2.4 Coordinates

MATH 294 SPRING 1987 PRELIM 3 \# 9

2.4.1 For problems (a) - (c) use the bases B and B^{\prime} below: $B=\left\{\binom{1}{0},\binom{1}{-1}\right\}$ and $B^{\prime}=\left\{\binom{1}{1},\binom{0}{1}\right\}$.
a) Given that $[\vec{v}]_{B}=\binom{2}{3}$ what is $[\vec{v}]_{B^{\prime}}$?
b) Using the standard relation between \Re^{2} and points on the plane make a sketch with the point \vec{v} clearly marked. Also mark the point \vec{w}, where $[\vec{w}]_{B}=\binom{0}{-1}$.
c) Draw the line defined by the points \vec{v} and \vec{w}. Do the points on this line represent a subspace of \Re^{2} ?
MATH 294 SPRING 1987 FINAL \# 9
2.4.2 A general vector \vec{v} in \Re^{2} is $\vec{v}=b_{1} \vec{v}_{1}+b_{2} \vec{v}_{2}=b_{1}^{\prime} \vec{v}_{1}^{\prime}+b_{2}^{\prime} \vec{v}_{2}^{\prime}$. where $\vec{v}_{1}=\binom{1}{0}, \vec{v}_{2}=\binom{1}{1}, \vec{v}_{1}^{\prime}=\binom{1}{0}, \vec{v}_{2}^{\prime}=\binom{0}{1}$.
Find a matrix ${ }_{B^{\prime}}[I]_{B}$ so that $\binom{b_{1}^{\prime}}{b_{2}^{\prime}}={ }_{B^{\prime}}[I]_{B}\binom{b_{1}}{b_{2}}$ for all vectors \vec{v} in \Re^{2}.

MATH 293 SPRING 1993 FINAL \# 5

2.4.3 a) Determine the matrix $H_{E, E}$ which represents reflection of vectors in \Re^{2} about the y-axis in the standard basis $E=\left\{\binom{1}{0},\binom{0}{1}\right\}$. Verify your answer by evaluating the expression

$$
H_{E, E}\binom{x}{y}
$$

b) Now consider a basis B which is obtained by rotating each vector of the standard basis by 90 degrees in a counterclockwise direction. Find the change-of-basis matrices $(B: E)$ and $(E: B)$.
c) Find $H_{B, B}$ from the formula $H_{B, B}=(E: B) H_{E, E}(B: E)$.
d) It is claimed that $H_{B, B}$ is equal to the matrix $H_{E, E}$ which represents a reflection about the x -axis in the standard basis. Do you agree? Give geometrical reasons for your answer by drawing a suitable picture.

MATH 293 FALL 1995 PRELIM 3 \# 2

2.4.4 Consider the vector space \Re^{3} and the three bases:

$$
\begin{aligned}
& \text { the standard basis } E=\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\}, \\
& \text { the basis } B=\left\{\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right),\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right),\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)\right\} \text {, and } \\
& \text { the basis } C=\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\}
\end{aligned}
$$

a) Given the E coordinates of a vector $\vec{x},[\vec{x}]_{E}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$, find $[x]_{C}$.
b) Given the B coordinates of a vector $\vec{y},[\vec{y}]_{B}=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$, find the coefficients y_{j} in $\vec{y}=\vec{y}_{1} \vec{e}_{1}+\vec{y}_{2} \vec{e}_{2}+\vec{y}_{3} \vec{e}_{3}$.
c) Find the change-of-coordinates matrix ${ }_{C} P_{B}$ whose columns consist of the C coordinate vectors of the basis vectors of B.
MATH 293 SPRING 1996 PRELIM 3 \# 8
2.4.5 Let

$$
B=\left\{\left[\begin{array}{c}
-1 \\
8
\end{array}\right],\left[\begin{array}{c}
1 \\
-5
\end{array}\right]\right\}, C=\left\{\left[\begin{array}{l}
1 \\
4
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}
$$

a) Find the change of coordinate matrix from B to C.
b) Find the change of coordinate matrix from C to B.

MATH 293 SPRING 1996 FINAL \#8
2.4.6 Let

$$
B=\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
0
\end{array}\right]\right\}, C=\left\{\left[\begin{array}{l}
2 \\
2
\end{array}\right],\left[\begin{array}{c}
2 \\
-2
\end{array}\right]\right\}
$$

Then the change of coordinates matrix from coordinates with respect to the basis C to coordinates with respect to the basis B is
a) $\left(\begin{array}{cc}2 & -2 \\ 0 & 2\end{array}\right)$
b) $\left(\begin{array}{cc}-4 & 4 \\ 0 & -4\end{array}\right)$
c) $\left(\begin{array}{ll}0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$
d) $\left(\begin{array}{ll}0 & 4 \\ 4 & 4\end{array}\right)$
e) none of the above

