2.5 Spaces of a Matrix and Dimension

MATH 294 SPRING 1982 PRELIM 1 \# 3

2.5.1 a) Let $C[0,1]$ denote the space of continuous function defined on the interval $[0,1]$ (i.e. $f(x)$ is a member of $C[0,1]$ if $f(x)$ is continuous for $0 \leq x \leq 1$). Which one of the following subsets of $C[0,1]$ does not form a vector space? Find it and explain why it does not.

MATH 294 SPRING 1982 PRELIM 1 \# 3

2.5.2 a)
i) The subset of functions f which belongs to $C[0,1]$ for which $\int_{0}^{1} f(s) d s=0$.
ii) The set of functions f in $C[0,1]$ which vanish at exactly one point (i.e. $f(x)=0$ for only one x with $0 \leq x \leq 1$).
Note different functions may vanish at different points within the interval.
iii) The subset of functions f in $C[0,1]$ for which $f(0)=f(1)$
b) Let $f(x)=x^{3}+2 x+5$. Consider the four vector $v_{1}=f(x), v_{2}=f^{\prime}(x), v_{3}=$ $f^{\prime \prime}, v_{4}=f^{\prime \prime \prime}(x),\left(f^{\prime}(x)\right.$ means $\left.\frac{d f}{d x}\right)$
i) What is the dimension of the space spanned by the vectors? Justify your answer.
ii) Express $x^{2}+1$ as a linear combination of the v_{i} 's

MATH 294 SPRING 1983 PRELIM 1 \# 2

2.5.3 Consider the system

$$
\left.\begin{array}{c}
x+y-z+w=0 \\
x+3 z+w=0 \\
2 x+y+2 z+2 w=0 \\
3 x+2 y+z+3 w=0
\end{array}\right\}
$$

a) Find a basis for the vector space of solutions to the system above. You need not prove this is a basis
b) What is the dimension of the vector space of solutions above? Give a reason.
c) Is the vector

$$
\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right]=\left[\begin{array}{c}
-2 \\
1 \\
1 \\
2
\end{array}\right]
$$

a solution to the above system?
MATH 294 SPRING 1987 FINAL \# 2
2.5.4 Determine whether the given vectors form a basis for S, and find the dimension of the subspace. S is the set of all vectors of the form $\left(a, b, 2 a, 3 b\right.$ in R^{4}. The given set is $\{(1,0,2,0),(0,1,0,3),(1,-1,2,-3)\}$

MATH 294 FALL 1986 FINAL \# 1
2.5.5 The vectors $(1,0,2,-1,3),(0,1,-1,2,4),(-1,1,-2,1,-3),(0,1,1,-2,-4)$, and $(1,4,2,-1,3)$ span a subspace S of R^{5}.
a) What is the dimension of S ?
b) Find a basis for S

MATH 294 FALL 1986 FINAL \# 1

2.5.6 Compute the rank of the matrix

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
2 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 2 & 1 & -1 \\
1 & 0 & 0 & 1
\end{array}\right)
$$

MATH 294 FALL 1987 PRELIM 3 \# 3

2.5.7 Find the dimension of the subspace of R^{6} consisting of all linear combinations of the vectors

$$
\left[\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5 \\
6
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
4 \\
5 \\
6 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{l}
3 \\
4 \\
5 \\
6 \\
7 \\
8
\end{array}\right]
$$

MATH 293 SPRING 1990 PRELIM 1 \# 3
2.5.8 Find the dimension and a basis for the following spaces
a) The space spanned by $\{(1,0,-2,1),(0,3,1,-1),(2,3,-3,1),(3,0,-6,-1)\}$
b) The set of all polynomials $p(t)$ in P^{3} satisfying the two conditions
i) $\quad f r a c d^{3} d t^{3} p(t)=0$ for all t
ii) $p(t)+f r a c d p(t) d t=0$ at $t=0$
c) The subspace of the space of functions of t spanned by $\left\{e^{a t}, e^{b t}\right\}$ if $a \neq b$
d) The space spanned by $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right\}$ in W, given that $\left\{\vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right\}$ is a basis for W.
MATH 293 SPRING 1990 PRELIM 2 \# 1
2.5.9 Let $A=\left[\begin{array}{cccc}1 & 3 & 5 & -1 \\ -1 & -2 & -5 & 4 \\ 0 & 1 & 1 & -1 \\ 1 & 4 & 6 & -2\end{array}\right]$ Find a basis for the column space of A

