this a vector space?
Give reasons.

MATH 293 SPRING 1996 PRELIM 3 # 1

2.3.29 The set W of vectors in <3 of the form (a, b, c), where a + b + c = 0, is a subspace
of <3.
a) Verify that the sum of any two vectors in W is again in W .
b) The set of vectors

S = {(1,−1, 0), (1, 1,−2), (−1, 1, 0), (1, 2,−3)}

is in W . Show that S is linearly dependent.
c) Find a subset of S which is a basis for W .
d) If the condition a + b + c = 0 above is replaced with a + b + c = 1, is W still a

subspace? Why/ why not

MATH 293 SPRING 1996 PRELIM 3 # 3

2.3.30 Which of the following subsets are bases for P2, the vector space of polynomials of
degree less than or equal to two? You do not need to show your work.

S1 = {1, t, 1− t, 1 + t}, S2 = {t2, t2 + 2, t2 + 2t}, S3 = {1 + t + t2, t, t2}
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2.3.31 Suppose ~v1, . . . , ~vp are vectors in <n. Then Span{~v1, . . . , ~vp} is always:
a) a linearly independent set of vectors
b) a linearly dependent set of vectors
c) a basis for a subspace of <n

d) the set of all possible linear combinations of ~v1, ~v2, . . . , ~vp,
e) none of the above.

MATH 294 SPRING 1997 FINAL # 7.2

2.3.32 Which of the following subsets are subspaces of the vector space P2 of polynomi-
als of degree ≤ 2? (No Justification is necessary.) Express your answer as e.g.:
SUBSPACE: a,b,c,d; NOT: e
a) { p(t)

∣∣p′(t) = 0, all t}
b) { p(t)

∣∣p′(t)− 1 = 0, all t}
c) { p(t)

∣∣p(0) + p(1) = 0}
d) { p(t)

∣∣p(0) = 0 and p(1) = 0 }
e) { p(t)

∣∣p(0) = 0 and p(1) = 1 }

MATH 294 FALL 1997 PRELIM 2 # 3

2.3.33 Let W be the subspace of <4 defined as

W = span




1
1
−2
0

 ,


1
1
0
−2

 ,


1
1
−6
4




a) Find a basis for W . What is the dimension of W?
b) It is claimed that W can be described as the intersection of two linear spaces S1

and S2 in <4. The equation of S1 and S2 are

S1 : x− y = 0

and
S2 : ax + by + cz + dw = 0,

where a, b, c, d are real constants that must be determined. Find one possible set
of values of a, b, c and d.
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2.3.34 Let V be the vector space of 2× 2 matrices.
a) Find a basis for V .
b) Determine whether the following subsets of V are subspaces. If so, find a basis.

If not, explain why not.
i) {A in V

∣∣ detA = 0 }

ii) { A in V
∣∣ A

(
0
1

)
= A

(
1
0

)
} .

c) Determine whether the following are linear transformations. Give a short justifi-
cation for your answers.
i) T : V → V, where T (A) = AT ,
ii) T : V → <1, where T (A) = det(A).
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2.3.35 True or False? Justify each answer.
a) In general, if a finite set S of nonzero vectors spans a vector space V , then some

subset of S is a basis of V .
b) A linearly independent set in a subspace H is a basis for H.
c) An n× n matrix A is diagonalizable if and only if A has n eigenvalues, counting

multiplicities.
d) If an n× n matrix A is diagonalizable, it is invertible.

MATH 293 SPRING ? FINAL # 6

2.3.36 Give a definition for addition and for scalar multiplication which will turn the set
of all pairs (~u,~v) of vectors, for ~u,~v in V2, into a vector space V .
a) What is the zero vector of V ?
b) What is the dimension of V ?
c) What is a basis for V ?

MATH 293 FALL 1998 PRELIM 2 # 2

2.3.37 Given the matrix

A =

 1 1 1
1 −1 2
1 1 4

 ,

a) Show by a calculation that its determinant is nonzero.
b) Calculate its inverse by any means.


