4.3 Green's Theorem

MATH 294 FALL 1982 FINAL \# 8b ${ }^{294 F A 82 F Q 8 b . t e x ~}$
4.3.1 Use Green's theorem to find the area of the ellipse given parametrically by

$$
x=a \cos \theta, \quad y=b \sin \theta, \quad 0 \leq \theta \leq 2 \pi
$$

MATH 294 SPRING 1983 FINAL \#7 7 294SP83FQ7.tex
4.3.2 Evaluate the following integral for the path on the $x-y$ plane shown

$$
\oint_{C} \underline{F} \cdot d \underline{R} \text { for } \underline{F}=(3+2 y) \underline{i}+(4-5 x) \underline{j}
$$

MATH 294 FALL 1986 FINAL \# 6 294FA86FQ6.tex
4.3.3 In the $x y$-plane, let c_{0} be the circle $x^{2}+y^{2}=25$, let c_{1} be the circle $(x-2)^{2}+y^{2}=1$, let c_{2} be the circle $(x+2)^{2}+y^{2}=1$, and let R be the region inside c_{0} but outside c_{1} and $c_{2} .\left(R=(x, y) \mid x^{2}+y^{2} \leq 25,(x-2)^{2}+y^{2} \geq 1,(x+2)^{2}+y^{2} \geq 1\right)$. Suppose $M, N, \frac{\delta M}{\delta y}, \frac{\delta N}{\delta x}$ are continuous and that $\frac{\delta M}{\delta y}=\frac{\delta N}{\delta x}$ throughout the region R. Now let c_{3} be the circle $x^{2}+(y+2)^{2}=1, c_{4}$ the circle $x^{2}+y^{2}=16$. Indicate which of the following statements are necessarily true.
a) $\oint_{c_{2}} M d x+N d y=0$
b) $\oint_{c_{3}} M d x+N d y=0$
c) $\oint_{c_{4}} M d x+N d y=0$
d) $\oint_{c_{3}}^{c_{4}} M d x+N d y=\oint_{c_{4}} M d x+N d y$
e) $\oint_{c_{2}}^{c_{3}} M d x+N d y=\oint_{c_{1}}^{c_{4}} M d x+N d y$
f) $\oint_{c_{4}}^{c_{2}} M d x+N d y=\oint_{c_{1}}^{c_{1}} M d x+N d y+\oint_{c_{2}} M d x+N d y$

MATH 294 SPRING 1987 PRELIM 1 \# 3 294SP87P1Q3.tex
4.3.4 Evaluate (by any means) $\oint \mathbf{F} \cdot d \mathbf{R}$ for the closed circular path shown using

$$
\mathbf{F}=(x y-x) \hat{i}+\left(\frac{-x^{2}}{2}\right) \hat{j}
$$

Unitcircle :

MATH 294 FALL 1987 PRELIM 1 \# $1 \quad$ 294FA87P1Q1.tex
4.3.5 Evaluate

$$
\int_{C}\left(x^{2}-2 y\right) d x+\left(y^{3}+2 x\right) d y
$$

where C is the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$
MATH 294 FALL 19876 MAKE UP PRELIM 1 \# $2 \quad$ 294FA87MUP1Q2.tex
4.3.6 Evaluate $\oint_{C} x y^{2} d x+2 x^{2} d y$, where C is the closed curve sketched below

MATH 294 FALL 1987 FINAL \# 5 294FA87FQ5.tex
4.3.7 a) Compute the area of the shaded region shown below, whose boundary consists of $C_{1}=$ the line segment $(-\pi, 0)$ on the x-axis together with the curve $C_{2}: \underline{r}(t)=$ $t \cos t \hat{i}+2 t \sin t \hat{j}, 0 \leq t \leq \pi$

b) For $\underline{F}=14 x^{4} \hat{i}-3 x \hat{j}$, compute $\int_{C} \underline{F} \cdot d \underline{r}$, where $C=C_{1}+C_{2}$ is the boundary of the region discussed in (a).

MATH 294 SPRING 1988 PRELIM 1 \# 3 294SP88P1Q3.tex
4.3.8 Evaluate the path integral $\oint_{C} \mathbf{F} \cdot d \mathbf{R}$ for

$$
\mathbf{F}=\sqrt{1+x^{7}} \mathbf{i}+\left[x+\sin \left(y^{2}\right)\right] \mathbf{j}
$$

on the closed curve shown.
MATH 294 FALL $1989 \quad$ PRELIM $1 \quad \# 3 \quad$ 294FA89P1Q3.tex
4.3.9 Calculate the circulation of the vector field

$$
\mathbf{F}=\left(\frac{y}{\left(x^{2}+y^{2}\right)}\right) \mathbf{i}+x \mathbf{j}
$$

around the circle $x^{2}+y^{2}=2$. (Note that $2 \cos ^{2} \theta=1+\cos 2 \theta$ and $2 \sin ^{2} \theta=1-\cos 2 \theta$).

MATH 294 FALL 1989 PRELIM 1 \# 4 294FA89P1Q4.tex
4.3.10 Show that the value of

$$
\oint x y^{2} d x+\left(x^{2} y+2 x\right) d y
$$

around any square depends only on the area of the square and not on its location in the plane.

$$
\text { Circulation }=\oint \mathbf{F} \cdot d \mathbf{R}=\oint M d x+N d y
$$

MATH 294 SPRING 1990 FINAL \# 2 294SP90FQ2.tex
4.3.11 Determine the area enclosed by the curve (cycloid) parameterized by

$$
\mathbf{r}(t)=(t-\sin t) \mathbf{i}+(1-\cos t) \mathbf{j}, 0 \leq t \leq 2 \pi
$$

and the x -axis, as depicted below. (Hint: Green)

MATH 294 SPRING 1990 FINAL \# 9 294SP90FQ9.tex
4.3.12 Compute $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}=4 z \mathbf{i}-2 x \mathbf{j}+2 x \mathbf{k}$, and C is the curve of intersection of the cylinder $x^{2}+y^{2}=1$ and the plane $z=y+1$. When viewed from above (looking down the z-axis), C has clockwise orientation.
MATH 294 SUMMER 1990 PRELIM 1 \# 4 294SU90P1Q4.tex
4.3.13 Use Green's theorem in the plane to show that the circulation of the vector field $\mathbf{F}=x y^{2} \mathbf{i}+\left(x^{2} y+x\right) \mathbf{j}$ about any smooth curve in the plane is equal to the area enclosed by the curve.
MATH 294 SPRING 1990 PRELIM 1 \# 4 294SP90P1Q4.tex
4.3.14 Use Green's Theorem in the plane to find the counterclockwise circulation and the outward flux of the field $\mathbf{F}(\mathbf{x}, \mathbf{y})=\mathbf{x y i}+\mathbf{y}^{\mathbf{2}} \mathbf{j}$ over the boundary of the region enclosed by the parabola $y=x^{2}$ and the line $y=x$ in the first quadrant.
MATH 294 SPRING 1992 PRELIM 3 \# 6 294SP92P3Q6.tex
4.3.15 Apply Green's theorem to find the counterclockwise circulation for the field

$$
\vec{F}=(x-y) \hat{i}+(x+y) \hat{j}
$$

around the boundary of the unit square $0 \leq x \leq 1,0 \leq y \leq 1$.

MATH 294 SPRING 1992 FINAL \# 8 294SP92FQ8.tex
4.3.16 Let S be the surface of the solid bounded by the paraboloid $z=x^{2}+y^{2}$ and the plane $z=4$.
a) Compute the outward flux of the vector field

$$
\vec{F}(x, y, z)=3 y \hat{i}-x z \hat{j}+y z^{2} \hat{k}
$$

across the surface S.
b) Compute the circulation of \vec{F} around the circle $x^{2}+y^{2}=4, z=4$ in the counterclockwise direction as viewed from above.
MATH 294 SPRING 1992 PRELIM 2 \# 4 294SP92P2Q4.tex
4.3.17 Given the vector field $\mathbf{F}(x, y)=x^{2} \mathbf{i}+x y \mathbf{j}$ and the closed curve C shown below, compute:
a) the (counter-clockwise) circulation of \mathbf{F} around C;
b) the flux of \mathbf{F} across C.

MATH 294 FALL 1993 PRELIM 1 \# 1 294FA93P1Q1.tex
4.3.18 Evaluate $\int_{C} d x+x^{2} d y$ where C is the counterclockwise boundary of the rectangle $0 \leq x \leq 2,0 \leq y \leq 1$.