MATH 293 SPRING 1990 PRELIM 2 \# 2

2.5.10 Consider the equation
$A x=b ; A=\left[\begin{array}{cccc}1 & 3 & 5 & -1 \\ -1 & -2 & -5 & 4 \\ 0 & 1 & 1 & -1 \\ 1 & 4 & 6 & -2\end{array}\right]$
a) Solve for x given $\vec{b}=\left(\begin{array}{l}1 \\ 2 \\ 4 \\ 5\end{array}\right)$
b) Find a basis for the null space of A
c) Without carrying out explicit calculation, does a solution exist for any b in V^{4} ? (No credit will be given for explicit calculation for).

MATH 293 SPRING 1990 PRELIM 2 \# 3
2.5.11 a) Find a basis and the dimension of the column space of the matrix

$$
A=\left[\begin{array}{ccc}
1 & 3 & 9 \\
2 & 6 & 18 \\
-1 & 1 & 1 \\
4 & 12 & 36
\end{array}\right]
$$

b) Find a basis for the null space of the above matrix.

MATH 293 SPRING 1990 PRELIM 2 \# 4
2.5.12 Which of the following sets form a vector subspace of V_{4} ? Explain.
a) the set of vectors of the form $(x, y, x+y, 0)$
b) the set of vectors of the form $(x, 2 x, 3 x, 4 x)$
c) the set of vectors (x, y, z, w) such that $x+y+w=1$
d) If the set in (b) is a subspace, find a basis for it and its dimension. In the above, x, y, z, w are any real numbers.
MATH 293 FALL 1991 PRELIM 3 \# 6
2.5.13 True-False

True means always true. False means not always true.
a) The column space of a matrix is preserved under row operations
b) The column rank of a matrix is preserved under row operations.
c) For an $n \times n$ matrix, with $m \neq n$, rank plus nullity equals n.
d) The row space of a matrix A is the same vector space as the row space of the row reduced form of A.
e) If two matrices A and B have the same row space, the $A=B$.

MATH 293 FALL 1991 FINAL \# 7
2.5.14 Show that the matrices A and B have the same row space:

$$
A=\left(\begin{array}{lll}
3 & 1 & 9 \\
2 & 1 & 7 \\
1 & 1 & 5
\end{array}\right), B=\left(\begin{array}{ccc}
3 & -1 & 3 \\
1 & -1 & -1 \\
2 & -3 & -5
\end{array}\right)
$$

MATH 293 FALL 1991 FINAL \# 7
2.5.15 Find the vector in the subspace spanned by

$$
\left\{\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right),\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)\right\}
$$

which is closest to the vector

$$
\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right)
$$

MATH 293 FALL 1991 FINAL \# 8

2.5.16 True-False. True means always true, false means not always true. Warning! Matrices are not necessarily square.
a) The rank of A equals the rank of A^{T}.
b) The nullity of A equals the nullity of A^{T}.

MATH 293 SUMMER 1992 FINAL \# 3

2.5.17 Let V be the vector space of all 2×2 matrices of the form

$$
\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

where $a_{i j}, i, j=1,2$, are real scalars.
Consider the set S of all 2×2 matrices of the form

$$
\left(\begin{array}{cc}
a+b & a-b \\
b & a
\end{array}\right)
$$

where a and b are real scalars.
a) Show that S is a subspace. Call it W.
b) Find a basis for W and the dimension of W.

MATH 293 SUMMER 1992 FINAL \# 3
2.5.18 Consider the vector space V
$\{f(t)=a+b \sin t+c \cos t\}$, for all real scalars a, b and c and $0 \leq t \leq 1$
Now consider a subspace
W of V in which $\frac{d f(t)}{d t}+f(t)=0$ at $t=0$
Find a basis for the subspace W.

