4.7 Stokes Theorem

MATH 294 FALL 1984 FINAL \# 3b ${ }^{2944 \mathrm{FA} 84 \mathrm{FQ}} \mathrm{F}$ b.tex
4.7.1 Let \vec{F} be defined as

$$
\vec{F}=\operatorname{curl} \vec{G}
$$

where $\vec{G}=x^{2} z^{2} \hat{i}+x y \hat{j}+x z \hat{k}$.
Evaluate

$$
\iint_{S} \vec{F} \cdot \hat{n} d \sigma
$$

if S is the surface

$$
z=4-x^{2}-y^{2}, z \geq 0
$$

and \hat{n} is the unit normal on S.
MATH 294 SPRING 1985 FINAL \# 19 294SP85FQ19.tex
4.7.2 Find the integral $\iint_{S}(\nabla \times \vec{F}) \cdot \hat{n} d \sigma$ where \vec{F} is the vector field $z\left(x^{2}-y^{2}\right) \hat{i}+z^{2}\left(x^{2}+\right.$ $\left.y^{2}\right) \hat{j}+\left(x^{2}+y^{2}\right) \hat{k}, S$ is the surface $z=\sqrt{1-x^{2}-y^{2}}$ (upper hemisphere of sphere with radius 1 , centered at origin), and \hat{n} is the unit normal that points away from the origin.
a) 2π
b) $-\frac{\pi}{2}$
c) 0
d) $\frac{1}{2 \pi}$
e) none of these

MATH 294 SPRING 1985 FINAL \# 20 294SP85FQ20.tex
4.7.3 Find the integral $\iint_{S}(\nabla \times \vec{F}) \cdot \hat{n} d \sigma$ where \vec{F} is the same vector field in the previous problem, but now S is the entire sphere $x^{2}+y^{2}+z^{2}=1$, and \hat{n} is as above.
a) 2π
b) 4π
c) $-\pi$
d) $\frac{1}{\pi}$
e) none of these

MATH 294 FALL 1986 FINAL \# 9 294FA86FQ9.tex
4.7.4 Let S be the portion of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies below the plane $z=1$. Let \hat{n} be the normal vector field on S which points away from the origin. Let $\vec{F}(x, y, z)=$ $\frac{-y z}{x^{2}+y^{2}+1} \hat{i}+\frac{x z}{x^{2}+y^{2}+1} \hat{j}-\frac{x y z}{x^{2}+y^{2}+1} \hat{k}$. Compute $\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d \sigma$.

MATH 294 SPRING 1987 PRELIM 1 \# 6 294SP87P1Q6.tex
4.7.5 Consider the 3 dimensional vector field:

$$
\mathbf{F}=(2 x-y) \hat{i}+(x+z) \hat{j}+z^{2} \hat{k}
$$

a) Calculate $\operatorname{curl}(\mathbf{F})$ at $(1,1,1)$.
b) Imagine this vector field represents the velocity field for fluid flow. A very small paddle wheel is inserted in the flow at the point $(1,1,1)$ and held there with hands that don't upset the flow. Which direction should the axis of the wheel be oriented if it is to spin at a maximal rate? (indicate the direction with a unit vector).

MATH 294 SPRING 1987 FINAL \# 5 294SP87FQ5.tex
4.7.6 Evaluate the integrals below by any means. In each case, $\mathbf{F}=\left(y e^{z}+x\right) \mathbf{i}+(2 y-$ $z) \mathbf{j}+7 k, S$ is the surface of the unit sphere $x^{2}+y^{2}+z^{2}=1 . D$ is the interior of the sphere, and \mathbf{n} is the outward pointing unit normal of the sphere's surface. Hints: Each one of the integrals below is equal to at least one of the others. Volume of a sphere $=(4 / 3) \pi r^{3}$, surface area of a sphere $=4 \pi r^{2}$.
a) $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$.
b) $\iint_{S} d \sigma$.
c) $\iint_{D}^{S} \int z d V$.
d) $\iint_{D} \int \operatorname{div}(\operatorname{curl}(\mathbf{F})) d V$.
e) $\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot \mathbf{n} d \sigma$.

