4.2 Line Integrals

MATH 294 FALL 1982 FINAL \# 7 294FA82FQ7.tex
4.2.1 Consider the curve given parametrically by

$$
x=\cos \frac{\pi t}{2}, \quad y=\sin \frac{\pi t}{2}, \quad z=t
$$

a) Determine the work done by the force field

$$
\mathbf{F}_{\mathbf{1}}=y \mathbf{i}-\mathbf{j}+x \mathbf{k}
$$

along this curve from $(1,0,0)$ to $(0,1,1)$.
b) Determine the work done along the same part of this curve by the field

$$
\mathbf{F}_{\mathbf{2}}=y z \mathbf{i}+x z \mathbf{j}+x y \mathbf{k}
$$

MATH 294 SPRING 1983 FINAL \# 9 294SP83FQ9.tex
4.2.2 Consider the function $f(x, y, z)=x^{2}+y+x z$.
a) What is $\underline{F}=\operatorname{grad}(f)=\underline{\nabla} f$?
b) What is $\operatorname{div} \underline{F}=\underline{\nabla} \cdot \underline{F}$? (\underline{F} from part (a) above.)
c) What is curl $\underline{F}=\underline{\nabla} \times \underline{F}$? (\underline{F} from part (a) above.)
d) Evaluate $\int_{C} \underline{F} \cdot d \underline{R}$ for \underline{F} in $\operatorname{part}(\mathrm{a})$ above and C the curve shown:

MATH 294 SPRING 1984 FINAL \# 8 294SP84FQ8.tex
4.2.3 $\quad \mathbf{F}=4 x^{3} y^{4} \mathbf{i}+4 x^{4} y^{3} \mathbf{j}$. Find a potential function for \mathbf{F} and use it to evaluate the line integral of \mathbf{F} over any convenient path from $(1,2)$ to $(-3,4)$.

MATH 294 SPRING 1984 FINAL \# 9 294SP84FQ9.tex
4.2.4 Evaluate $\int_{C} \mathbf{F} \cdot \mathbf{d R}$ where $\mathbf{F}=-\cos x \mathbf{i}-2 y^{2} \mathbf{k}$ and $C: x=t, y=\pi, z=3 t^{2} t$: $1 \rightarrow 2$.

MATH 294 FALL 1984 FINAL \# 3 294FA84FQ3.tex
4.2.5 Let a force field \mathbf{F} be given by:

$$
\mathbf{F}=2 \mathbf{i}+z^{2} \mathbf{j}+2 y z \mathbf{k}
$$

Evaluate

$$
\int_{C} \mathbf{F} \cdot \mathbf{T} d s
$$

if \mathbf{T} is the unit tangent vector along the curve C defined by

$$
C: x=\cos t, y=\sin t, z=t
$$

and t runs from zero to 2π.
MATH 294 SPRING 1985 FINAL \# 18 294SP85FQ18.tex
4.2.6 Find the work done in moving from $P_{0}=(0,0)$ to $P_{1}=(\pi, 0)$ along the path $y=\sin x$ in the force field $\mathbf{F}(x, y)=x \mathbf{i}+y \mathbf{j}$.
a) 0
b) $\frac{1}{2}$
c) $\frac{\pi^{2}}{2}$
d) none of these.

MATH 294 FALL 1986 FINAL \# 10 294FA86FQ10.tex
4.2.7 The curve C is the polygonal path (5 straight line segments) which begins at $(1,0,1)$, passes consecutively through $(2,-1,3),(3,-2,4),(0,3,7),(2,1,4)$, and ends at $(1,1,1) . \vec{F}$ is the vector field $\vec{F}(x, y, z)=y^{2} \vec{i}+(2 x y+z) \vec{j}+y \vec{k}$. Evaluate $\int_{C} \vec{F} \cdot d \vec{R}$

MATH 294 FALL 1987 PRELIM 1 \# 3 294FA87P1Q3.tex
4.2.8 Evaluate $\int_{C} \mathbf{F} \cdot \mathbf{d r}$ where

$$
\mathbf{F}(x, y, z)=\frac{-y}{x^{2}+y^{2}} \mathbf{i}+\frac{x}{x^{2}+y^{2}} \mathbf{j}+\mathbf{k}
$$

and C is the curve $x=\cos t, y=\sin t, z=t 0 \leq t \leq 2 \pi$

MATH 294 SPRING 1989 FINAL \# 4 294SP89FQ4.tex
4.2.9 Evaluate, by any means, $\int_{a}^{b} \mathbf{F} \cdot d \mathbf{R}$ where the path is the helix shown from a at $(2,0,0)$ to b at $(2,0,4)$. The vector field \mathbf{F} is given by $\mathbf{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$.