MATH 293 FALL 1992 PRELIM 3 \# 5
2.5.19 Fill in the blanks of the following statements.

In what follows A is an $m \times n$ matrix
a) The dimension of the row space is 2 . The dimension of the null space is 3 . The number of columns of A is \qquad _.
b) $A x=b$ has a solution x if and only if b is in the \qquad space of A.
c) If $A x=0$ and $A y=0$ and if C_{1} and C_{2} are arbitrary constants then $A\left(C_{1} x+C_{2} y\right)$ $=$ \qquad -

MATH 293 FALL 1992 FINAL \# 3

2.5.20 a) Let A be an $n \times n$ nonsingular matrix. Prove that $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$. Hint: You may use the fact that if A and B are $n \times n$ matrices $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
b) An $n \times n$ matrix A has a nontrivial null space. Find $\operatorname{det}(A)$ and explain your answer.
c) Given two vectors $v_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $v_{2}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ in V_{3}. Find a vector (or vectors) w_{1}, w_{2}, \ldots in V_{3} such that the set $\left\{v_{1}, v_{2}, w_{1}, \ldots\right\}$ is a basis for V_{3}.
d) Let S be the set set of all vectors of the form $\vec{v}=a \vec{i}+b \vec{j}+c \vec{k}$ where \vec{i}, \vec{j} and \vec{k} are the usual mutually perpendicular unit vectors. Let W be the set of all vectors that are perpendicular to the vector $\vec{v}_{1}=\vec{i}+\vec{j}+\vec{k}$. Is W a vector subspace of V_{3} ? Explain your answer.

MATH 293 SPRING 1993 PRELIM 3 \# 6

2.5.21 Let A be an $n \times n$ matrix. Suppose the rank of A is r, and that $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{r}$ are vectors in R^{n} such that $A \mathbf{u}_{1}, A \mathbf{u}_{2}, \ldots, A \mathbf{u}_{r}$ is a basis for $R(A)$ (col. space of A). Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n-r}$ be a basis for $N(A)$ (null space of A). Then show that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{r}, \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n-r}\right\}$ is a basis for R^{n}

MATH 293 SPRING 1993 FINAL \# 2

2.5.22 a) Solve for y, for x near $\frac{\pi}{2}$, if $y^{\prime}+y \cot x=\cos x$ and $y\left(\frac{\pi}{2}\right)=0$
b) Find a basis for the null space of the differential operator

$$
L=\frac{d^{2}}{d x^{2}}-7 \frac{d}{d x}+12,-\infty<x<-\infty
$$

(Hint: Find as many linearly independent solutions as needed for the equation $L[y(x)]=0$.)

MATH 293 FALL 1994 PRELIM 3 \# 5
2.5.23 Answer each of the following as True or False. If False, explain, by an example.
a) Every spanning set of R^{3} contains at least three vectors.
b) Every orthogonal set of vectors in R^{5} is a basis for R^{5}.
c) Let A be a 3 by 5 matrix. Nullity A is at most 3 .
d) Let W be a subspace of R^{4}. Every basis of W contains at least 4 vectors.
e) In $R^{n},\|c X\|=|c|\|X\|$
f) If A is an $n \times n$ symmetric matrix, then $\operatorname{rank} A=n$.

MATH 293 FALL 1994 FINAL \# 4
2.5.24 A basis for the null space of the matrix $\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ is:
a. $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ b. $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ c. $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right] d .\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$ e. $\left[\begin{array}{c}1 \\ -1 \\ -1\end{array}\right]$

MATH 293 FALL 1994 FINAL \#8
2.5.25 If A is an n by n matrix and $\operatorname{rank}(A)<n$. Then
a) A is non singular,
b) The columns of A are linearly independent
c) Some eigenvalue of A is zero
d) $A X=0$ has only the trivial solution
e) $A X=B$ has a solution for every B

MATH 293 SPRING 1995 PRELIM 3 \# 1

2.5.26 Consider the matrix

$$
A=\left[\begin{array}{cccc}
1 & 2 & 4 & 3 \\
2 & 0 & 4 & -2 \\
-1 & 3 & 1 & 7
\end{array}\right]
$$

a) Find a basis for the range of A (i.e., the column space of A).
b) Find a basis for the null-space of A (i.e., the kernel of A).
c) Find a basis for the column space of A^{T}.

