4.5 Surface Area

MATH 294 FALL 1982 FINAL \#8 294FA82FQ8.tex
4.5.1 Find the area of the surface cut from the plan

$$
x+y+z=1
$$

by the cylinder

$$
x^{2}+y^{2}=1
$$

MATH 294 SPRING 1983 FINAL \# 8 294SP83FQ8.tex
4.5.2 Find the surface area of the paraboloid $z-x^{2}-y^{2}=0$ over that part of the surface for which x and y are inside the curve $x=\cos (t), y=\sin (t), 0 \leq t \leq 2 \pi$.
MATH 294 SPRING 1987 PRELIM 1 \# 7 294SP87P1Q7.tex
4.5.3 The base of a box is the unit square in the first quadrant of the (x, y) plane with corners at $(0,0,0),(0,1,0),(1,1,0)$, and $(1,0,0)$. Points on the crooked top of the otherwise rectangular box satisfy $3 z-4 x-12 y=3$. What is the area of the top of the box?

MATH 294 FALL 1987 MAKE UP PRELIM 1 \# $1 \quad$ 294FA87MUP1Q1.tex
4.5.4 Let S denote the portion of the sphere $x^{2}+y^{23}+z^{2}=25$ that is above the cone $z=2 \sqrt{2} \sqrt{x^{2}+y^{2}}$.
Evaluate

$$
\iint_{S} x d \sigma
$$

MATH 294 SPRING 1988 PRELIM 1 \# 2 294SP88P1Q2.tex
4.5.5 The region of interest is the inside of some ellipse drawn on the plane $z=\frac{4 x}{3}$. Its projection onto the $x-y$ plane (is also an ellipse, of course, and) has area 9π. What is the area of the region of interest?
MATH 294 FALL 1989 PRELIM 1 \# 2 294FA89P1Q2.tex
4.5.6 Find the surface area of the part of the paraboloid $z=1-x^{2}-y^{2}$ that lies above the $x-y$ plane.

MATH 294 FALL 1989 FINAL \# 1 294FA89FQ1.tex
4.5.7 Consider the surface given by

$$
z^{2}=2 x y, z \geq 0
$$

lying over the square $0 \leq x \leq 1,0 \leq y \leq 1$ in the $x-y$ plane.
Find its surface area.
MATH 294 SPRING 1990 PRELIM 2 \# 4 294SP90P2Q4.tex
4.5.8 Determine the surface area of the portion of the cone $z^{2}=x^{2}+y^{2}$ between the planes $z=1$ and $z=2$.

MATH 294 SPRING 1990 FINAL \# 6 294SP90FQ6.tex
4.5.9 Compute the surface area of the portion of the saddle, $z=x^{2}-y^{2}$, that is contained in the cylinder $x^{2}+y^{2}=1$.
MATH 294 SUMMER 1990 PRELIM 1 \# 5 294SU90P1Q5.tex
4.5.10 Sketch the part of the surface $z+x^{2}+y^{2}=2$ in the first octant and calculate its surface area.
MATH 294 SPRING 1991 PRELIM 3 \# 1 294SP91P3Q1.tex
4.5.11 Consider the conical surface $4 y^{2}+4 z^{2}-x^{2}=0$
a) Determine a field of unit vectors normal to this surface.
b) Determine the area of the portion of the surface between the planes $x=0$ and $x=2$.

MATH 294 FALL 1991 PRELIM 3 \# 2 294FA91P3Q2.tex
4.5.12 a) The total charge Q on a surface S is given by the formula

$$
Q=\iint_{S} \rho(x, y, z) d \sigma
$$

where ρ is the surface charge density. Find Q if S is the hemispherical surface

$$
x^{2}+y^{2}+z^{2}=4, \text { with } z \geq 0
$$

and

$$
\rho=z\left(1-\frac{z^{2}}{4}\right)^{\frac{1}{2}} .
$$

b) The average charge $\vec{\rho}$ is defined in terms of Q and the area A of S by $\vec{\rho}=\frac{Q}{A}$. Determine the average charge on S.
MATH 294 SPRING 1992 PRELIM 3 \#3 3 294SP92P3Q3.tex
4.5.13 Evaluate the surface integral

$$
\iint_{S}(1+4 z) d \sigma
$$

where S is the portion of the paraboloid $z=x^{2}+y^{2}$ between the two planes $z=1$ and $z=4$.

MATH 294 SPRING 1992 FINAL \# $7 \quad$ 294SP92FQ7.tex
4.5.14 Find the surface area of the portion of the graph of the function $f(x, y)=x y$ which lies inside the cylinder $x^{2}+y^{2}=1$.
MATH 294 FALL 1992 FINAL \# 9a ${ }^{294 F A 92 F Q 9 a . t e x ~}$
4.5.15 Find the surface area,

$$
A=\iint_{S} d \sigma
$$

where S is the portion of the plane $2 x+3 y+4 z=12$ in the first octant.
MATH 294 FALL 1993 PRELIM 1 \# $3 \quad{ }^{294 F A 93 P 1 Q 3 . t e x ~}$
4.5.16 Find the area of the saddle-like surface

$$
z=x^{2}-y^{2}, \quad x^{2}+y^{2} \leq b^{2}
$$

where b is a constant.

MATH 294 SUMMER 1995 QUIZ 2 \# 2 294SU95P2Q2.tex
4.5.17 Evaluate the surface integral

$$
\iint_{S}(y \hat{i}-z \hat{j}+z \hat{k}) \cdot \hat{n} d \sigma
$$

where S is the sphere $x^{2}+y^{2}+(z-2)^{2}=9$.

MATH 294 FALL 1995 PRELIM 1 \# 3 294FA95P1Q3.tex

4.5.18 a) Find a normal vector field to the surface S given by $z-x^{2}-5 y^{2}=0, z \leq 20$.
b) Make a sketch showing the relationship between area elements, $d \sigma$ on S and area elements $d A$ on R, the projection of S onto the (x, y) plane, and use this sketch to explain the equation relating $d \sigma$ to $d A$
c) Set up, but do not evaluate, a double integral for the surface area of S.

MATH 294 SPRING 1996 PRELIM 1 \# 2a 294SP96P1Q2a.tex

4.5.19 Find the total area of the surface S given by $z=x^{2}+y^{2}, z \leq 25$. Sketch S.

MATH 293 FALL 1996 FINAL \# 5 293FA96FQ5.tex
4.5.20 Surface. Find the surface area of the planar surface ABD shown by any means except MATLAB.