MATH 294 FALL 1987 PRELIM 1 \# 6 294FA87P1Q6.tex
4.2.10 For $\mathbf{F}=\frac{1}{x y z+1}(y z \mathbf{i}+x z b f j+x y \mathbf{k})$.
evaluate int $_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is the piece-wise smooth curve comprising two smooth curves: $C_{1}: z=x^{2}, y=0$ from $(0,0,0)$ to $(1,0,1)$; and C_{2} : the straight line from $(1,0,1)$ to $(2,2,2)$, as shown below.

MATH 294 FALL 1987 MAKE UP PRELIM 1 \# 3 294FA87MUP1Q3.tex
4.2.11 Compute $\int_{C} \vec{F} \cdot d \vec{r}$ for

$$
\vec{F}(x, y, z)=2 x y^{3} z^{4} \hat{i}+3 x^{2} y^{2} z^{4} \hat{j}+4 x^{2} y^{3} z^{3} \hat{k}
$$

and C given parametrically by:
$\vec{r}(t)=\cos \pi t \hat{i}+e^{-t^{2}} \sin \frac{\pi}{2} t \hat{j}+\left(2 t-t^{2}\right) \cos \pi t \hat{k}$, for $0<t<1$.

MATH 294 FALL 1987 MAKE UP PRELIM 1 \# 4 294FA87MUP1Q4.tex
4.2.12 Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ where

$$
\begin{gathered}
\vec{F}(x, y, z)=-y \hat{i}+x \hat{j}+\frac{z}{x^{2}+1} \hat{k} \\
C: \vec{r}(t)=\cos t \hat{i}+\sin t \hat{j}+t \hat{k}, 0 \leq t \leq 2 \pi
\end{gathered}
$$

MATH 294 FALL 1987 MAKE UP FINAL \# 2 294FA87MUFQ2.tex
4.2.13 Evaluate $\int_{C} y d x+x d y+\frac{z}{z^{2}+1} d z$ where

$$
C: \cos t^{3} \hat{i}+\sin t \hat{j}+2 t \sin t \hat{k}, 0 \leq t \leq \frac{\pi}{2}
$$

MATH 294
SPRING 1988 PRELIM 1 \# 4 294SP88P1Q4.tex
4.2.14 Evaluate the integral $\int_{A}^{B} \mathbf{F} \cdot d \mathbf{R}$ for the vector field

$$
\mathbf{F}=\left[\sin (y) e^{x \sin y}\right] \mathbf{i}+\left[x \cos (y) e^{x \sin y}\right] \mathbf{j}
$$

for the path shown below between the points A and B .
[HINT !!: $\frac{\delta}{\delta x}\left[e^{x \sin y}\right]=\left[\sin y e^{x \sin y}\right]$ and $\frac{\delta}{\delta y}\left[e^{x \sin y}\right]=\left[x \cos y e^{x \sin y}\right]$.]

MATH 294 SPRING 1988 PRELIM 1 \# 5 294SP88P1Q5.tex
4.2.15 Evaluate the path integral $\oint_{C} \mathbf{F} \cdot d \mathbf{R}$ for the vector field

$$
\mathbf{F}=z \mathbf{j}
$$

and the closed curve which is the intersection of the plane $z=\frac{4}{3} x$ and the circular cylinder $x^{2}+y^{2}=9$.

MATH 294 FALL 1989 PRELIM 2 \# 2 294FA89P2Q2.tex
4.2.16 Let $\mathbf{F}=z^{2} \hat{i}+y^{2} \hat{j}+2 x z \hat{k}$.
a) Check that curl $\mathbf{F}=0$.
b) Find a potential function for \mathbf{F}.
c) Calculate

