2.8 Linear Transformation II

MATH 294 SPRING 1987 PRELIM 3 \# 3

2.8.1 Consider the subspace of C_{∞}^{2} given by all things of the form

$$
\vec{x}(t)=\left[\begin{array}{l}
a \sin t+b \cos t \\
c \sin t+d \cos t
\end{array}\right]
$$

where a,b,c \& d are arbitrary constants. Find a matrix representation of the linear transformation

$$
T(\vec{x})=D \vec{x}, \text { where } D \vec{x} \equiv \dot{\vec{x}}
$$

carefully define any terms you need in order to make this representation. Hint: A good basis for this vector space starts something like this

$$
\left\{\binom{\sin t}{0}, \ldots\right\}
$$

MATH 294 SPRING 1987 PRELIM 3 \# 5

2.8.2 The idea of eigenvalue λ and eigenvector \mathbf{v} can be generalized from matrices and \Re^{n} to linear transformations and their related vector spaces. If $T(\mathbf{v})=\lambda \mathbf{v}$ (and $\mathbf{v} \neq 0)$ then λ is an eigenvalue of T, and \mathbf{v} is its associated eigenvector.
For the subspace of $\mathbf{x}(t)$ in C_{∞}^{1} with $\mathbf{x}(0)=\mathbf{x}(1)=0$ find an eigenvalue and eigenvector of $T(\mathbf{x})=D^{2} \mathbf{x}$, where $D^{2} \mathbf{x} \equiv \ddot{\mathbf{x}}-\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right] \mathbf{x}$. What is the kernel of T ?

MATH 294 spr97 FINAL \# 2

2.8.3 T is linear transformation from C_{∞}^{2} to C_{∞}^{2} which is given by $T(\mathbf{x})=\dot{\mathbf{x}}$

MATH 294 FALL 1987 PRELIM 3 \# 14
2.8.4 Find the kernel of the linear transformation

$$
T(\mathbf{x}(t)) \equiv\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]-\left[\begin{array}{cc}
0 & 1 \\
-4 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

where T transforms C_{∞}^{2} into C_{∞}^{2}
MATH 294 FALL 1997 PRELIM 3 \# 5
2.8.5 Define $T\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right) \equiv\left[\begin{array}{l}x+y \\ x-z \\ y+z\end{array}\right]$, which is a linear transformation of \Re^{3} into itself.
a) Is T 1-1?
b) Is T onto?
c) Is T an isomorphism?

Substantiate your answers.

MATH 294 FALL 1987 FINAL \# 1
2.8.6 T is a linear transformation of \Re^{3} into \Re^{2} such that

$$
T\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right], T\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right], T\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

a) Is T 1-1?
b) Determine the matrix of T relative to the standard bases in \Re^{3} and \Re^{2}.

MATH 294 FALL 1987 FINAL \# 7a

2.8.7 Consider the boundary-value problem
$X^{\prime \prime}+\lambda X=0, \quad 0<x<\pi, X(0)=X(\pi)=0$, where λ is a given real number.
a) Is the set of all solutions of this problem a subspace of $C_{\infty}[0, \pi]$? why?
b) Let $W=$ set of all functions $X(x)$ in $C_{i} n f t y[0, \pi]$ such that $X(0)=X(\pi)=0$.

Is $T \equiv D^{2}-\lambda$ linear as a transformation of W into $C_{\infty}[0, \pi]$? Why?
c) For what values of λ is $\operatorname{Ker}(T)$ nontrivial?
d) Choose one of those values of λ and determine $\operatorname{Ker}(T)$

MATH 294 FALL 1989 PRELIM 3 \# 3
2.8.8 Let W be the following subspace of \Re^{3},

$$
W=\operatorname{Comb}\left(\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
3 \\
3 \\
-3
\end{array}\right]\right)
$$

a) Show that $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$ is a basis for W.

For b) and c) below, let T be the following linear transformation $T: W \rightarrow \Re^{3}$, ,

$$
T\left(\left[\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right]\right)=\left[\begin{array}{cccc}
1 & 0 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0 & \left.\left.\left[\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right]\right] .\right] ~
\end{array}\right]
$$

for those $w=\left[\begin{array}{l}w_{1} \\ w_{2} \\ w_{3}\end{array}\right]$ in \Re^{3} which belong to W.
[You are allowed to use a) even if you did not solve it.]
b) What is the dimension of Range (T) ? (Complete reasoning, please.
c) What is the dimension of $\operatorname{Ker}(T)$? (Complete reasoning, please.

