$\mathbf{2.8}$ Linear Transformation II

MATH 294 SPRING 1987 PRELIM 3 # 3

Consider the subspace of C^2_{∞} given by all things of the form 2.8.1

$$\vec{x}(t) = \left[\begin{array}{c} a\sin t + b\cos t \\ c\sin t + d\cos t \end{array} \right],$$

where a,b,c & d are arbitrary constants. Find a matrix representation of the linear transformation

$$T(\vec{x}) = D\vec{x}$$
, where $D\vec{x} \equiv \vec{x}$.

carefully define any terms you need in order to make this representation. Hint: A good basis for this vector space starts something like this

$$\left\{ \left(\begin{array}{c} \sin t \\ 0 \end{array}\right), \ldots \right\}.$$

MATH 294 SPRING 1987 PRELIM 3 # 5

The idea of eigenvalue λ and eigenvector **v** can be generalized from matrices and 2.8.2 \Re^n to linear transformations and their related vector spaces. If $T(\mathbf{v}) = \lambda \mathbf{v}$ (and

 $\mathbf{v} \neq 0$) then λ is an eigenvalue of T, and \mathbf{v} is its associated eigenvector. For the subspace of $\mathbf{x}(t)$ in C_{∞}^1 with $\mathbf{x}(0) = \mathbf{x}(1) = 0$ find an eigenvalue and eigenvector of $T(\mathbf{x}) = D^2 \mathbf{x}$, where $D^2 \mathbf{x} \equiv \ddot{\mathbf{x}} - \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \mathbf{x}$. What is the kernel of T?

MATH 294 spr97 FINAL # 2 T is linear transformation from C_{∞}^2 to C_{∞}^2 which is given by $T(\mathbf{x}) = \dot{\mathbf{x}}$ 2.8.3

PRELIM 3 **MATH 294 FALL 1987** #14

2.8.4Find the kernel of the linear transformation

$$T(\mathbf{x}(t)) \equiv \begin{bmatrix} x_1' \\ x_2' \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ -4 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

where T transforms C_{∞}^2 into C_{∞}^2

MATH 294 FALL 1997 PRELIM 3
$$\# 5$$

 $(\lceil x \rceil) \qquad \lceil x+y \rceil$

Define $T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix} \right) \equiv \begin{bmatrix} x+y \\ x-z \\ y+z \end{bmatrix}$, which is a linear transformation of \Re^3 into itself.

- a) Is T = 1-1?
- **b**) Is T onto?

2.8.5

- c) Is T an isomorphism?

Substantiate your answers.

MATH 294 FALL 1987 FINAL #1 T is a linear transformation of \Re^3 into \Re^2 such that 2.8.6

$$T\begin{bmatrix}1\\-1\\2\end{bmatrix} = \begin{bmatrix}2\\1\end{bmatrix}, T\begin{bmatrix}2\\1\\0\end{bmatrix} = \begin{bmatrix}1\\0\end{bmatrix}, T\begin{bmatrix}1\\1\\1\end{bmatrix} = \begin{bmatrix}1\\-1\end{bmatrix}.$$

- **a**) Is T 1-1?
- **b**) Determine the matrix of T relative to the standard bases in \Re^3 and \Re^2 .

MATH 294 FALL 1987 FINAL # 7a Consider the boundary value problem

- $X'' + \lambda X = 0$, $0 < x < \pi$, $X(0) = X(\pi) = 0$, where λ is a given real number.
- **a**) Is the set of all solutions of this problem a subspace of $C_{\infty}[0,\pi]$? why?
- **b**) Let W = set of all functions X(x) in $C_i nfty[0,\pi]$ such that $X(0) = X(\pi) = 0$. Is $T \equiv D^2 - \lambda$ linear as a transformation of W into $C_{\infty}[0, \pi]$? Why?
- c) For what values of λ is Ker(T) nontrivial?
- d) Choose one of those values of λ and determine Ker(T)

MATH 294 FALL 1989 PRELIM 3 # 3

2.8.8Let W be the following subspace of \Re^3 ,

$$W = Comb\left(\begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 2\\1\\0 \end{bmatrix}, \begin{bmatrix} 3\\3\\-3 \end{bmatrix} \right)$$

that
$$\begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
 is a basis for W .

a) Show For b) and c) below, let T be the following linear transformation $T: W \to \Re^3$,

$$T\left(\left[\begin{array}{c}w_1\\w_2\\w_3\end{array}\right]\right) = \left[\begin{array}{ccc}1&0&-1\\0&0&0\\0&0&0\end{array}\left[\begin{array}{c}w_1\\w_2\\w_3\end{array}\right]\right]$$

for those $w = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}$ in \Re^3 which belong to W.