MATH 294 FALL 1987 PRELIM 1 \# 5 294FA87P1Q5.tex
4.7.7 Evaluate $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma$, where S is the portion of the paraboloid $z=x^{2}+$ y^{2} below the plane $z=4$, with outward unit normal \mathbf{n} (from the z-axis), and $\mathbf{F}(x, y, z)=x \cos \left(x z^{2}\right) \mathbf{i}+3 x \mathbf{j}+e^{x y} \sin x \mathbf{k}$.

MATH 294 FALL 1987 MAKE UP FINAL \# 5 294FA87MUFQ5.tex
4.7.8 Evaluate $\oint_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}(x, y, z)=-y \hat{i}+x \hat{j}+e^{\cos z^{2}} \hat{k}$, and C is the closed curve (ellipse) of intersection of the cylinder $x^{2}+y^{2}=4,-\infty<z<\infty$, with the plane $x+y+z=5$. The curve is oriented counterclockwise when viewed from above. (Hint: draw a picture.)

MATH 294 SPRING 1988 PRELIM 2 \# 8 294SP88P2Q8.tex
4.7.9 Evaluate the path integral $\oint_{C} \mathbf{F} \cdot d \mathbf{R}$ with

$$
\mathbf{F}=\left(x+e^{y^{2}}\right) \mathbf{j}
$$

for the curve parameterized by $\mathbf{R}=(\cos \theta) \mathbf{i}+(\sin \theta) \mathbf{j}+(\cos \theta) \mathbf{k}$ with $0 \leq \theta \leq 2 \pi$.

MATH 294 FALL 1988 PRELIM 3 \# 2 294FA88P3Q2.tex
4.7.10 Evaluate $\iint_{S_{1}} \nabla \times \mathbf{F} \cdot \mathbf{n} d \sigma$ where $\mathbf{F}=y \mathbf{i}+z \mathbf{j}+x \mathbf{k}, S_{1}$ is the path of the paraboloid $z=x^{2}+y^{2}$ below the plane $z=x+\frac{3}{4}$, and \mathbf{n} is a unit vector that is normal to the surface and has a positive x-component, i.e., $\mathbf{n} \cdot \mathbf{k}>0$.
MATH 294 FALL 1988 PRELIM 3 \# 3 294FA88P3Q3.tex
4.7.11 Using the same \mathbf{F} as in 2 above, evaluate $\iint_{S_{2}}{ }^{294 \mathrm{FA} 88 \mathrm{P} 3 \mathrm{Q} 3 . \mathrm{tex}} \mathrm{F} \cdot \mathbf{n} d \sigma$, where S_{2} is the part of the plane $z=x+\frac{3}{4}$ inside the paraboloid $z=x^{2}+y^{2}$.
MATH 294 FALL 1989 PRELIM 2 \# 4 294FA89P2Q4.tex
4.7.12 Calculate the circulation of the field

$$
x \sin \left(x^{2}\right) \mathbf{i}+x^{2} e^{y} \mathbf{j}+\left(z^{5}+x-y\right) \mathbf{k}
$$

around the intersection of the cylinder $x^{2}+y^{2}=1$ and the plane $x+z=1$ when it is traveled counterclockwise as seen from the point $(1,0,1)$.
(Hint: Stokes' Theorem may be helpful.)