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

where C is the curve

$$
\mathbf{r}=(\sin t) \hat{i}+\left(\frac{4 t^{2}}{\tau^{2}}\right) \hat{j}+(1-\cos t) \hat{k}
$$

as t ranges from 0 to $\frac{\tau}{2}$.
MATH 294 FALL 1989 FINAL \# 6 294FA89FQ6.tex
4.2.17 Consider the vector fields

$$
\mathbf{F}(x, y, z)=\beta z^{2} \hat{i}+2 y \hat{j}+x z \hat{k},(x, y, z) \epsilon \mathrm{R}^{3}
$$

depending on the real number (parameter) β.
a) Show that \mathbf{F} is conservative if, and only if, $\beta=\frac{1}{2}$
b) For $\beta=\frac{1}{2}$, find a potential function.
c) For $\beta=\frac{1}{2}$, evaluate the line integral

$$
\int_{C} \mathbf{F} \cdot d \mathbf{R}
$$

where C is the straight line from the origin to the point $(1,1,1)$.
MATH 294 SPRING 1990 PRELIM 2 \# 5 294SP90P2Q5.tex
4.2.18 Given $\mathbf{F}(x, y, z)=\left(-y+\sin \left(x^{3} z\right)\right) \hat{i}+\left(x+\ln \left(1+y^{2}\right)\right) \hat{j}-z e^{x y} \hat{k}$, compute $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is the (closed) curve of intersection of the hemisphere $z=\left(5-x^{2}-\right.$ $\left.y^{2}\right)^{\frac{1}{2}}$ and the cylinder $x^{2}+y^{2}=4$, oriented as shown.

MATH 294 SPRING 1990 PRELIM 2 \#6 6 294SP90P2Q6.tex
4.2.19 Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y, z)=z e^{x z} \hat{i}-\hat{j}+x e^{x z} \hat{k}$ and C is a path made up of the straight-line segments $(2,1,0)$ to $(0,0,0),(0,0,0)$ to $(0,0,2)$, and $(0,0,2)$ to $(1,2,3)$, joined end-to-end as shown below.

MATH 294 SPRING 1990 FINAL \# $1 \quad{ }^{294 \text { SP90FQ1.tex }}$
4.2.20 Evaluate

$$
\int_{C}(y+z) d x+(z+x) d y+(x+y) d z
$$

where C is the curve parameterized by $\vec{r}(t)=e^{t} \cos \pi t \hat{i}+\left(t^{3}+1\right)^{\frac{1}{2}}(\hat{j}+\hat{k}), 0 \leq t \leq 2$.
MATH 294 FALL 1990 PRELIM 1 \# 3 294FA90P1Q3.tex
4.2.21 a) Integrate the function $f(x, y, z)=x y+y+z$ over the path $\mathbf{R}(t)=\sin t \hat{i} \cos t \hat{j}-$ $2 t \hat{k}$, where $0 \leq t \leq \frac{\pi}{2}$.
b) Determine the work done by the force $\mathbf{F}(x, y, z)=x \hat{i}-y \hat{j}+z \hat{k}$ along this path as it traveled from $(0,1,0)$ to $(1,0,-\pi)$.
MATH 294 FALL 1990 MAKE UP FINAL \# $1 \quad{ }_{\text {294FA90MUFQ1.tex }}$
4.2.22 Given the surface $z=x^{2}+2 y^{2}$. At the point $(1,1)$ in the $x-y$ plane:
a) determine the direction of greatest increase of z.
b) determine a unit normal to the surface.

Given the vector field $\mathbf{F}=2 y^{2} z \hat{i}+4 x y z \hat{j}+\alpha x y^{2} \hat{k}$,
c) find the value of α for \mathbf{F} to be conservative and then determine its potential.
d) determine the work of the conservative vector field along the straight line from the point $(1,2,3)$ to the point $(3,4,5)$.

MATH 294 SPRING 1991 PRELIM 3 \# 4 294SP91P3Q4.tex
4.2.23 one of the following vector fields is conservative:
i) $\quad \mathbf{F}=(2 y+z) \mathbf{i}+(x+z) \mathbf{j}+(x+y) \mathbf{k}$
ii) $\quad \mathbf{F}=\left(y^{2}+z^{2}\right) \mathbf{i}+\left(x^{2}+z^{2}\right) \mathbf{j}+\left(x^{2}+y^{2}\right) \mathbf{k}$.
a) Determine which vector field is conservative.
b) Find a potential function for the conservative field.
c) Evaluate the line integral of the conservative vector field along an arbitrary path from the origin $(0,0,0)$ to the point $(1,1,1)$.
MATH 294 FALL 1991 PRELIM $3 \quad \# 1 \quad$ 294FA91P3Q1.tex
4.2.24 Calculate the work done by $\mathbf{F}=z \mathbf{i}+x \mathbf{j}+y \mathbf{k}$ along the path $\mathbf{R}(t)=(\sin t) \mathbf{i}+$ $(\cos t) \mathbf{j}+t \mathbf{k}$ as t varies from 0 to 2π.
MATH 294 FALL 1991 PRELIM 3 \# 3 294FA91P3Q3.tex
4.2.25 Evaluate the line integral