MATH 293 SPRING 1995 PRELIM 3 \# 3

2.5.27 Let P_{3} be the space of polynomials $p(t)$ of degree ≤ 3. Consider the subspace $S \subset P_{3}$ of polynomials that satisfy

$$
p(0)+\left.\frac{d p}{d t}\right|_{t=0}=0
$$

a) Show that S is a subspace of P_{3}.
b) Find a basis for S
c) What is the dimension of S.

MATH 293 FALL 1995 PRELIM 3 \# 1

2.5.28 Consider the matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & -1 & 0 \\
1 & 2 & 0 & 2 \\
-1 & -1 & -1 & -2
\end{array}\right]
$$

a) Find a basis for the row space of A.
b) Find a basis for the column space of A
c) What is the rank of A ?
d) What is the dimension of the null space?

MATH 293 FALL 1995 PRELIM 3 \# 3

2.5.29 Let P_{3} be the space of polynomials $p(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}$ of degree ≤ 3. Consider the subset S of polynomials that satisfy

$$
p^{\prime \prime}(0)+4 p(0)=0
$$

Here $p^{\prime \prime}(0)$ means, as usual, $\left.\frac{d^{2} p}{d t^{2}}\right|_{t=0}$.
a) Show that S is a subspace of P_{3}. Give reasons.
b) Find a basis for S.
c) What is the dimension of S ? Give reasons for your answer.

Hint: What constrain, if any, does the given formula impose on the constants a_{0}, a_{1}, a_{2}, and a_{3} of a general $p(t)$?
MATH 293 FALL 1995 FINAL \# 2
2.5.30 Consider the subspace W of R^{4} which is defined as

$$
W=\operatorname{span}\left\{\left[\begin{array}{c}
0 \\
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
0 \\
1
\end{array}\right]\right\}
$$

a) Find a basis for W.
b) What is the dimension of W ?
c) It is claimed that W is a "plane" in R^{4}. Do you agree? Give reasons for your answer.
d) It is claimed that the "plane" W can be described as the intersection of two 3-D regions S_{1} and S_{2} in R^{4}. The equations of S_{1} and S_{2} are:
$S_{1}: x-u=0$
$S_{2}: a x+b y+c z+d u=0$
where $\left[\begin{array}{l}x \\ y \\ z \\ u\end{array}\right]$ is a generic point in R^{4} and a, b, c, d are real constants.
Find one possible set of values for the constants a, b, candd.

MATH 293

2.5.31 Let

$$
A=\left(\begin{array}{cccc}
1 & 2 & -1 & 3 \\
2 & 2 & -1 & 2 \\
1 & 0 & 0 & -1
\end{array}\right)
$$

a) Find a basis for the null space of A. What is the dimension of the null space of A ?
b) Letx $=\left(0, \frac{1}{2}, 1,0\right)$. We know that $A \mathbf{x}=\mathbf{0}$. True or false:
i) \mathbf{x} is a trivial solution to $A \mathbf{x}=\mathbf{0}$.
ii) \mathbf{x} is in the solution space of $A \mathbf{x}=\mathbf{0}$.
iii) \mathbf{x} is in the null space of A.
iv) $\{\mathbf{x}\}$ is a basis for the null space of A.
c) The vector

$$
\vec{w}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
$$

is one vector in a basis for the column subspace of A. Find another vector \vec{v} in a basis for the column subspace of A such that $\{\vec{v}, \vec{w}\}$ is linearly independent.
d) What is the rank of A ? How do you know?