[You are allowed to use a) even if you did not solve it.]

- **b**) What is the dimension of Range(T)? (Complete reasoning, please.
- c) What is the dimension of Ker(T)? (Complete reasoning, please.

MATH 294 FALL 1989 FINAL # 7

2.8.9Let $T: \Re^2 \to \Re^2$ be the linear transformation given in the standard basis for \Re^2 by

$$T\left(\left[\begin{array}{c}x\\y\end{array}\right]\right) = \left[\begin{array}{c}x+y\\0\end{array}\right].$$

- **a**) Find the matrix of T in the standard basis for \Re^2
- b) Show that $\beta = \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right)$ is also a basis for \Re^2 . In c) below, you may use the result of b) even if you did not show it.
- c) Find the matrix of T in the basis β given in b). (I.e., in $T: \Re^2 \to \Re^2$ both copies of \Re^2 have the basis β .

SPRING 1990? **MATH 294** PRELIM 2 # 4

2.8.10 Let A be a linear transformation from a vector space V to another vector space U. Let $(\vec{v}_1, \ldots, \vec{v}_n)$ be a basis for V and let $(\vec{u}_1, \ldots, \vec{u}_n)$ be a basis for U. Suppose it is known that

 $A(\vec{v}_1) = 2u_2$ $A(\vec{v}_2) = 3u_3$ $A(\vec{v}_i) = (i+1)\vec{u}_{i+1}$ $A(\vec{v}_{n-1}) = n\vec{u}_n$ and $A(\vec{v}_n) = 0 \leftarrow \text{zero vector in } U$.

Can you find $A(\vec{v})$ in terms of the \vec{u}_i 's where

$$\vec{v} = \vec{v}_1 + \vec{v}_2 + \ldots + \vec{v}_n = \sum_{i=1}^n \vec{v}_i$$

MATH 294 FALL 1991 FINAL # 8

T/F2.8.11

- c) If $T: V \to W$ is a linear transformation, then the range of T is a subspace of V.
- **d**) If the range of $T: V \to W$ is W, then T is 1-1.
- If the null space of $T: V \to W$ is $\{0\}$, then T is 1-1. **e**)
- **f**) Every change of basis matrix is a product of elementary matrices.
- **g**) If $T: U \to V$ and $S: V \to W$ are linear transformations, and S is not 1-1, then $ST: U \to W$ is not 1-1. If V is a vector space with an inner product, (,), if $\{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_n\}$ is an or-
- h) thonormal basis for V, and if \vec{v} is a vector in V, then $\vec{v} = \sum_{i=1}^{n} (\vec{v}, \vec{w}_i) \vec{w}_i$.
- $T: V_n \to V_n$ is an isomorphism if and only if the matrix which represents T in **i**) any basis is non-singular.
- **j**) If S and T are linear transformations of V_n into V_n , and in a given basis, S is represented by a matrix A, and T is represented by a matrix B, then ST is represented by the matrix AB

-note- Matrices are not necessarily square.

MATH 294 SPRING 1992 PRELIM 3 # 5

- **2.8.12** The vector space V_3 has the standard basis $S = (\vec{e_1}, \vec{e_2}, \vec{e_3})$ and the basis B = $(2\vec{e}_2, -\frac{1}{2}\vec{e}_1, \vec{e}_3).$
 - **a**) Find the change of basis matrices (B:S) and (S:B). If a vector \vec{v} has the

representation $\begin{vmatrix} 1\\1\\1\end{vmatrix}$ in the standard basis, find its representation $\beta(\vec{v})$ in the *B*

- basis. b) A transformation T is defined as follows: $T\vec{v}$ = the reflection of \vec{v} across the x-zplane in the standard basis. (For reflection, in V_2 the reflection of $a\vec{i} + b\vec{j}$ across the x axis would be $a\vec{i} - b\vec{j}$. Find a formula for T in the standard basis. Why is T a linear transformation? Find T_B , the matrix of T in the B basis.
- **c**)
- d) Interpret T geometrically in the B basis, i.e., describe T_B in terms of rotations, reflections, etc.