$$
\int_{C}\left[\left(x^{2}-y^{2}\right) d x-2 x d y\right]
$$

along each of the following paths:
i) $\quad C_{1}: y=2 x^{2}$, from $(0,0)$ to $(1,2)$;
ii) $\quad C_{2}: x=t^{2}, y=2 t$, from $t=0$ to $t=1$;
iii) along C_{1} from (0,0) to $(1,2)$ and back along C_{2} from $(1,2)$ to $(0,0)$. Check this answer using Green's Theorem.
MATH 294 FALL 1991 FINAL \#6 ${ }^{294 F A 91 F Q 6 . t e x ~}$
4.2.26 Find the work done in moving a particle from $(2,0,0)$ to $\left(0,2,3 \frac{\pi}{2}\right)$ along a right circular helix

$$
\mathbf{R}(t)=2 \cos t \mathbf{i}+2 \sin t \mathbf{j}+3 t \mathbf{k}
$$

if the force field \mathbf{F} is given by

$$
\mathbf{F}=\left(4 x y-3 x^{2} z^{2}\right) \mathbf{i}+2 x^{2} \mathbf{j}-2 x^{3} z \mathbf{k}
$$

MATH 294 SPRING 1992 PRELIM 3 \# 1 294SP92P3Q1.tex
4.2.27 Calculate the work done by the force field

$$
\vec{F}=x^{3} \hat{i}+(\sin y-x) \hat{j}
$$

along the following paths
a) $C_{1}: \vec{R}_{1}(t)=\sin t \hat{i}+t \hat{j}, 0 \leq t \leq \pi$.
b) $C_{2}: \vec{R}_{2}(t)=t \hat{j}, 0 \leq t \leq \pi$.

MATH 294 SPRING 1992 FINAL \#6 6 294SP92FQ6.tex
4.2.28 Evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{R}$ where $\mathbf{F}(x, y)=\left(x+y^{2}\right) \hat{i}+(2 x y+1) \hat{j}$ and C is the curve given by $\mathbf{R}(t)=\sin \left(t^{2} \pi\right) \hat{i}+t^{3} \hat{j}, 0 \leq t \leq 1$.

MATH 294 FALL 1992 FINAL \#2 294 FA92FQ2.tex
4.2.29 Consider the curve $C: \mathbf{r}(t)=t \cos t \mathbf{i}+t \sin t \mathbf{j}+t \mathbf{k}, 0 \leq t \leq 4 \pi$, which corresponds to the conical spiral shown below.
a) Set up, but do not evaluate, the integral yielding the arc-length of C.
b) Compute $\int_{C}(y+z) d x+(z+x) d y+(x+y) d z$.

MATH 294 SPRING 1993 FINAL \# 8 294SP93FQ8.tex
4.2.30 Evaluate $\int_{C} y z^{2} d x+x z^{2} d y+2 x y z d z$, where C is any path from the origin to the point $(1,1,2)$.

MATH 294 FALL 1993 PRELIM 1 \# 6 294FA93P1Q6.tex
4.2.31 Evaluate $\int_{C} 2 x y z d x+x^{2} z d y+x^{2} y d z$, where C is any path from $(2,3,-1)$ to the origin.

MATH 294 FALL 1993 FINAL \# 3 294FA93FQ3.tex
4.2.32 For $\mathbf{F}=3 \hat{i}-y \hat{j}$, evaluate $\nabla \times F$.

For the same vector \mathbf{F}, evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ along the spiral curve $r=2 \theta$ that runs from $\theta=0$ to $\theta=5 \frac{\pi}{2}$.
Note that in cartesian coordinates $d \mathbf{r}=d x \hat{i}+d y \hat{j}$. If you wish to use polar coordinates, $d \mathbf{r}=d r \hat{r}+r d \theta \hat{\theta}$.

MATH 294 SPRING 1994 FINAL \# 2 294SP94FQ2.tex
4.2.33 Consider the force field

$$
\mathbf{F}(x, y, z)=\frac{x \mathbf{i}+y \mathbf{j}+z \mathbf{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}
$$

a) Show \mathbf{F} to be conservative in the region $x>0, y>0, z>0$.
b) Find a potential function $f(x, y, z)$ for \mathbf{F}.