MATH 293 SPRING 1996 FINAL \# 16

2.5.32 The vector space of all polynomials of degree six or less has dimension:
a) 5
b) 6
c) 7
d) 8
e) none of the above

MATH 293 SPRING 1996 FINAL \# 21
2.5.33 A basis for the null space of $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ is
a) $\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$
b) $\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$
c)
d)

e) none of the above

MATH 293 SPRING 1996 FINAL \# 23
2.5.34 Suppose A is a matrix with 6 columns and 4 rows. Which of the following must be true?
a) The null space of A has dimension ≥ 2 and the rank of A is 4 .
b) The null space of A has dimension ≤ 4 and the rank of A is 2 .
c) The null space of A has dimension ≤ 2 and the rank of A is ≤ 4.
d) The null space of A has dimension ≥ 2 and the rank of A is ≤ 4.
e) None of the above

MATH 294 SPRING 1997 FINAL \# 2
2.5.35 (All parts are independent problems)
a) If the $\operatorname{det} A=2$. Find the $\operatorname{det} A^{-1}, \operatorname{det} A^{T}$
b) From $P A=L U$ find a formula for A^{-1} in terms of P, L and U. Assume P, L, U, A are invertible $n \times n$ matrices.
c) Find the rank of matrix A.

$$
A=\left[\begin{array}{l}
1 \\
4 \\
2
\end{array}\right]\left[\begin{array}{lll}
2 & -1 & 2
\end{array}\right]
$$

d) Find a 2×2 matrix E such that for every 2×2 matrix A, the second row of $E A$ is equal to the sum of the first two rows of A, e.g. if $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ then $E A=\left[\begin{array}{cc}1 & 2 \\ 3+1 & 4+2\end{array}\right]$
e) Write down a 2×2 matrix P which projects every vector onto the x_{2} axis. Verify that $P^{2}=P$.

MATH 294 SPRING 1997 FINAL \# 7
2.5.36 Suppose A is a 6 row by 7 column matrix for which nul $A=\operatorname{Span}\left\{\vec{x}_{0}\right\}$ for some $\vec{x}_{0} \neq \overrightarrow{0}$ in \Re^{7}. Which of the following are always TRUE of A ? (NO Justification is necessary.) Express your answer as e.g: TRUE: a,b,c,d; FALSE: e
a) The columns of A are linearly dependent.
b) The linear transformation $\vec{x} \rightarrow A \vec{x}$ is onto.
c) $A \vec{x}=\overrightarrow{0}$ has only the trivial solution.
d) The columns of A form a basis for \Re^{6}.
e) The columns of A span all of \Re^{6}.

MATH 294 FALL 1997 PRELIM 2 \# 1

2.5.37 Consider the matrix

$$
A=\left(\begin{array}{cccc}
4 & 3 & 2 & 1 \\
2 & 2 & 0 & 2 \\
4 & 3 & 1 & 2 \\
-2 & 0 & -2 & 2
\end{array}\right)
$$

a) Find a basis for the null space N of A. What is the dimension of N ?
b) Find a basis for the column space C of A. What is the dimension of C ?
c) Find a basis for the row space R of A. What is the dimension of R ?

MATH 294 FALL 1997 FINAL \# 2
2.5.38 Let

$$
A=\left(\begin{array}{cccc}
1 & 2 & 0 & 2 \\
1 & 1 & -1 & 0 \\
-2 & -1 & 3 & 2
\end{array}\right)
$$

Find bases for the null space of A and the column space of A. What are the dimensions of these two vector spaces?

MATH 294 SPRING 1998 PRELIM 3 \# 1
2.5.39 The matrix A is row equivalent to the matrix B :

$$
A \equiv\left[\begin{array}{ccccc}
1 & 0 & -5 & 1 & 4 \\
-2 & 1 & 6 & -2 & -2 \\
0 & 2 & -8 & 1 & 9
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & 0 & -5 & 1 & 4 \\
0 & 1 & -4 & 0 & 6 \\
0 & 0 & 0 & 1 & -3
\end{array}\right] \equiv B
$$

a) Find a basis for $\operatorname{Row} A, \operatorname{Col} A$, and $N u l A$.
b) To what vector spaces do the vectors in $\operatorname{Row} A, \operatorname{Col} A$, and $N u l A$ belong?
c) What is the rank of A ?