MATH 294 FALL 1992 FINAL # 6

- **2.8.13** Let $C^2(-\infty,\infty)$ be the vector space of twice continuously differentiable functions on $-\infty < x < \infty$ and $C^0(infty, \infty)$ be the vector space of continuous functions on $-\infty < x < \infty.$
 - a) Show that the transformation $L: C^2(\infty,\infty) \to C^0(-\infty,\infty)$ defined by Ly = $\frac{\partial^2 y}{\partial x^2} - 4y$ is linear.
 - b) Find a basis for the null space of L. Note: You must show that the vectors you choose are linearly independent.

MATH 293 SPRING 1995 FINAL # 2

2.8.14 Let P^3 be the vector space of polynomials of degree ≤ 3 , and let $L: P^3 \to P^3$ be given by

$$L(p)(t) = t \frac{\partial^2 p}{\partial t^2}(t) + 2p(t).$$

- **a**) Show that L is a linear transformation.
- **b**) Find the matrix of L in the basis $(1, t, t^2, t^3)$.
- c) Find a solution of the differential equation

$$t\frac{\partial^2 p}{\partial t^2} + 2p(t) = t^3.$$

Do you think that you have found the general solution?

MATH 293 SPRING 1995 FINAL # 3

- **2.8.15** Let V be the vector space of real 3×3 matrices.
 - **a**) Find a basis of V. What is the dimension of V?

Now consider the transformation $L: V \to V$ given by $L(A) = A + A^T$.

- **b**) Show that L is a linear transformation.
- c) Find a basis for the null space (kernel) of L.

MATH 294 SPRING 1997 FINAL # 10

2.8.16 Let P_2 be the vector space of polynomials of degree ≤ 2 , equipped with the inner product

$$< p(t), q(t) > = \int_{-1}^{1} p(t) q(t) dt$$

Let $T:P_2\to P_2$ be the transformation which sends the polynomial p(t) to the polynomial

$$(1-t^2)p''(t) - 2tp'(t) + 6p(t)$$

- **a**) Show that T is linear.
- **b**) Verify that T(1) = 6 and T(t) = 4t. Find $T(t^2)$.
- c) Find the matrix A of T with respect to the standard basis $\epsilon = (1, t, t^2)$ for P_2 .
- **d**) Find the basis for Nul(A) and Col(A).
- e) Use the Gram-Schmidt process to find an orthogonal basis B for P_2 starting form ϵ .

MATH 294 FALL 1997 PRELIM 3 # 5

2.8.17 Let $T : \Re^2 \to \Re^2$ be the linear transformation that rotates every vector (starting at the origin) by θ degrees in the counterclockwise direction. Consider the following two bases for \Re^2 :

$$B = \left(\left[\begin{array}{c} 1\\0 \end{array} \right], \left[\begin{array}{c} 0\\1 \end{array} \right] \right),$$

and

$$C = \left(\left[\begin{array}{c} \cos \alpha \\ \sin \alpha \end{array} \right], \left[\begin{array}{c} -\sin \alpha \\ \cos \alpha \end{array} \right] \right).$$

- **a**) Find the matrix $[T]_B$ of T in the standard basis B.
- **b**) Find the matrix $[T]_C$ of T in the basis C. Does $[T]_C$ depend on the angle α ?

MATH 294 FALL 1997 FINAL # 9

2.8.18 Consider the vector space V of 2 matrices. Define a transformation $T: V \to V$ by $T(A) = A^T$, where A is an element of V (that is, it is a 2×2 matrix), and A^T is the transpose of A.

a) Show that T is linear transformation.

The value λ is an *eigenvalue* for T, and $\vec{v} \neq 0$ is the corresponding eigenvector, if $T(\vec{v}) = \lambda \vec{v}$. (*Note*: here \vec{v} is a 2 × 2 matrix).

