Chapter 5

Fourier and Partial Differential Equations

5.1 Fourier

MATH 294 SPRING 1982 FINAL \# 5

5.1.1 Consider the function $f(x)=2 x, 0 \leq x \leq 1$.
a) Sketch the odd extension of this function on $-1 \leq x \leq 1$.
b) Expand the function $f(x)$ in a Fourier sine series on $0 \leq x \leq 1$.

MATH 294 SPRING 1983 PRELIM 3 \# 2

5.1.2 Find the Fourier sine series for the function $f(x)=x, 0 \leq x \leq \pi$.

MATH 294 SPRING 1983 PRELIM 3 \# 4

5.1.3 a) Consider $f(x)=x+1,0 \leq x \leq 1$. Make an accurate sketch of the function $g(x)$ which is the odd extension of $f(x)$ over the interval $-1<x \leq 1$.
b) What is the value of the Fourier series for $g(x)$ in part (a) when $x=0$?

MATH 294 SPRING 1983 PRELIM 3 \# 5
5.1.4 a) Name one function $f(x)$ that is both even and odd over the interval $-1<x \leq 1$
b) What is the Fourier sine series of the function from part (a) above?
c) What is the Fourier cosine series of the function $f(x)=1$ for $0 \leq x \leq 7$

MATH 294 SPRING 1983 FINAL \# 2

5.1.5 a) Find the Fourier series for the function $f(x)=|x|,-2 \leq x \leq 2$
b) What is the value of the series from part (a) at $x=-\frac{1}{2}$?

MATH 294 FALL 1984 FINAL \# 4
5.1.6 a) Compute the Fourier Cosine series of the function $f(x)$ given for $0 \leq x \leq L$ by

$$
f(x)= \begin{cases}1 & 0 \leq x \leq \frac{L}{2} \\ 0 & \frac{L}{2} \leq x \leq L\end{cases}
$$

98CHAPTER 5. FOURIER AND PARTIAL DIFFERENTIAL EQUATIONS

MATH 294 FALL 1984 FINAL \# 5

5.1.7 a) Compute the Fourier Series solution of the problem

$$
\frac{d^{2} y}{d x^{2}}-4 y=g(x), 0<x<L
$$

if

$$
y(0)=y(L)=0
$$

and

$$
g(x)=\left\{\begin{array}{cc}
1, & 0 \leq x<\frac{L}{2} \\
-1, & -\frac{L}{2} \leq x \leq L
\end{array}\right.
$$

MATH 294 SPRING 1985 FINAL \# 4
5.1.8 a) Compute the Fourier Series of the function

$$
f(x)=\left\{\begin{array}{lcc}
0 & \text { for } & -\pi \leq x<0 \\
2 & \text { for } & 0 \leq x \leq \pi
\end{array}\right.
$$

on the interval $[-\pi, \pi]$.
b) State, for each x in $[-\pi, \pi]$, the what the Fourier series for f converges

MATH 294 SPRING 1985 FINAL \# 13

5.1.9 What is the Fourier series for the function $f(x)=\sin x$ on the interval $[-\pi, \pi]$?
a) $\cos x$
b) $\sum_{n=1}^{\infty} \frac{1}{n \pi} \sin n x$
c) $\sin x$
d) none of these.

MATH 294 FALL 1987 PRELIM 2 \# 1
5.1.10 Consider the function $f(x) \equiv 1,0 \leq x \leq 1$.
a) Extend the function on $-1 \leq x \leq 1$ in such a way that the Fourier series (of the extended function) converges to $\frac{1}{2}$ at $x=0$ and at $x=1$.
b) Compute the Fourier series for your extension. (Remark: (a) does not have a unique answer, but (b) forces you to make the simplest choice.)

MATH 294 FALL 1987 PRELIM 2 \# 2
5.1.11 Consider the function $f(x)=x$ on $0 \leq x \leq 1$. Compute the Fourier series of the odd extension of f on $-1 \leq x \leq 1$. To what value does this series converge when $x=0 ; x=1 ; x=39.75$ (3 answers are required)?

MATH 294 SPRING 1985 FINAL \# 14
5.1.12 What is the Fourier series for the function $f(x)=\sin x$ on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$?
a) $\cos x$
b) $\sum_{n=1}^{\infty} \frac{1}{n \pi} \sin n x$
c) $\sin x$
d) none of these.