MATH 294 SPRING 1998 FINAL \# 3

2.5.40 Given that the matrix B is row equivalent to the matrix A where

$$
A \equiv\left[\begin{array}{ccccc}
2 & -1 & 1 & -6 & 8 \\
1 & -2 & -4 & 3 & -2 \\
-7 & 8 & 10 & 3 & -10 \\
4 & -5 & -7 & 0 & 4
\end{array}\right] \text { and } B \equiv\left[\begin{array}{ccccc}
1 & -2 & -4 & 3 & -2 \\
0 & 3 & 9 & -12 & 12 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

a) Find rank A and $\operatorname{dim} \operatorname{Null} A$.
b) Determine bases for $\operatorname{Col} A$ and Null A.
c) Determine a value of c so that the vector $\vec{b}=\left[\begin{array}{c}1 \\ -1 \\ 1 \\ c\end{array}\right]$ is in $\operatorname{Col} A$
d) For this value of c, write the general solution of $A \vec{x}=\vec{b}$.

MATH 294 FALL 1997 PRELIM 2 \# 3
2.5.41 Let W be the subspace of \Re^{4} defined as

$$
W=\operatorname{span}\left(\left(\begin{array}{c}
1 \\
1 \\
-2 \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
1 \\
0 \\
-2
\end{array}\right),\left(\begin{array}{c}
1 \\
1 \\
-6 \\
4
\end{array}\right)\right)
$$

a) Find a basis for W. What is the dimension of W ?
b) It is claimed that W can be described as the intersection of two linear spaces S_{1} and S_{2} in \Re^{4}. The equations of S_{1} and S_{2} are

$$
S_{1}: x-y=0
$$

and

$$
S_{2}: a x+b y+c z+d w=0
$$

where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are real constants that must be determined. Find one possible set of values of a,b,c and d.
MATH 294
FALL 1997
PRELIM 3 \# 1
2.5.42 Let

$$
A=\left(\begin{array}{cccc}
1 & 1 & -1 & 1 \\
2 & 1 & 2 & 1
\end{array}\right)
$$

a) Find an orthofonal basis for the null space of A.
b) Find a basis for the orthogonal complement of $N u l A$, i.e. find $(N u l A)^{\perp}$.

MATH 294 FALL 1997 PRELIM 3 \# 2

2.5.43 Let $A=\left[\vec{v}_{1} \vec{v}_{2}\right]$ be a 1000×2 matrix, where \vec{v}_{1}, \vec{v}_{2} are the columns of A. You aren't given A. Instead you are given only that

$$
A^{T} A=\left(\begin{array}{cc}
1 & \frac{1}{2} \\
\frac{1}{2} & 1
\end{array}\right) .
$$

Find an orthonormal basis $\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$ of the column space of A. Your formulas for \vec{u}_{1} and \vec{u}_{2} should be written as linear combinations of \vec{v}_{1}, \vec{v}_{2}. (Hint: what do the entries of the matrix $A^{T} A$ have to do with dot products?
MATH 294 FALL 1998 PRELIM 2 \# 4
2.5.44 The reduced echelon form of the matrix $A=\left[\begin{array}{cccc}3 & 3 & 2 & 3 \\ -2 & 2 & 0 & 2 \\ 1 & 0 & 1 & -2 \\ 0 & -3 & 2 & -1\end{array}\right]$ is $B=$
$\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$.
a) What is the rank of A
b) What is the dimension of the column space of A ?
c) What is the dimension of the null space of A ?
d) Find a solution to $A \vec{x}=\left[\begin{array}{c}3 \\ -2 \\ 1 \\ 0\end{array}\right]$.
e) What is the row space of A ?
f) Would any of your answers above change if you changed A by randomly changing 3 of its entries in the 2 nd, third, and fourth columns to different small integers and the corresponding reduced echelon form for B was presented? (yes?, no?, probably?, probably not?, ?)