- b) Find an eigenvalue of T (You need only find one, not all of them). (*Hint*: Search for matrices A such that T(A) is a scalar multiple of A.)
- c) Find an eigenvector for the particular eigenvalue that y = ou found in part (b).
- d) Let W be the complete eigenspace of T with the eigenvalue from part (b) above. Find a basis for W. What is the dimension of W?

MATH 294 SPRING 1998 FINAL #6

- **2.8.19** Let $T: P^2 \to P^3$ be the transformation that maps the second order polynomial p(t) into (1+2t)p(t),
 - a) Calculate T(1), T(t), and $T(t^2)$.
 - **b**) Show that T is a linear transformation.
 - c) Write the components of $T(1), T(t), T(t^2)$ with respect to the basis $C = \{1, t, t^2, 1 + t^3\}.$
 - d) Find the matrix of T relative to the bases $B = \{1, t, t^2\}$ and $C = \{1, t, t^2, 1 + t^3\}$.

MATH 294 FALL 1998 PRELIM 3 #1**2.8.20** Consider the following three vectors in \Re^3

$$\vec{y} = \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \vec{u}_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \text{and} \vec{u}_2 = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}.$$

[Note: \vec{u}_1 and \vec{u}_2 are orthogonal.].

- **a**) Find the orthogonal projection of \vec{y} onto the subspace of \Re^3 spanned by \vec{u}_1 and
- What is the distance between \vec{y} and $span\{\vec{u}_1, \vec{u}_2\}$? **b**)
- c) In terms of the standard basis for \Re^3 , find the matrix of the linear transformation that orthogonally projects vectors onto $span\{\vec{u}_1, \vec{u}_2\}$.

MATH 294 FALL 1998 FINAL #4

2.8.21Here we consider the vector spaces P_1, P_2 , and P_3 (the spaces of polynomials of degree 1,2 and 3).

- **a**) Which of the following transformations are linear? (Justify your answer.) i) $T: P_1 \to P_3, \ T(p) \equiv t^2 p(t) + p(0)$ ii) $T: P_1 \rightarrow P_1, T(p) \equiv p(t) + t$
- **b**) Consider the linear transformation $T: P_2 \to P_2$ defined by $T(a_0 + a_1t + a_2t^2) \equiv$ $(-a_1 + a_2) + (-a_0 + a_1)t + (a_2)t^2.$ with respect to the standard basis of $P_2, \beta = \{1, t, t^2\}$, is $A = \begin{bmatrix} 0 & -1 & 1 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Note that an eigenvalue/eigenvector pair of

A is
$$\lambda = 1, v = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
. Find an eigenvaue/eigenvector (or eigenfunction) pair of

- T. That is, find λ and g(t) in P_2 such that $T(g(t)) = \lambda g(t)$.
- c) Is the set of vectors in $P_2\{3+t, -2+t, 1+t^2\}$ a basis of P_2 ? (Justify your answer.)

SPRING 19? PRELIM 2 **MATH 293** #4

2.8.22 Let M be the transformation from P^n to P^n such that

$$Mp(t) = \frac{1}{2}[p(t) + p(-t)](t \text{ real})$$

- **a**) If n = 3 find the matrix of this transformation with respect to the basis $\{1, t, t^2, t^3\}.$
- **b**) Let N = I M. What is Np(t) in terms of p(t)? Show that $M^2 = MM = M$, MN = MN = 0

MATH 294 FALL 1987 PRELIM 2 # 3 MAKE-UP

- **2.8.23** a) If A is an $n \times n$ matrix with rank(A) = r, then what is the dimension of the vector space of all solutions of the system of linear equations $A\vec{x} = \vec{0}$
 - **b**) What is the dimension of the kernel of the linear transformation from \Re^n to \Re^n which has A for its matrix in the standard basis.

MATH 294 FALL 1987 PRELIM 2 # 14 MAKE-UP

2.8.24 Show that if $T: V \to W$ is a linear transformation from V to W, and kernel $(T) = \vec{0}$, then T is 1-1. (Recall: kernel(T) = $\left\{ \vec{v} \in V | T(\vec{v}) = \vec{0} \right\}$.)

