2.6 Finite Difference Equations and Markov Chains

MATH 294 FALL 1997 PRELIM II \# ?

2.6.1 Consider the linear difference equation

$$
y_{k+3}-2 y_{k+2}-y_{k+1}+2 y_{k}=0 .
$$

a) What is the dimension of the solution set of this equation?
b) Find a basis for this subspace of S.
c) Suppose $u=\left\{u_{k}\right\}$ is a solution to this difference equation where $u_{0}=1, u_{1}=0$, and $u_{4}=4$. Find a formula for u_{k}. (Hint: Use a linear combination of the basis vectors that you found in part (b) above).

MATH 294 SPRING 1998 PRELIM 3 \# 2
2.6.2 Consider the difference equation

$$
y_{k+2}+4 y_{k+1}+y_{k}=0
$$

for $k=1,2, \ldots, N-2$
a) Find its general solution.
b) Find the particular solution that satisfies the boundary conditions $y_{1}=5000$ and $y_{N}=0$.
(The answer involves N.)
MATH 294 FALL 1998 PRELIM 3 \# 4
2.6.3 The three "spaces" on the simple board game shown are labeled "C", "I", and "D" for coin, tetrahedron, and dice. On one turn a player advances clockwise a random number of spaces as determined by shaking and dropping the object on their present space (From the C position a player moves 1 or 2 spaces with equal probabilities, from the T space a player moves $1-4$ spaces with equal probabilities, and from the D space a player moves 1-6 spaces with equal probabilities.).
In very long game what function of the moves end up on the D space on average? [Hint: Use exact arithmetic rather than truncated decimal representations.]