MATH 294
FALLL 1998
FINAL \# 5
2.5.45 Consider $A \vec{x}=\vec{b}$ with $A=\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ -1 & 2 & 5 & 8\end{array}\right]$ and $\vec{b}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$. The augmented matrix of this system is $\left[\begin{array}{ccccc}1 & 2 & 3 & 4 & 1 \\ 0 & 1 & 2 & 3 & 1 \\ -1 & 2 & 5 & 8 & 1\end{array}\right]$ which is row equivalent to $\left[\begin{array}{ccccc}1 & 0 & -1 & -2 & 0 \\ 0 & 1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$.
a) What are the rank of A and dim nul A ? (Justify your answer.)
b) Find bases for col A, row A, and nul A.
c) What is the general solution \vec{x} to $A \vec{x}=\vec{b}$ with the given A and \vec{b} ?
d) Select another \vec{b} for which the above system has a solution. Give the general solution for that \vec{b}.

MATH 294 SPRING 1999 PRELIM 2 \# 4
2.5.46 Let A be a matrix where all you know is that it is 5×7 and has rank 3 .
a) Define new matrices from A as follows:

- C has as columns a basis for $\operatorname{Col} A$,
- M has as columns a basis for $\operatorname{Nul} A^{T}$, and
- $T=[C M]$.

Is this enough information to find the size (number of rows and columns) of T ?
i) if yes, find the number of rows and columns and justify your answer, or
ii) if no, explain what extra information is needed to find the size of T ?
b) Are there any two non-zero vectors \vec{u} and \vec{v} for which:

- \vec{u} is in $\operatorname{Col} A$,
- \vec{v} is in $\operatorname{Nul} A^{T}$, and
- \vec{v} is a multiple of \vec{u} ?
i) if yes, why?
ii) if no, why?, or
c) if it depends on information not given, what information? How would that information help?

MATH 294 SPRING 1999 PRELIM 2 \# 1
$2.5 .47 \quad$ a) What is the null space of $A=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$?
b) What is the column space of $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
c) Find a basis for the column space of $A=\left[\begin{array}{ccc}1 & 2 & \pi \\ 3 & 4 & \sqrt{2}\end{array}\right]$?
d) Are the column of $A=\left[\begin{array}{ccc}1 & 2 & \pi \\ 3 & 4 & \sqrt{2} \\ 3 & 4 & \sqrt{2}\end{array}\right]$ linearly independent (hint: no long row reductions are needed)?
e) What is the row space of $A=\left[\begin{array}{ll}1 & 0 \\ 4 & 0\end{array}\right]$?

MATH 293 SUMMER 1992 PRELIM 7/21 \# 5

2.5.48 Consider the space P of all polynomials of degree ≤ 3 of the type $\left\{p(t)=a_{0}+a_{1} t+\right.$ $\left.a_{2} t^{2}+a_{3} t^{3}\right\}$ for all scalars $a_{0}, a_{1}, a_{2}, a_{3}$ and $0 \leq t \leq 1$. Now consider a subspace W of P where, for any $p(t) \in W$, we also have

$$
\begin{gathered}
\int_{0}^{1} p(t) d t=0 \\
\left.\frac{d p}{d t}\right|_{t=0}=0
\end{gathered}
$$

a) Find a basis for W.
b) What is the dimension of W ?

UNKNOWN UNKNOWN UNKNOWN \# ?

2.5.49 Consider the matrix

$$
A=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1 \\
-1 & 1 & 0
\end{array}\right)
$$

a) Find the vectors $\vec{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$ such that a solution \vec{x} of the equation $A \vec{x}=\vec{b}$ exists.
b) Find a basis for the column space $\mathcal{R}(A)$ of A.
c) It is claimed that $\mathcal{R}(A)$ is a plane on \Re^{3}. If you agree, find a vector \vec{n} in \Re^{3} that is normal to this plane. Check your answer.
d) Show that \vec{n} is perpendicular to each of the columns of A. Explain carefully why this is true.

MATH 294 FALL 1997

PRELIM 3 \# 1 PRACTICE

2.5.50 Consider the matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & -1 & 0 \\
1 & 2 & 0 & 2 \\
-1 & -1 & -1 & -2
\end{array}\right]
$$

a) Find a basis for the column space C of A . What is the dimension of C ?
b) Find a basis for the column space N of A . What is the dimension of N ?
c) Let $W=\operatorname{span}\left(\left[\begin{array}{l}1 \\ 0 \\ 2 \\ 2\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -1 \\ 0\end{array}\right]\right)$. Is W orthogonal to N? Please justify your answer by showing your work.
MATH 293 SPRING ? PRELIM 2 \# 1
2.5.51 a) Find a basis for the row space of the matrix

$$
A=\left[\begin{array}{rrrr}
1 & -1 & -1 & 1 \\
0 & 1 & 2 & 1 \\
3 & 2 & 7 & 8 \\
2 & 0 & 2 & 4
\end{array}\right]
$$

b) Find a basis for the column space of A in (a).

MATH 293 SPRING? PRELIM 2 \# 2

2.5.52 a) If A and B are 4×4 matrices such that

$$
A B=\left(\begin{array}{rrrr}
2 & 1 & 1 & 0 \\
-1 & -2 & 2 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

show that the column space of A is at least three dimensional.
b) Find A^{-1} if $A=\left(\begin{array}{rrrr}2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1\end{array}\right)$

MATH 293 SPRING ? FINAL \# 2
2.5.53 a) Find a basis for the row space of the matrix

$$
A=\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 0 & 2 \\
0 & 0 & 4 & 0 \\
1 & 2 & 0 & 0
\end{array}\right)
$$

b) Find the rank of A and a basis for its column space, noting that $A=A^{T}$.
c) Construct an orthonormal basis for the row space of A.

MATH 293 SPRING ? FINAL \# 6
2.5.54 Give a definition for addition and for scalar multiplication which will turn the set of all pairs (\vec{u}, \vec{v}) of vectors, for \vec{u}, \vec{v} in V_{2}, into a vector space V.
a) What is the zero vector of V ?
b) What is the dimension of V ?
c) What is a basis for V ?

MATH 293 SPRING ? FINAL \# 3
2.5.55 a) Give all solutions of the following system in vector form.

$$
\begin{aligned}
6 x_{1}+4 x_{3} & =1 \\
5 x_{1}-x_{2}+5 x_{3} & =-1 \\
x_{1}+3 x_{3} & =2
\end{aligned}
$$

b) What is the null space of the matrix of coefficients of the unknowns in a)?

MATH 293 SPRING ? FINAL \# 4
2.5.56 Let W be the subspace of V_{4} spanned by the vectors

$$
\vec{v}_{1}=\left[\begin{array}{c}
1 \\
0 \\
-1 \\
2
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}
-3 \\
0 \\
1 \\
1
\end{array}\right], \vec{v}_{3}=\left[\begin{array}{c}
7 \\
0 \\
-3 \\
3
\end{array}\right], \vec{v}_{4}=\left[\begin{array}{c}
-8 \\
0 \\
4 \\
1
\end{array}\right]
$$

a) Find the dimension and a basis for W.
b) Find an orthogonal basis for W.

MATH 293 UNKNOWN FINAL \# 5

2.5.57 a) Let A be an $n \times n$ matrix. Show that if $A \vec{x}=\vec{b}$ has a solution then \vec{b} is a linear combination of the column vectors of A.
b) Let A be a 4×4 matrix whose column space is the span of vectors $\vec{v}=$ $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)^{T}$, satisfying $v_{1}-2 v_{2}+v_{3}-v_{4}=0$. Let $\vec{b}=\left(1, b_{2}, b_{3}, 0\right)^{T}$. Find all values of b_{2}, b_{3} for which the matrix equation $A \vec{x}=\vec{b}$ has a solution.

