
4.7. STOKES THEOREM 1

4.7 Stokes Theorem
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4.7.1 Let ~F be de�ned as

~F = curl ~G

where ~G = x2z2î+ xyĵ + xzk̂.
Evaluate Z Z

S

~F � n̂d�
if S is the surface

z = 4� x2 � y2; z � 0:

and n̂ is the unit normal on S.
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4.7.2 Find the integral
Z Z

S
(r x ~F ) �n̂d� where ~F is the vector �eld z(x2�y2)̂i+z2(x2 +

y2)ĵ + (x2 + y2)k̂; S is the surface z =
p

1� x2 � y2 (upper hemisphere of sphere
with radius 1, centered at origin), and n̂ is the unit normal that points away from
the origin.
a) 2�
b) ��

2
c) 0

d)
1

2�
e) none of these
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4.7.3 Find the integral
Z Z

S
(r x ~F )�n̂d� where ~F is the same vector �eld in the previous

problem, but now S is the entire sphere x2 + y2 + z2 = 1, and n̂ is as above.
a) 2�
b) 4�
c) ��
d)

1
�

e) none of these
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4.7.4 Let S be the portion of the sphere x2+y2+z2 = 4 that lies below the plane z = 1. Let
n̂ be the normal vector �eld on S which points away from the origin. Let ~F (x; y; z) =�yz
x2 + y2 + 1

î+
xz

x2 + y2 + 1
ĵ � xyz

x2 + y2 + 1
k̂: Compute

Z Z
S

(~r x ~F ) � n̂d�:



2
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4.7.5 Consider the 3 dimensional vector �eld:

F = (2x� y)̂i+ (x+ z)ĵ + z2k̂

a) Calculate curl(F) at (1,1,1).
b) Imagine this vector �eld represents the velocity �eld for uid ow. A very small

paddle wheel is inserted in the ow at the point (1,1,1) and held there with
hands that don't upset the ow. Which direction should the axis of the wheel
be oriented if it is to spin at a maximal rate? (indicate the direction with a unit
vector).
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4.7.6 Evaluate the integrals below by any means. In each case, F = (yez + x)i + (2y �
z)j + 7k; S is the surface of the unit sphere x2 + y2 + z2 = 1: D is the interior of
the sphere, and n is the outward pointing unit normal of the sphere's surface.
Hints: Each one of the integrals below is equal to at least one of the others. Volume
of a sphere = (4=3)�r3, surface area of a sphere = 4�r2.

a)
Z Z

S
F � nd�.

b)
Z Z

S
d�.

c)
Z Z

D

Z
zdV .

d)
Z Z

D

Z
div(curl(F))dV:

e)
Z Z

S
curl(F) � nd�.
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4.7.7 Evaluate
Z Z

S
(r x F) � nd�; where S is the portion of the paraboloid z = x2 +

y2 below the plane z = 4; with outward unit normal n (from the z-axis), and
F(x; y; z) = x cos (xz2)i + 3xj + exy sinxk:
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4.7.8 Evaluate
I
C

~F �d~r; where ~F (x; y; z) = �yî+xĵ+ ecos z2
k̂; and C is the closed curve

(ellipse) of intersection of the cylinder x2 + y2 = 4; �1 < z < 1; with the plane
x + y + z = 5: The curve is oriented counterclockwise when viewed from above.
(Hint: draw a picture.)
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4.7.9 Evaluate the path integral
I
C

F � dR with

F = (x+ ey
2
)j

for the curve parameterized by R = (cos �)i + (sin �)j + (cos �)k with 0 � � � 2�:
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4.7.10 Evaluate
Z Z

S1

r x F �nd� where F = yi+zj+xk; S1 is the path of the paraboloid

z = x2 + y2 below the plane z = x+
3
4
; and n is a unit vector that is normal to the

surface and has a positive x-component, i.e., n � k > 0:
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4.7.11 Using the same F as in 2 above, evaluate
Z Z

S2

r x F � nd�; where S2 is the part

of the plane z = x+
3
4

inside the paraboloid z = x2 + y2:
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4.7.12 Calculate the circulation of the �eld

x sin (x2)i + x2eyj + (z5 + x� y)k

around the intersection of the cylinder x2 + y2 = 1 and the plane x + z = 1 when
it is traveled counterclockwise as seen from the point (1,0,1).
(Hint: Stokes' Theorem may be helpful.)
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4.7.13 Consider the vector �eld F(x; y) = (2xy3 � sin3 x)i + (3x2y2 + 3x)j:
a) Find the curl of F (r x F):
b) Compute the circulation of F for the counterclockwise path around a square with