MATH 294 SPRING 1985 FINAL \# 15
5.1.13 Compute $\int_{-\pi}^{\pi} \cos 2 x \cos 3 x d x$.
a) 1
b) $\frac{1}{5}$
c) $\frac{1}{6}$
d) 0
e) none of these.

MATH 294 SPRING 1985 FINAL \# 16

5.1.14 To what does the Fourier series, of the function $f(x)=x$ on the interval $[-1,1]$, converge at $x=1$?
a) -1
b) 0
c) 1
d) none of these.

MATH 294 SPRING 1985 FINAL \# 16

5.1.15 To what does the Fourier series, of the function $f(x)=x$ on the interval $[-1,1]$, converge at $x=10$?
a) -1
b) 0
c) 1
d) 10
e) none of these.

MATH 294 SPRING 1987 PRELIM 1 \# 12

5.1.16 A MuMath (primitive version of MAPLE) command can be used for full credit on one of these (your choice).
a) What is the Fourier series for $\sin 6 \pi x$ on the interval $-3 \leq x<3$.
b) What is the Fourier sine series for the function $\sin 6 \pi x$ on the interval $-3 \leq x<$ 3.
c) What is the Fourier cosine series for $\sin 6 \pi x$ on the interval $-3 \leq x<3$.
d) Write out the first four non-zero terms of the Fourier series for the function below in the interval $(-3 \leq x<3)$

$$
f(x)=\left\{\begin{array}{lll}
0 & \text { if } & x<0 \\
2 & \text { if } & x>0
\end{array}\right.
$$

MATH 294 SPRING 1989 PRELIM 2 \# 1
5.1.17 Consider the function $f(x)=1-x$ defined on $0 \leq x \leq 1$.
a) Sketch the odd extension of $f(x)$ over the interval $-1 \leq x \leq 1$.
b) Find the Fourier sine series for $f(x)$.
c) What does the series converge to on the interval $0 \leq x \leq 1$?

MATH 294 SPRING 1989 PRELIM 2 \# 2

5.1.18 Let $f(x)$ is defined for all x,
a) Show that

$$
g(x)=\frac{f(x)-f(-x)}{2}
$$

is even.
b) Compute $\int_{-\pi}^{\pi} g(x) \sin (x) d x$

MATH 294 FALL 1989 FINAL \# 4

5.1.19 Find the Fourier series for the function $f(x)=x^{2},-1 \leq x \leq 1$.

Hint: $a_{k}=\int_{-1}^{1} f(x) \cos (\pi k x) d x, b_{k}=\int_{-1}^{1} f(x) \sin (\pi k x) d x$.

MATH 294 SPRING 1990 PRELIM 2 \# 4

5.1.20 a) Find the Fourier series of

$$
f(x)=\left\{\begin{array}{cc}
0 & -\pi \leq x<0 \text { and } \frac{\pi}{2}<x \leq \pi \\
1 & 0 \leq x \leq \frac{\pi}{2}
\end{array}\right.
$$

b) Find the Fourier series of

$$
g(x)= \begin{cases}0 & \frac{\pi}{2} \leq x<\pi \\ 1 & 0 \leq x \leq \frac{\pi}{2}\end{cases}
$$

c) Find the Fourier sine series of $g(x)$ (defined in (b)).

MATH 294 SPRING 1990 PRELIM 3 \# 6

5.1.21 Let $f(x)=1-x, 0 \leq x \leq 1$.
a) Use the even extension of $f(x)$ onto the interval $[-1,1]$ to get a Fourier cosine series that represents $f(x)$.
b) Sketch the graph of $f(x)$ and its even extension, and on the same graph sketch the $2^{n d}$ partial sum of the cosine series.

MATH 294 FALL 1990 FINAL \# 16
5.1.22 Given the function $f(x)=1-x$ on $0 \leq x \leq 1$.
a) Determine its Fourier sine series. What value does this series have at $x=0$?
b) Write down the integral forms for the coefficients a_{n} and b_{n} of the full Fourier series.
MATH 294 SPRING 1991 PRELIM 1 \# 1
5.1.23 Given the function $f(x)=1+x$ on $-1 \leq x \leq 1$, determine its Fourier series. To what values does the series converge to at $x=-1, x=0$, and $x=1$?
MATH 294 SPRING 1991 PRELIM 1 \# 2
5.1.24 Given the function $f(x)=1$ on $0 \leq x \leq 1$.
a) Determine its Fourier sine series. To what values does the series converge to at $x=0, x=\frac{1}{2}$, and $x=1 ?$
b) Determine its Fourier cosine series. To what values does the series converge to at $x=0, x=\frac{1}{2}$, and $x=1$?