MATH 294 FALL 1995 PRELIM 3 \# 8

2.4.7 You are given a vector space V with an inner product $<,>$ and an orthogonal basis $B=\left\{\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}, \vec{b}_{4}, \vec{b}_{5}\right.$ for V for which $\left\|\vec{b}_{i}\right\|=2, i=1, \ldots, 5$. Suppose that \vec{v} is in V and

$$
\begin{gathered}
\left\langle\vec{v}, \vec{b}_{1}\right\rangle=\left\langle\vec{v}, \vec{b}_{2}\right\rangle=0 \\
\left\langle\vec{v}, \vec{b}_{4}\right\rangle=3,\left\langle\vec{v}, \vec{b}_{4}\right\rangle=4,\left\langle\vec{v}, \vec{b}_{5}\right\rangle=5
\end{gathered}
$$

Find the coordinates of \vec{v} with respect to the basis B i.e. find $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}$ such that

$$
\vec{v}=c_{1} \vec{b}_{1}+c_{2} \vec{b}_{2}+c_{3} \vec{b}_{3}+c_{4} \vec{b}_{4}+c_{5} \vec{b}_{5}
$$

MATH 294 SPRING 1998 PRELIM 3 \# 3

2.4.8 Let $T: \wp_{1} \rightarrow \wp_{3}$ be defined by

$$
T[p(t)]=t^{2} p(t)
$$

and take

$$
B=\{1,1+t\}
$$

to be the basis of \wp_{3}.
a) Find the matrix of T relative to the bases B and C.
b) Use this matrix to find $T[2+t]$.
c) Let $E=\{1, t\}$ be the standard basis for \wp_{1}. Let $[\vec{x}]_{B}$ be the coordinate vector of \vec{x} in \wp_{1} relative to the basis B, and let $[\vec{x}]_{E}$ be the coordinate vector of \vec{x} relative to the basis E. What is the change of coordinate matrix P. such that

$$
P[\vec{x}]_{B}=[\vec{x}]_{E}
$$

[Note: The result of part c) does not depend on the results of parts a) or b)]
MATH 294 SPRING 1998 Final \#4
2.4.9 In P^{2}, Find the change-of-coordinate matrix from the basis

$$
B=\left\{1-2 t+t^{2}, 3-5 t, 2 t+3 t^{2}\right\}
$$

to the standard basis

$$
E=\left\{1, t, t^{2}\right\}
$$

Then write t^{2} as a linear combination of the polynomials in B, i.e. give the coordinates of t^{2} with respect to the basis B.

MATH 294 Fall 1998 PRELIM 2 \# 3

2.4.10 Besides the standard basis ε here are two bases for \Re^{2} :

$$
B=\{\underbrace{\left[\begin{array}{l}
1 \\
1
\end{array}\right]}_{b_{1}}, \underbrace{\left[\begin{array}{c}
-1 \\
1
\end{array}\right]}_{b_{2}}\}, C=\{\underbrace{\left[\begin{array}{l}
2 \\
4
\end{array}\right]}_{c_{1}}, \underbrace{\left[\begin{array}{c}
-4 \\
4
\end{array}\right]}_{c_{2}}\}
$$

a) What vectors \vec{x} are represented by $[\vec{x}]_{B}=\left[\begin{array}{c}2 \\ 14\end{array}\right]$ and $[\vec{x}]_{C}=\left[\begin{array}{l}2 \\ 4\end{array}\right]$?
b) Find a single tidy formula to find the components $\left[\begin{array}{l}d \\ e\end{array}\right]$ of a vector \vec{x} in the basis B if you are given the components $\left[\begin{array}{l}f \\ g\end{array}\right]$ of \vec{x} in the basis C.
c) A student claims that the desired formula is $\left[\begin{array}{l}d \\ e\end{array}\right]=\left[\begin{array}{cc}5 & -2 \\ 5 & 1\end{array}\right]\left[\begin{array}{l}f \\ g\end{array}\right]$. Does this formula make the right prediction for the component vector $[\vec{x}]_{C}=\left[\begin{array}{l}f \\ g\end{array}\right]=$ $\left[\begin{array}{l}2 \\ 4\end{array}\right] ?$
MATH 294 FALL 1998 Final \# 6
2.4.11 Let $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$.
a) Find orthogonal eigenvectors $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ of A. [Hint: do not go on to parts d-e below until you have double checked that you have found two orthogonal unit vectors that are eigenvectors of A.]
b) Use the eigenvectors above to diagonalize A.
c) Make a clear sketch that shows the standard basis vectors $\left\{\vec{e}_{1}, \vec{e}_{2}\right\}$ of \Re^{2} and the eigenvectors $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ of A
d) Give a geometric interpretation of the change of coordinates matrix, P, that maps coordinates of a vector with respect to the eigen basis to coordinates with respect to the standard basis.
e) Let $\vec{b}=\left[\begin{array}{l}3 \\ 5\end{array}\right]$. Using orthogonal projection express \vec{b} in terms of $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ the eigenvectors of A.