MATH 294 SPRING 1994 FINAL \# 2 294SP94FQu2.tex
4.3.19 Let D be the quarter disk $x^{2}+y^{2} \leq 1, x \geq 0, y \geq 0$ and C be its boundary curve. Use Green's Theorem to find

$$
\oint_{C} x d x, \quad \oint_{C} y d x
$$

MATH 294 FALL 1994 PRELIM 1 \# 4 294FA94P1Q4.tex
4.3.20 Evaluate $\oint_{C} x d x+x y d y$ where C is the triangle shown.

You may use Green's Theorem.

MATH 294 SPRING 1995 PRELIM 1 \# 4 294SP95P1Q4.tex
4.3.21 Evaluate $\oint_{C}(y d x-x d y)$ over the counterclockwise path shown below.

MATH 294 SPRING 1995 FINAL \# 1 294SP95FQ1a.tex
4.3.22 a) Find

$$
\int_{C}\left(x^{2}+y^{2}+z^{2}\right) d s
$$

where C is the curve given by $\vec{r}(t)=\sin (t) \hat{i}+\cos (t) \hat{j}+8 \hat{k}, 0 \leq t \leq \pi$. Sketch the curve C.
b) Evaluate

$$
\oint_{C} \vec{F} \cdot d \vec{r}
$$

where C is the circle $x^{2}+y^{2}=1, z=0$, and $\vec{F}(x, y, z)=e^{\sin (x+y+z)} \hat{i}+e^{\sin (x+y+z)} \hat{j}+$ $\operatorname{arccot}(\cosh (x y)) \hat{k}$.
MATH 294 SUMMER 1995
QUIZ 2 \# 1 294SU95P2Q1.tex
4.3.23 Evaluate the line integral

$$
\oint_{C} d x+x d y+3 d z, \text { where } C=\text { boundary of the hemisphere }
$$

$$
x^{2}+y^{2}+z^{2}=1, z \geq 1
$$

MATH 294 FALL 1995 PRELIM 1 \# 2 294FA95P1Q2.tex

4.3.24 a) Evaluate $\oint_{C_{1}} 2 d x+x d y$ where C_{1} is the unit circle counterclockwise.
b) Evaluate $\oint_{C_{2}} 2 d x+x d y$ where C_{2} is the part of C_{1} where $y \geq 0$.

MATH 294 SPRING 1996 PRELIM 1 \# 4 294SP96P1Q4.tex
4.3.25 a) Sketch the level curve $f(x, y)=3$, where $f(x, y)=x-y^{2}$. Show some point (a, b) on this curve, giving a and b explicitly. Compute $\vec{\nabla} f(a, b)$ and show it on the same figure. What is the relation between $\vec{\nabla} f$ and the level curve?
b) Evaluate $\int_{C_{1}} x d y-y d x$ and $\int_{C_{2}} x d y+y d x$ where C_{1} is the unit circle counterclockwise and C_{2} is the semicircular part of C_{1} where $x \geq 0$.

MATH 294 SPRING 1996 FINAL \# $1 \quad{ }^{294 S P 96 F Q 1 . t e x ~}$
4.3.26 You might need Green's Theorem somewhere in this problem.
a) If $u(x, y)$ is a solution to the Laplace Equation in the plan, what is the value of the line integral $\int_{C}-u_{y} d x+u_{x} d y$ when C is a simple closed curve oriented counterclockwise?
b) Evaluate $\vec{\nabla}\left(x^{3}-3 x y^{2}\right)$ and $\nabla^{2}\left(x^{3}-3 x y^{2}\right)$.
c) Evaluate

$$
\int_{C_{1}} 6 x y d x+\left(3 x^{2}-3 y^{2}\right) d y
$$

where C_{1} is the unit circle oriented counterclockwise.

MATH 293 FALL 1998 FINAL \# 3 293FA98FQ3.tex

4.3.27 Use Green's Theorem to calculate the counterclockwise circulation of the vector field

$$
\mathbf{F}=\left(y+e^{x} \ln y\right) \mathbf{i}+\frac{e^{x}}{y} \mathbf{j}
$$

around the boundary of the region that is bounded above by the curve $y=3-x^{2}$ and below by the curve $y=1+x^{2}$.