MATH 294 SPRING 1990 PRELIM 2 \# $1 \quad$ 294SP90P2R1.tex

4.7.13 Consider the vector field $\mathbf{F}(x, y)=\left(2 x y^{3}-\sin ^{3} x\right) \mathbf{i}+\left(3 x^{2} y^{2}+3 x\right) \mathbf{j}$.
a) Find the curl of $\mathbf{F}(\nabla \times \mathbf{F})$.
b) Compute the circulation of \mathbf{F} for the counterclockwise path around a square with vertices $(1,0),(2,0),(2,1)$ and $(1,1)$.
MATH 294 FALL 1990 PRELIM 2 \# 2 294FA90P2Q2.tex
4.7.14 a) Show that the curl of the vector field $\mathbf{F}=y \sin z \mathbf{i}+x \sin z \mathbf{j}+x y \cos z \mathbf{k}$ vanishes.
b) Determine a potential f for this vector field.
c) Use the potential to evaluate the integral.

MATH 294 FALL 1990 FINAL \# 2 ${ }^{294 F A 90 F Q 2 . t e x}$

4.7.15 Consider the portion of the sphere $x^{2}+y^{2}+z^{2}=1$ in the first octant and the vector field $\mathbf{F}=y^{2} \mathbf{i}+z^{2} \mathbf{j}+x^{2} \mathbf{k}$. Use Stokes' Theorem to calculate the circulation of the vector field around the edge of this surface in a counter-clockwise direction when viewed from the first octant.
MATH 294 SPRING 1991 PRELIM 3 \# 3 294SP91P3Q3.tex
4.7.16 Calculate the circulation of the vector field $\mathbf{F}=x z \mathbf{i}+y z \mathbf{j}+z^{2} \mathbf{k}$ around the boundary of the triangle cut from the plane $x+y+z=1$ by the first octant, counterclockwise when viewed from above, in two different ways:
a) by direct calculation of the circulation around the edges;
b) using Stokes' Theorem.

MATH 294 SPRING 1991 FINAL \#2 294 SP91FQ2.tex
4.7.17 Consider the portion of the plane $x+y+2 z=2$ in the first octant and the vector field $\mathbf{F}=(x-y) \mathbf{k}$. Use Stokes' Theorem to calculate the circulation of the vector field around the edges of this surface in a counter-clockwise direction when viewed from above the plane in the first octant.

MATH 294 FALL 1991 FINAL \#2 294 FA91FQ2.tex
4.7.18 Let S be the portion of the spherical surface $x^{2}+y^{2}+z^{2}=1$ in the first octant and let C be the boundary of S. Determine, by any means, the circulation of the vector field $\mathbf{F}=y \mathbf{i}-x \mathbf{j}+z \mathbf{k}$ about the circuit C in a counterclockwise direction when viewed from the first octant.
MATH 294 SPRING 1992 PRELIM 3 \# 5 294SP92P3Q5.tex
4.7.19 Let C be the curve on the sphere $x^{2}+y^{2}+z^{2}=9$ made up of the three curves C_{1}, C_{2}, and C_{3} as shown.

The curve C_{1} lies in the $x z$-plane, $z=\sqrt{5}$, and C_{3} in the $y z$-plane. Calculate the circulation of the vector field $\vec{F}=2 y \hat{i}+3 x \hat{j}-z^{2} \hat{k}$ around the curve C in the direction indicated in the picture.

MATH 294 FALL 1992 FINAL \#5 294FA92FQ5.tex
4.7 .20
a) Evaluate $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma$, where S is the bottom half of the sphere $x^{2}+y^{2}+$ $(z-1)^{2}=1$, where \mathbf{n} denotes the downward unit normal, $\nabla \mathrm{x}(\cdot) \equiv \operatorname{curl}(\cdot)$, and $\mathbf{F}=x \cos \left(x z^{2}\right) \mathbf{i}+3 x \mathbf{j}+e^{x y} \sin x \mathbf{k}$.
b) Repeat part (a) when S is now the complete sphere $x^{2}+y^{2}+(z-1)^{2}=1$ and \mathbf{n} is the outward unit normal. (Hint: the answer to part (b) is independent of \mathbf{F}.)

MATH 294 SPRING 1993 FINAL \# 6 294SP93FQ6.tex
4.7.21 Use Stokes' Theorem to evaluate

$$
\oint_{C}-z d y+y d z
$$

where C is the circle of radius 3 on the plane $x+y+z=0$ and centered at the origin.
MATH 294 FALL 1993 PRELIM 1 \# 5 294FA93P1Q5.tex
4.7.22 Evaluate $\int_{C}(\mathbf{a} \times \mathbf{r}) \cdot d \mathbf{r}$ if \mathbf{a} is a constant vector and C is the boundary of the rectangle

$$
\left\{\begin{array}{r}
x=0 \\
0 \leq y \leq 2 \\
0 \leq z \leq 3 \\
\text { with normal vector } \mathbf{i}
\end{array}\right.
$$

You may use Stokes' Theorem.
MATH 294 SPRING 1995 PRELIM 1 \# 2 294SP95P1Q2.tex
4.7.23 Evaluate $\oint_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}=(y+x) \hat{i}-x \hat{j}+z x^{3} y^{2} \hat{k}$, and C is the unit circle in the x, y plane, i.e., $x^{2}+y^{2}=1, z=0$.
MATH 294 FALL 1995 PRELIM 2 \# 1 294FA95P2Q1.tex
4.7.24 a) Evaluate $\iint_{S_{1}} \operatorname{curl} \vec{F} \cdot \hat{n} d \sigma$ where S_{1} is the hemisphere $x^{2}+y^{2}+z^{2}=9, z \geq 0, \hat{n}$ points toward positive z, and $\vec{F}=y \hat{i}+8 x \hat{j}$.
b) Evaluate $\int_{C} y^{2} z^{2} d x+2 x y z^{2} d y+2 x y^{2} z d z$ where C is a path from the origin to the point $(5,2,-1)$.

MATH 294 SPRING 1996 FINAL \# 2 294SP96FQ2.tex
4.7.25 S is the surface $z=4-4 x^{2}-y^{2}$ (between $z=0$ and $z=4$) with unit normal vector field as shown.

a) Describe the curve C as $x(t), y(t)$.
b) Find a formula for the unit normal vector field.
c) Evaluate

$$
\iint_{S} \vec{\nabla} \mathrm{x} \vec{v} \cdot \hat{n} d \sigma
$$

where $\vec{v}=x^{3} \hat{j}-(z+1) \hat{k}$. You may need: $\int \sin ^{3} x d x=\frac{1}{3} \cos ^{3} x-\cos x+$ $c, \int \cos ^{3} x d x=\frac{1}{3} \sin ^{3} x+\sin x+c, \int \cos ^{4} x d x=\frac{1}{32} \sin (4 x)+\frac{1}{4} \sin (2 x)+\frac{3}{8} x+$
$c, \int \sin ^{4} x d x=\frac{1}{32} \sin (4 x)-\frac{1}{4} \sin (2 x)+\frac{3}{8} x+c$.
MATH 294 FALL 1996 PRELIM 1 \# 5 294FA96P1Q5.tex
4.7.26 Evaluate $\iint_{S}\left(\nabla \times \mathbf{F} \cdot \hat{n} d \sigma\right.$, where S is the open bottom half of the sphere $x^{2}+y^{2}+$ $z^{2}=a^{2}$, and \hat{n} is the (outward) downward unit normal, and $\mathbf{F}=x \cos z \hat{i}+y \hat{j}+e^{x y} \hat{k}$.
MATH 293 FALL 1998 FINAL \# 4 293FA98FQ4.tex
4.7.27 Use Stokes' Theorem to calculate the outward flux of $\nabla \times \mathbf{F}$ over the cylinder $x^{2}+y^{2}=4$ that has an open bottom at $z=0$ and a closed top at $z=3$, where

$$
\mathbf{F}=-y \mathbf{i}+x \mathbf{j}+x^{2} \mathbf{k}
$$