MATH 294 FALL 1987 # 6 MAKE-UP FINAL **2.8.25** Let $T: \Re^2 \to \Re^4$ be a linear transformation.

a) If
$$T\begin{bmatrix} 2\\7 \end{bmatrix} = \begin{bmatrix} 3\\1\\0\\2 \end{bmatrix}$$
 and $T\begin{bmatrix} 3\\-1 \end{bmatrix} = \begin{bmatrix} -1\\0\\1\\0 \end{bmatrix}$, what is $T\begin{bmatrix} -9\\26 \end{bmatrix}$?
b) What are $T\begin{bmatrix} 1\\0 \end{bmatrix}$ and $T\begin{bmatrix} 0\\1 \end{bmatrix}$?

c) What is the matrix of T in the basis $\begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix}$ for \Re^2 , and the standard basis for \Re^4 ?

MATH 294 SUMMER 1989 PRELIM 2 #1

2.8.26 a)

b) Find a basis for ker(L), where L is linear transformation from \Re^4 to \Re^3 defined by

$$L(\vec{x}) \equiv \begin{bmatrix} 1 & 2 & -4 & 3 \\ 1 & 2 & -2 & 2 \\ 2 & 4 & -2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

- c) What is the dimension of ker(L)?
- **d**) Is the vector $\vec{y} = \begin{bmatrix} 1\\1\\2 \end{bmatrix}$ in range(L)? (Justify your answer.) If so, find all vectors 2 \vec{x} in \Re^4 which satisfy $L(\vec{x}) = \vec{y}$

PRELIM 2 **MATH 294 SUMMER 1989** # 4

2.8.27 Let P be the linear transformation from \Re^3 to \Re^3 defined by

$$P\begin{bmatrix} x\\ y\\ z\end{bmatrix} = \begin{bmatrix} x\\ y\\ 0\end{bmatrix}.$$

[1]

- **a**) Find a basis for ker(P).
- **b**) Find a basis for range(P).

c) Find all vectors
$$\vec{x}$$
 in \Re^3 such that $P\vec{x} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$

d) Find all vectors \vec{x} in \Re^3 such that $P\vec{x} = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 2 \end{bmatrix}$.

MATH 293 SPRING 1995 PRELIM 3 # 4

2.8.28 Let $L_{\theta} : \Re^2 \to \Re^2$ be the linear transformation which represent orthogonal projection onto the line ℓ_{θ} forming angle θ with the x-axis.

- a) Find the matrix T of L_{θ} (with respect to the standard basis of \Re^2).
- **b**) Is L_{θ} invertible. Explain your answer geometrically.
- c) Find all the eigenvalues of T.

MATH 294 FALL 1998 PRELIM 2 # 1

2.8.29 The unit square *OBCD* below gets mapped to the parallelogram OB'C'D' (on the $x_1 - x_3$ plane) by the linear transformation $T : \Re^2 \to \Re^3$ shown.

Problems (b) - (e) below can be answered with or without use of the matrix A from part (a).

- a) Is this transformation one-to-one? For this and all other short answer questions on this test, some explanation is needed.)
- **b**) What is the null space of A?
- c) What is the column space of A?
- d) Is A invertible? (No need to find the inverse if it exists.)

MATH 294 FALL ? FINAL # 1 MAKE-UP 2.8.30 Consider the homogeneous system of equations $B\vec{x} = \vec{0}$, where

$$B = \begin{bmatrix} 0 & 1 & 0 & -3 & 1 \\ 2 & -1 & 0 & 3 & 0 \\ 2 & -3 & 0 & 0 & 4 \end{bmatrix}, \ \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}, \ \text{and} \ \vec{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

- **a**) Find a basis for the subspace $W \subset \Re^5$, where W = set of all solutions of $B\vec{x} = \vec{0}$.
- **b**) Is B 1-1 (as a transformation of $\Re^5 \to \Re^3$)? Why?
- c) Is $B: \Re^5 \to \Re^3$ onto? Why?

d) Is the set of all solutions of
$$B\vec{x} = \begin{bmatrix} 3\\ 0\\ 0 \end{bmatrix}$$
 a subspace of \Re^5 ? Why?