vertices (1,0), (2,0), (2,1) and (1,1).
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4.7.14 a) Show that the curl of the vector �eld F = y sin zi + x sin zj + xy cos zk vanishes.
b) Determine a potential f for this vector �eld.
c) Use the potential to evaluate the integral.
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4.7.15 Consider the portion of the sphere x2 +y2 +z2 = 1 in the �rst octant and the vector
�eld F = y2i + z2j + x2k: Use Stokes' Theorem to calculate the circulation of the
vector �eld around the edge of this surface in a counter-clockwise direction when
viewed from the �rst octant.
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4.7.16 Calculate the circulation of the vector �eld F = xzi+yzj+z2k around the boundary
of the triangle cut from the plane x+y+z = 1 by the �rst octant, counterclockwise
when viewed from above, in two di�erent ways:
a) by direct calculation of the circulation around the edges;
b) using Stokes' Theorem.
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4.7.17 Consider the portion of the plane x+ y + 2z = 2 in the �rst octant and the vector
�eld F = (x � y)k: Use Stokes' Theorem to calculate the circulation of the vector
�eld around the edges of this surface in a counter-clockwise direction when viewed
from above the plane in the �rst octant.
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4.7.18 Let S be the portion of the spherical surface x2 + y2 + z2 = 1 in the �rst octant
and let C be the boundary of S. Determine, by any means, the circulation of the
vector �eld F = yi � xj + zk about the circuit C in a counterclockwise direction
when viewed from the �rst octant.
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4.7.19 Let C be the curve on the sphere x2 + y2 + z2 = 9 made up of the three curves
C1; C2; and C3 as shown.

The curve C1 lies in the xz-plane, z =
p

5; and C3 in the yz-plane. Calculate
the circulation of the vector �eld ~F = 2yî + 3xĵ � z2k̂ around the curve C in the
direction indicated in the picture.
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4.7.20 a) Evaluate
Z Z

S
(r x F) � nd�; where S is the bottom half of the sphere x2 + y2 +

(z� 1)2 = 1; where n denotes the downward unit normal, r x (�) � curl(�); and
F = x cos (xz2)i + 3xj + exy sinxk:

b) Repeat part (a) when S is now the complete sphere x2 + y2 + (z� 1)2 = 1 and n
is the outward unit normal. (Hint: the answer to part (b) is independent of F.)
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4.7.21 Use Stokes' Theorem to evaluateI
C
�zdy + ydz

where C is the circle of radius 3 on the plane x + y + z = 0 and centered at the
origin.

MATH 294 FALL 1993 PRELIM 1 # 5 294FA93P1Q5.tex

4.7.22 Evaluate
Z
C

(a x r) � dr if a is a constant vector and C is the boundary of the

rectangle 8>><>>:
x = 0

0 � y � 2
0 � z � 3

with normal vector i

You may use Stokes' Theorem.
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4.7.23 Evaluate
I
C

~F � d~r; where ~F = (y + x)̂i � xĵ + zx3y2k̂, and C is the unit circle in

the x; y plane, i.e., x2 + y2 = 1; z = 0:
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4.7.24 a) Evaluate
Z Z

S1

curl ~F �n̂d� where S1 is the hemisphere x2 +y2 +z2 = 9; z � 0; n̂

points toward positive z, and ~F = yî+ 8xĵ.

b) Evaluate
Z
C
y2z2dx + 2xyz2dy + 2xy2zdz where C is a path from the origin to

the point (5,2,-1).
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4.7.25 S is the surface z = 4�4x2�y2 (between z = 0 and z = 4) with unit normal vector
�eld as shown.

a) Describe the curve C as x(t); y(t).
b) Find a formula for the unit normal vector �eld.
c) Evaluate Z Z

S

~r x ~v � n̂d�

where ~v = x3ĵ � (z + 1)k̂: You may need:
Z

sin3 xdx =
1
3

cos3 x � cosx +

c;
Z

cos3 xdx =
1
3

sin3 x + sinx + c;
Z

cos4 xdx =
1
32

sin (4x) +
1
4

sin (2x) +
3
8
x +

c;
Z

sin4 xdx =
1
32

sin (4x)� 1
4

sin (2x) +
3
8
x+ c:
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4.7.26 Evaluate
Z Z

S
(r x F � n̂d�; where S is the open bottom half of the sphere x2 +y2 +

z2 = a2; and n̂ is the (outward) downward unit normal, and F = x cos zî+yĵ+exyk̂:
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4.7.27 Use Stokes' Theorem to calculate the outward ux of r x F over the cylinder
x2 + y2 = 4 that has an open bottom at z = 0 and a closed top at z = 3, where

F = �yi + xj + x2k:


