2.9 Orthogonality

MATH 294 SPRING 1987 PRELIM 3 \#8

2.9.1 Find c_{3} so that:

$$
\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}+c_{4} \vec{v}_{4}
$$

where $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}1 \\ 0 \\ -1 \\ 0 \\ 0\end{array}\right], \vec{v}_{3}=\left[\begin{array}{c}3 \\ 2 \\ 3 \\ -4 \\ -4\end{array}\right], \vec{v}_{4}=\left[\begin{array}{c}0 \\ 0 \\ 0 \\ 2 \\ -2\end{array}\right]$
Note that the four vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$, and \vec{v}_{4} are mutually orthogonal.
MATH 294 SPRING 1992 FINAL \# 6
2.9.2 Given $A=\left(\begin{array}{lll}5 & 1 & 0 \\ 1 & 5 & 0 \\ 0 & 0 & 4\end{array}\right)$
a) Find an orthogonal matrix C such that $C^{-1} A C$ is diagonal. (The columns of an orthogonal matrix are orthonormal vectors.)
b) If $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=a \vec{v}_{1}+b \vec{v}_{2}+d \vec{v}_{3}$
where \vec{v}_{1}, \vec{v}_{2}, and \vec{v}_{3} are the columns of C, find the scalars a, b and d.
MATH 293 FINAL SPRING 1993 \# 3
2.9.3 Consider the matrix

$$
A=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1 \\
-1 & 1 & 0
\end{array}\right)
$$

a) Find the vectors $\vec{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$ such that a solution \vec{x} of the equation $A \vec{x}=\vec{b}$ exists.
b) Find a basis for the column space $\mathcal{R}(A)$ of A
c) It is claim that $\mathcal{R}(A)$ is a plane in \Re^{3}. If you agree, find a vector n in \Re^{3} that is normal to this plane. Check your answer.
d) Show that n is perpendicular to each of the columns of A. Explain carefully why this is true.

MATH 293 FALL 1994
 PRELIM 3 \# 5

2.9.4 True/False

Answer each of the following as True or False. If False, explain, by an example.
a) Every spanning set of \Re^{3} contain at least three vectors.
b) Every orthonormal set of vectors in \Re^{5} is a basis for \Re^{5}.
c) Let A be a 3 by 5 matrix. Nullity A is at most 3 .
d) Let W be a subspace of \Re^{4}. Every basis of W contain at least 4 vectors.
e) In $\Re^{n},\|c X\|=|c|\|X\|$
f) If A is an $n \times n$ symmetric matrix, then rank $A=n$.

MATH 294 FALL 1997 PRELIM 3 \# 4
2.9.5 Consider \mathcal{W}, a subspace of \Re^{4}, defined as $\sqsupseteq\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ where $\vec{v}_{1}=\left[\begin{array}{c}0 \\ -1 \\ 1 \\ 0\end{array}\right], \vec{v}_{2}=$ $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$.
\mathcal{W} is a "plane" in \Re^{4}.
a) Find a basis for a subspace \mathcal{U} of \Re^{4} which is orthogonal to \mathcal{W}.

Hint: Find all vectors $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$ that are perpendicular to both \vec{v}_{1} and \vec{v}_{2}.
b) What is the geometrical nature of \mathcal{U} ?
c) Find the vector in \mathcal{W} that is closest to the vector $\vec{y}=\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ 1\end{array}\right]$

MATH 294 unknown unknown \#?
2.9.6 Let W be the subspace of \Re^{3} spanned by the orthonormal set $\left\{\frac{(1,2,-1)}{\sqrt{6}}, \frac{(1,0,1)}{\sqrt{2}}\right\}$. Let $X=(1,1,1)$. Find a vector Z, in W, and a vector Y, perpendicular to every vector in W, such that $X=Z+Y$. What is the distance from X to W ?

MATH 294 SPRING 1999 PRELIM 3 \# 1
2.9.7 Let the functions $f_{1}=1, f_{2}=t f_{3}=t^{2}$ be three "vectors" which span a subspace, S, in the vector space of continuous functions on the interval $-1 \leq t \leq 1(C[-1,1])$, with inner product

$$
<f, g>\equiv \int_{-1}^{1} f(t) g(t) d t
$$

Find three orthogonal vectors, $u_{1}=1, u_{2}=?, u_{3}=?$ that span S.

MATH 294 SPRING ? FINAL \# 10

2.9.8 Consider the vector space $C_{0}(-\pi, \pi)$ of continuous functions in the interval $-\pi \leq$ $x \leq \pi$, with inner product conjugation. Consider the following set of functions $b=\left\{\ldots e^{-2 i x}, e^{-i x}, 1, e^{i x}, e^{2 i x}, \ldots\right\}$.
a) Are they linearly independent? (Hint: Show that they are orthogonal, that is $\left(e^{i n x}, e^{i m x}\right)=0$ for $n \neq m$. $\left(e^{i n x}, e^{i m x}\right) \neq 0$ for $n=m$.
b) Ignoring the issue of convergence for the moment, let $f(x)$ be in $C_{0}(-\pi, \pi)$. Express $f(x)$ as a linear combination of the basis B. That is,

$$
f=\ldots a_{-2} e^{-2 i x}+a_{-1} e^{-i x}+a_{0}+a_{1} e^{i x}+a_{2} e^{2 i x}+\ldots
$$

find the coefficients $\left\{a_{n}\right\}$ of each of the basis vectors. Use the results from (a).
c) How does this relate to the Fourier series? Are the coefficients $\left\{a_{n}\right\}$ real or complex? What if B is a set of arbitrary orthogonal functions?

MATH 294 SPRING 1999 PRELIM 2 \# 2a

2.9 .9 a) Three matrices A, B, and P have:
i) $A=P^{-1} B P$,
ii) B is symmetric $\left(B^{T}=B\right)$, and
iii) P is orthogonal $\left(P^{T}=P^{-1}\right)$.

Is it necessary true that A is symmetric? If so, prove it. If not, find a counter example (say three 2×2 matrices A, B and P where (i) - (iii) above are true and A is not symmetric).

MATH 294 SPRING 1999 PRELIM 3 \# 4

2.9.10 The temperature, $u(x, y)$, in a rectangular plate was measured at six locations. The (x, y) coordinates and measured temperatures, u, are given in the table below.

x	y	u
0	0	11
$\frac{\pi}{2}$	0	19
0	1	1
$\frac{\pi}{2}$	1	14

Assume that $u(x, y)$ is supposed to obey the equation (this is not a PDE question)

$$
u(x, y)=\beta_{0}+\beta_{1} e^{-y} \sin x
$$

Set up, but do not solve, a system of equations for the parameters, β_{0}, β_{1}, that provide the least-squares best fit of the measured data to the equation above.
Extra credit Neatly write out a sequence of Matlab commands that will give you the parameters β_{0}, β_{1}.