MATH 294 FALL 1989 FINAL \# 7

2.8.9 Let $T: \Re^{2} \rightarrow \Re^{2}$ be the linear transformation given in the standard basis for \Re^{2} by

$$
T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
x+y \\
0
\end{array}\right]
$$

a) Find the matrix of T in the standard basis for \Re^{2}
b) Show that $\beta=\left(\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2\end{array}\right]\right)$ is also a basis for \Re^{2}.

In c) below, you may use the result of b) even if you did not show it.
c) Find the matrix of T in the basis β given in b). (I.e., in $T: \Re^{2} \rightarrow \Re^{2}$ both copies of \Re^{2} have the basis β.

MATH 294 SPRING 1990? PRELIM 2 \# 4

2.8.10 Let A be a linear transformation from a vector space V to another vector space U.

Let $\left(\vec{v}_{1}, \ldots, \vec{v}_{n}\right)$ be a basis for V and let $\left(\vec{u}_{1}, \ldots, \vec{u}_{n}\right)$ be a basis for U.
Suppose it is known that

$$
\begin{aligned}
& A\left(\vec{v}_{1}\right)=2 u_{2} \\
& A\left(\vec{v}_{2}\right)=3 u_{3} \\
& \vdots \\
& A\left(\vec{v}_{i}\right)=(i+1) \vec{u}_{i+1} \\
& \vdots \\
& A\left(\vec{v}_{n-1}\right)=n \vec{u}_{n}
\end{aligned}
$$

and $A\left(\vec{v}_{n}\right)=0 \leftarrow$ zero vector in U.
Can you find $A(\vec{v})$ in terms of the \vec{u}_{i} 's where

$$
\vec{v}=\vec{v}_{1}+\vec{v}_{2}+\ldots+\vec{v}_{n}=\sum_{i=1}^{n} \vec{v}_{i}
$$

MATH 294 FALL 1991 FINAL \# 8

2.8.11 T/F
c) If $T: V \rightarrow W$ is a linear transformation, then the range of T is a subspace of V.
d) If the range of $T: V \rightarrow W$ is W, then T is 1-1.
e) If the null space of $T: V \rightarrow W$ is $\{0\}$, then T is 1-1.
f) Every change of basis matrix is a product of elementary matrices.
g) If $T: U \rightarrow V$ and $S: V \rightarrow W$ are linear transformations, and S is not 1-1, then $S T: U \rightarrow W$ is not 1-1.
h) If V is a vector space with an inner product, (,), if $\left\{\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{n}\right\}$ is an orthonormal basis for V, and if \vec{v} is a vector in V, then $\vec{v}=\sum_{i=1}^{n}\left(\vec{v}, \vec{w}_{i}\right) \vec{w}_{i}$.
i) $T: V_{n} \rightarrow V_{n}$ is an isomorphism if and only if the matrix which represents T in any basis is non-singular.
j) If S and T are linear transformations of V_{n} into V_{n}, and in a given basis, S is represented by a matrix A, and T is represented by a matrix B, then $S T$ is represented by the matrix $A B$
-note- Matrices are not necessarily square.
MATH 294 SPRING 1992 PRELIM 3 \# 5
2.8.12 The vector space V_{3} has the standard basis $S=\left(\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right)$ and the basis $B=$ $\left(2 \vec{e}_{2},-\frac{1}{2} \vec{e}_{1}, \vec{e}_{3}\right)$.
a) Find the change of basis matrices $(B: S)$ and $(S: B)$. If a vector \vec{v} has the representation $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ in the standard basis, find its representation $\beta(\vec{v})$ in the B basis.
b) A transformation T is defined as follows: $T \vec{v}=$ the reflection of \vec{v} across the $x-z$ plane in the standard basis. (For reflection, in V_{2} the reflection of $a \vec{i}+b \vec{j}$ across the x axis would be $a \vec{i}-b \vec{j}$. Find a formula for T in the standard basis. Why is T a linear transformation?
c) Find T_{B}, the matrix of T in the B basis.
d) Interpret T geometrically in the B basis, i.e., describe T_{B} in terms of rotations, reflections, etc.