MATH 294 SPRING 1994 FINAL \# 4 294SP94FQ4.tex
4.2.34 Consider the two-dimensional force field

$$
\mathbf{F}(x, y)=\frac{2 x}{x^{2}+y^{2}} \mathbf{i}+\frac{2 y}{x^{2}+y^{2}} \mathbf{j} .
$$

a) Show \mathbf{F} to be conservative in the quadrant $x>0, y>0$ and find a potential function $f(x, y)$ for \mathbf{F}.
b) Find the work done by \mathbf{F} along the path $\mathbf{R}(t)=t \mathbf{i}+t^{2} \mathbf{j}$, from $t=1$ to $t=2$.

MATH 294 FALL 1994 PRELIM 1 \# 1 294FA94P1Q1.tex
4.2.35 C is the line segment from $(0,1,2)$ to $(2,0,1)$.

a) which of the following is a parametrization of C ?
i) $\quad x=2 t, y=1-t, z=2-t, 0 \leq t \leq 1$.
ii) $\quad x=2-2 t, y=-2 t, z=1-2 t, 0 \leq t \leq \frac{1}{2}$.
iii) $\quad x=2 \cos t, y=\sin t, z=1+\sin t, 0 \leq t \leq \frac{\pi}{2}$.
b) evaluate $\int_{C} 3 z \hat{j} \cdot d \vec{r}$.

MATH 294 FALL 1994 FINAL \# $1 \quad$ 294FA94FQ1a.tex
4.2.36 Evaluate $\int_{C} \cos y d x-x \sin y d y+d z$ where C is some curve from the origin to $(2$, $\left.\frac{\pi}{2}, 5\right)$,

MATH 294 SPRING 1995 PRELIM 1 \# 3 294SP95P1Q3.tex
4.2.37 a) Find a potential function for $\vec{F}=(2 x y z+\sin x) \hat{i}+x^{2} z \hat{j}+x^{2} y \hat{k}$.
b) Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$, where C is any curve from $(\pi, 0,0)$ to $(1,1, \pi)$.

MATH 294 SPRING 1995 FINAL \# $1 \quad{ }^{294 S P 95 F Q 1 . t e x ~}$
4.2.38 Find

$$
\int_{C} \vec{F} \cdot d \vec{r}
$$

where $\vec{F}(x, y)=y \hat{i}+x \hat{j}$ and C is the curve given by $\vec{r}(t)=e^{\sin (t)} \hat{i}+t \hat{j}, 0 \leq t \leq \pi$.
MATH 294 FALL 1995 PRELIM 2 \# $1 \quad$ 294FA95P2Q1b.tex
4.2.39 Evaluate $\int_{C} y^{2} z^{2} d x+2 x y z^{2} d y+2 x y^{2} z d z$, where C is a path from the origin to the point ($5,2,-1$).

MATH 294 FALL 1995 PRELIM 1 \# 2 294FA95P1Q2.tex
4.2.40 a) Evaluate $\oint_{C_{1}} 2 d x+x d y$ where C_{1} is the unit circle counterclockwise.
b) Evaluate $\oint_{C_{2}} 2 d x+x d y$ where C_{2} is the part of C_{1} where $y \geq 0$.

MATH 294 SPRING 1996 PRELIM 1 \# 1 294SP96P1Q1a.tex
4.2.41 Evaluate $\int_{(0,0,0)}^{(4,0,2)} 2 x z^{3} d x+3 x^{2} z^{2} d z$ on any path.

MATH 294 FALL 1996 PRELIM 1 \# 1 294FA96P1Q1.tex
4.2.42 For $\mathbf{F}=4 \hat{i}-y \hat{j}$. evaluate $\nabla \times \mathbf{F}$.

For the same vector \mathbf{F}, evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ along the spiral curve $r=2 \theta$ that runs from $\theta=0$ to theta $=\frac{5 \pi}{2}$.

MATH 294 FALL 1996 PRELIM 1 \# 2 294FA96P1Q2.tex
4.2.43 A three-dimensional curve C is parametrically represented by

$$
\mathbf{r}(t)=t \cos t \hat{i}+t \sin t \hat{j}+t \hat{k}, 0 \leq t \leq 4 \pi
$$

Describe the curve and sketch it, clearly indicating the start and end points. Set up, but do not evaluate, an integral over t that gives the length of C.

MATH 294 FALL 1996 PRELIM 1 \# 6 294FA96P1Q6.tex
4.2.44 The following figures show vector fields derived from real systems:
a) the electric field \mathbf{E} emanating from a point charge near a conducting sphere (also shown are constant lines of potential $\nabla f=\mathbf{E}$, and
b) the velocity field \mathbf{V} surrounding Jupiter's Great Red Spot.