MATH 294 FALL 1992 FINAL \# 6

2.8.13 Let $C^{2}(-\infty, \infty)$ be the vector space of twice continuously differentiable functions on $-\infty<x<\infty$ and $C^{0}($ infty,$\infty)$ be the vector space of continuous functions on $-\infty<x<\infty$.
a) Show that the transformation $L: C^{2}(\infty, \infty) \rightarrow C^{0}(-\infty, \infty)$ defined by $L y=$ $\frac{\partial^{2} y}{\partial x^{2}}-4 y$ is linear.
b) Find a basis for the null space of L. Note: You must show that the vectors you choose are linearly independent.

MATH 293 SPRING 1995 FINAL \# 2

2.8.14 Let P^{3} be the vector space of polynomials of degree ≤ 3, and let $L: P^{3} \rightarrow P^{3}$ be given by

$$
L(p)(t)=t \frac{\partial^{2} p}{\partial t^{2}}(t)+2 p(t)
$$

a) Show that L is a linear transformation.
b) Find the matrix of L in the basis $\left(1, t, t^{2}, t^{3}\right)$.
c) Find a solution of the differential equation

$$
t \frac{\partial^{2} p}{\partial t^{2}}+2 p(t)=t^{3}
$$

Do you think that you have found the general solution?
MATH 293 SPRING 1995 FINAL \# 3
2.8.15 Let V be the vector space of real 3×3 matrices.
a) Find a basis of V. What is the dimension of V ?

Now consider the transformation $L: V \rightarrow V$ given by $L(A)=A+A^{T}$.
b) Show that L is a linear transformation.
c) Find a basis for the null space (kernel) of L.

MATH 294 SPRING 1997 FINAL \# 10
2.8.16 Let P_{2} be the vector space of polynomials of degree ≤ 2, equipped with the inner product

$$
<p(t), q(t)>=\int_{-1}^{1} p(t) q(t) d t
$$

Let $T: P_{2} \rightarrow P_{2}$ be the transformation which sends the polynomial $p(t)$ to the polynomial

$$
\left(1-t^{2}\right) p^{\prime \prime}(t)-2 t p^{\prime}(t)+6 p(t)
$$

a) Show that T is linear.
b) Verify that $T(1)=6$ and $T(t)=4 t$. Find $T\left(t^{2}\right)$.
c) Find the matrix A of T with respect to the standard basis $\epsilon=\left(1, t, t^{2}\right)$ for P_{2}.
d) Find the basis for $\operatorname{Nul}(A)$ and $\operatorname{Col}(A)$.
e) Use the Gram-Schmidt process to find an orthogonal basis B for P_{2} starting form ϵ.

MATH 294 FALL 1997 PRELIM 3 \# 5
2.8.17 Let $T: \Re^{2} \rightarrow \Re^{2}$ be the linear transformation that rotates every vector (starting at the origin) by θ degrees in the counterclockwise direction. Consider the following two bases for \Re^{2} :

$$
B=\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)
$$

and

$$
C=\left(\left[\begin{array}{c}
\cos \alpha \\
\sin \alpha
\end{array}\right],\left[\begin{array}{c}
-\sin \alpha \\
\cos \alpha
\end{array}\right]\right) .
$$

a) Find the matrix $[T]_{B}$ of T in the standard basis B.
b) Find the matrix $[T]_{C}$ of T in the basis C. Does $[T]_{C}$ depend on the angle α ?

MATH 294 FALL 1997 FINAL \# 9

2.8.18 Consider the vector space V of 2 matrices. Define a transformation $T: V \rightarrow V$ by $T(A)=A^{T}$, where A is an element of V (that is, it is a 2×2 matrix), and A^{T} is the transpose of A.
a) Show that T is linear transformation.

The value λ is an eigenvalue for T, and $\vec{v} \neq 0$ is the corresponding eigenvector, if $T(\vec{v})=\lambda \vec{v}$. (Note: here \vec{v} is a 2×2 matrix).
b) Find an eigenvalue of T (You need only find one, not all of them). (Hint: Search for matrices A such that $T(A)$ is a scalar multiple of A.)
c) Find an eigenvector for the particular eigenvalue that $\mathrm{yl}=\mathrm{ou}$ found in part (b).
d) Let W be the complete eigenspace of T with the eigenvalue from part (b) above. Find a basis for W. What is the dimension of W ?
MATH 294 SPRING 1998 FINAL \#6
2.8.19 Let $T: P^{2} \rightarrow P^{3}$ be the transformation that maps the second order polynomial $p(t)$ into $(1+2 t) p(t)$,
a) Calculate $T(1), T(t)$, and $T\left(t^{2}\right)$.
b) Show that T is a linear transformation.
c) Write the components of $T(1), T(t), T\left(t^{2}\right)$ with respect to the basis $C=$ $\left\{1, t, t^{2}, 1+t^{3}\right\}$.
d) Find the matrix of T relative to the bases $B=\left\{1, t, t^{2}\right\}$ and $C=\left\{1, t, t^{2}, 1+t^{3}\right\}$.

MATH 294 FALL 1998 PRELIM 3 \# 1

2.8.20 Consider the following three vectors in \Re^{3}

$$
\vec{y}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \vec{u}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \text { and } \vec{u}_{2}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]
$$

[Note: \vec{u}_{1} and \vec{u}_{2} are orthogonal.].
a) Find the orthogonal projection of \vec{y} onto the subspace of \Re^{3} spanned by \vec{u}_{1} and $\overrightarrow{u_{2}}$.
b) What is the distance between \vec{y} and $\operatorname{span}\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$?
c) In terms of the standard basis for \Re^{3}, find the matrix of the linear transformation that orthogonally projects vectors onto $\operatorname{span}\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$.

MATH 294 FALL 1998 FINAL \# 4

2.8.21 Here we consider the vector spaces P_{1}, P_{2}, and P_{3} (the spaces of polynomials of degree 1,2 and 3).
a) Which of the following transformations are linear? (Justify your answer.)
i) $T: P_{1} \rightarrow P_{3}, T(p) \equiv t^{2} p(t)+p(0)$
ii) $T: P_{1} \rightarrow P_{1}, T(p) \equiv p(t)+t$
b) Consider the linear transformation $T: P_{2} \rightarrow P_{2}$ defined by $T\left(a_{0}+a_{1} t+a_{2} t^{2}\right) \equiv$
$\left(-a_{1}+a_{2}\right)+\left(-a_{0}+a_{1}\right) t+\left(a_{2}\right) t^{2}$. with respect to the standard basis of $P_{2}, \beta=$ $\left\{1, t, t^{2}\right\}$, is $A=\left[\begin{array}{ccc}0 & -1 & 1 \\ -1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$. Note that an eigenvalue/eigenvector pair of A is $\lambda=1, v=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$. Find an eigenvaue/eigenvector (or eigenfunction) pair of T. That is, find λ and $g(t)$ in P_{2} such that $T(g(t))=\lambda g(t)$.
c) Is the set of vectors in $P_{2}\left\{3+t,-2+t, 1+t^{2}\right\}$ a basis of P_{2} ? (Justify your answer.)

MATH 293 SPRING 19? PRELIM 2 \# 4

2.8.22 Let M be the transformation from P^{n} to P^{n} such that

$$
M p(t)=\frac{1}{2}[p(t)+p(-t)](\mathrm{t} \text { real })
$$

a) If $n=3$ find the matrix of this transformation with respect to the basis $\left\{1, t, t^{2}, t^{3}\right\}$.
b) Let $N=I-M$. What is $N p(t)$ in terms of $p(t)$? Show that $M^{2}=M M=M$, $M N=M N=0$
MATH 294 FALL 1987 PRELIM 2 \# 3 MAKE-UP
2.8.23 a) If A is an $n \times n$ matrix with $\operatorname{rank}(A)=r$, then what is the dimension of the vector space of all solutions of the system of linear equations $A \vec{x}=\overrightarrow{0}$
b) What is the dimension of the kernel of the linear transformation from \Re^{n} to \Re^{n} which has A for its matrix in the standard basis.

MATH 294 FALL 1987 PRELIM 2 \# 14 MAKE-UP
2.8.24 Show that if $T: V \rightarrow W$ is a linear transformation from V to W, and $\operatorname{kernel}(T)=\overrightarrow{0}$, then T is 1-1. (Recall: $\operatorname{kernel}(T)=\{\vec{v} \in V \mid T(\vec{v})=\overrightarrow{0}\}$.
MATH 294 FALL 1987 FINAL \# 6 MAKE-UP
2.8.25 Let $T: \Re^{2} \rightarrow \Re^{4}$ be a linear transformation.
a) If $T\left[\begin{array}{l}2 \\ 7\end{array}\right]=\left[\begin{array}{l}3 \\ 1 \\ 0 \\ 2\end{array}\right]$ and $T\left[\begin{array}{c}3 \\ -1\end{array}\right]=\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right]$, what is $T\left[\begin{array}{c}-9 \\ 26\end{array}\right]$?
b) What are $T\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $T\left[\begin{array}{l}0 \\ 1\end{array}\right]$?
c) What is the matrix of T in the basis $\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]$ for \Re^{2}, and the standard basis for \Re^{4} ?

MATH 294 SUMMER 1989 PRELIM 2 \# 1

2.8.26 a)
b) Find a basis for $\operatorname{ker}(L)$, where L is linear transformation from \Re^{4} to \Re^{3} defined by

$$
L(\vec{x}) \equiv\left[\begin{array}{llll}
1 & 2 & -4 & 3 \\
1 & 2 & -2 & 2 \\
2 & 4 & -2 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]
$$

c) What is the dimension of $\operatorname{ker}(L)$?
d) Is the vector $\vec{y}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$ in $\operatorname{range}(L)$? (Justify your answer.) If so, find all vectors \vec{x} in \Re^{4} which satisfy $L(\vec{x})=\vec{y}$
MATH 294 SUMMER 1989 PRELIM 2 \# 4
2.8.27 Let P be the linear transformation from \Re^{3} to \Re^{3} defined by

$$
P\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
0
\end{array}\right]
$$

a) Find a basis for $\operatorname{ker}(P)$.
b) Find a basis for range (P).
c) Find all vectors \vec{x} in \Re^{3} such that $P \vec{x}=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$.
d) Find all vectors \vec{x} in \Re^{3} such that $P \vec{x}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$.

MATH 293 SPRING 1995 PRELIM 3 \# 4

2.8.28 Let $L_{\theta}: \Re^{2} \rightarrow \Re^{2}$ be the linear transformation which represent orthogonal projection onto the line ℓ_{θ} forming angle θ with the x -axis.

a) Find the matrix T of L_{θ} (with respect to the standard basis of \Re^{2}).
b) Is L_{θ} invertible. Explain your answer geometrically.
c) Find all the eigenvalues of T.

MATH 294 FALL 1998 PRELIM 2 \# 1
2.8.29 The unit square $O B C D$ below gets mapped to the parallelogram $O B^{\prime} C^{\prime} D^{\prime}$ (on the $x_{1}-x_{3}$ plane) by the linear transformation $T: \Re^{2} \rightarrow \Re^{3}$ shown.

Problems (b) - (e) below can be answered with or without use of the matrix A from part (a).
a) Is this transformation one-to-one? For this and all other short answer questions on this test, some explanation is needed.)
b) What is the null space of A ?
c) What is the column space of A ?
d) Is A invertible? (No need to find the inverse if it exists.)

MATH 294 FALL ? FINAL \# 1 MAKE-UP
2.8.30 Consider the homogeneous system of equations $B \vec{x}=\overrightarrow{0}$, where

$$
B=\left[\begin{array}{rrrrr}
0 & 1 & 0 & -3 & 1 \\
2 & -1 & 0 & 3 & 0 \\
2 & -3 & 0 & 0 & 4
\end{array}\right], \vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right], \text { and } \overrightarrow{0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

a) Find a basis for the subspace $W \subset \Re^{5}$, where $W=$ set of all solutions of $B \vec{x}=\overrightarrow{0}$.
b) Is $B 1-1$ (as a transformation of $\left.\Re^{5} \rightarrow \Re^{3}\right)$? Why?
c) Is $B: \Re^{5} \rightarrow \Re^{3}$ onto? Why?
d) Is the set of all solutions of $B \vec{x}=\left[\begin{array}{l}3 \\ 0 \\ 0\end{array}\right]$ a subspace of \Re^{5} ? Why?