For these vector fields, state whether the following quantities are $>0,<0,=0$, or indeterminate from what's given.
Provide mathematical reasons for your choices.
For part a

$$
\begin{gathered}
\int_{A}^{B} \mathbf{E} \cdot d \mathbf{r} \\
\oint \mathbf{E} \cdot d \mathbf{r}
\end{gathered}
$$

For part b with the area A of interest being some ellipsoidal boundary of the Red Spot

$$
\begin{gathered}
\iint_{A}(\nabla \times \mathbf{V}) \cdot \hat{n} d A \\
\iint_{A} \nabla \cdot \mathbf{V} d A
\end{gathered}
$$

\hat{n} is out of the paper

MATH 293 FALL 1996 PRELIM 3 \# 3 293FA96P3Q3.tex
4.2.45 Let C be the curve parametrized by $\mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k}$ with $-2 \leq t \leq 2$. Let $\mathbf{F}=\frac{1}{5} \mathbf{k}$
a) Sketch the curve C.
b) From your sketch explain why $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is a positive or negative.
c) Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.

MATH 293 FALL 1996 FINAL \# 3 293FA96FQ3.tex
4.2.46 Integrals. Any method allowed except MATLAB.
a) Evaluate $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$ with $\mathbf{F}=\mathbf{r}$ and S the sphere of radius 7 centered at the origin. [\mathbf{n} is the outer normal to the surface, $\mathbf{r} \equiv x \hat{i}+y \hat{j}+z \hat{k}]$.
b) Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ with $\mathbf{F}=\sin (y) e^{z} \hat{i}+x \cos (y) e^{z} \hat{j}+x \sin (y) e^{z} \hat{k}$ and the path C is made up of the sequence of three straight line A to B, B to D , and D to E .

MATH 293 FALL 1997 PRELIM 3 \# 5 293FA97P3q5.tex
4.2.47 a) Find the work $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ done by the force $\mathbf{F}=6 x^{2} \hat{i}+6 x y \hat{j}$ along the straight line segment C from the point $(1,0)$ to the point $(5,8)$.
b) Now C is the unit circle oriented counter-clockwise.

Calculate the flux $\int_{C} \mathbf{F} \cdot \mathbf{n} d s$ if $\mathbf{F}=y^{2} \hat{i}+x y \hat{j}$. Note: Green's Theorem may not be used on this problem
MATH 294 SPRING 1994 FINAL \# $1 \quad{ }^{294 S P 94 F Q 1 . t e x ~}$
4.2.48 A wire of density $\delta(x, y, z)=9 \sqrt{y+2}$ lies along the curve

$$
\mathbf{R}(t)=\left(t^{2}-1\right) \mathbf{j}+2 t \mathbf{k},-1 \leq t \leq 1 .
$$

Find (a) its total mass and (b) its center of mass. Then sketch the wire and center of mass on a suitable coordinate plane.

MATH 293 FALL 1998 PRELIM 3 \# 4 293FA98P3Q4.tex
4.2.49 Calculate the work done by the vector field

$$
\mathbf{F}=x z \mathbf{i}+y \mathbf{j}+x^{2} \mathbf{k}
$$

along the line segment from $(0,-1,0)$ to $(1,1,3)$.
MATH 293 FALL 1998 PRELIM 3 \# $5 \quad$ 293FA98P3Q5.tex
4.2.50 Find the circulation and the flux of the vector field

$$
\mathbf{F}=2 x \mathbf{i}-3 y \mathbf{j}
$$

in the $x-y$ plane around and across $x^{2}+y^{2}=4$ traversed once in a counter-clockwise direction. Do this by direct calculation, not by Green's theorem.

MATH 294 FALL 1998 FINAL \# $1 \quad$ 293FA98FQ1.tex
4.2.51 If $\nabla \times \mathbf{F}=0$, the vector field \mathbf{F} is conservative.
a) Show that $\mathbf{F}=\left(\sec ^{2} x+\ln y\right) \mathbf{i}+\left(\frac{x}{y}+z e^{y}\right) \mathbf{j}+e^{y} \mathbf{k}$ is conservative.
b) Calculate the value of the integral

$$
\begin{gathered}
\int_{r_{1}}^{r_{2}} \mathbf{F} \cdot d \mathbf{r} \\
\text { along any path from } \mathbf{r}_{1}=\frac{\pi}{4} \mathbf{i}+\mathbf{j} \text { to } \mathbf{r}_{2}=\mathbf{j}+\mathbf{k}
\end{gathered}
$$