MATH 294 SPRING 1991 FINAL \# 7

5.1.25 Given the function $f(x)=1-x$ on $0 \leq x \leq 1$.
a) Determine its Fourier sine series. What value does this series have at $x=0$?
b) Write down the integral forms for the coefficients a_{n} and b_{n} of the full Fourier series on $0 \leq x \leq 1$:

$$
1-x=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi\left(x-\frac{1}{2}\right)}{1 / 2}+b_{n} \sin \frac{n \pi\left(x-\frac{1}{2}\right)}{1 / 2}
$$

MATH 294 FALL 1991 PRELIM 1 \# 1
5.1.26 Given the function $f(x)$, defined on the interval $(-\pi, \pi)$:

$$
f(x)=\left\{\begin{array}{cc}
1+\sin x, & 0 \leq x<\pi \\
\sin x, & -\pi \leq x<0
\end{array}\right.
$$

Determine the Fourier Series of its periodic extension.

MATH 294 FALL 1991 PRELIM 1 \# 1

5.1.27 Given the function $f(x)=x-\pi$ on $(0,2 \pi)$.

Determine the Fourier Series of its periodic extension. What value does the Fourier Series converge to at $x=2 \pi$?

MATH 294 FALL 1991 PRELIM 1 \# 3
5.1.28 Let $f(x)$ be given by

$$
f(x)= \begin{cases}0 & 0 \leq x<1 \\ 1 & 1 \leq x \leq 2\end{cases}
$$

Determine the Fourier Series for the odd, periodic extension of $f(x)$ (i.e. the Fourier Sine Series).

MATH 294 FALL 1992 FINAL \# 7
5.1.29 Find the Fourier cosine series of the function $f(x)=x^{2}$ on the interval $0 \leq x \leq 1$.

MATH 294 FALL 1992 FINAL \# 7

5.1.30 For each of the following Fourier series representations, $1=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2 n-1} \sin [(2 n-1) x], 0<x<\pi$,
$x=2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin n x, 0<x<\pi$,
$x=\frac{\pi}{2}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}} \cos [(2 n-1) x], 0 \leq x<\pi$,
a) Find the numerical value of the series at $x=-\frac{\pi}{3}, \pi$, and $12 \pi+0.2$ (9 answers required).
b) Find the Fourier series for $|x|,-\pi<x<\pi$. (Think - this is easy!).

MATH 294 SPRING 1985 FINAL \# 4

5.1.31 Find the Fourier series of period 2 for

$$
f(x)=\left\{\begin{array}{cc}
1 & -1 \leq x \leq 0 \\
0 & 0<x \leq 1
\end{array}\right.
$$

MATH 294 FALL 1993 FINAL \# 1
5.1.32 Each problem has equal weight. Show all work.

Let $f(x)=1(0<x<2)$. Consider f_{e} and f_{o} to be the even and odd periodic extensions of f having period 4 .
a) Find the Fourier Series of f_{0}.
b) List the values $f_{e}(x), f_{0}(x)$ for $x=1$, and 3 . You should have a total of 4 answers to this part.
c) One main idea underlying Fourier series is the "orthogonality" of functions. Give an example of a function g which is orthogonal (over $-2 \leq x \leq 2$) to x^{2} in other words. $\int_{-2}^{2} g(x) x^{2} d x=0$ with g not identically 0.

MATH 294 FALL 1993 PRELIM 1 \# 6

5.1.33 Given the function $f(x)=1-x$ on $0 \leq x \leq 1$.
a) Determine its Fourier sine series. What value does this series have at $x=0$?
b) Write down the integral forms for the coefficients a_{n} and b_{n} of the full Fourier series.
MATH 294 FALL 1994 PRELIM 3 \# 3
5.1.34 Find the Fourier series for the period 4 function $f(x)=\left\{\begin{array}{cc}0 & -2<x<0 \\ 1 & 0 \leq x<2\end{array}\right.$ and state for which values of x the function is equal to its Fourier series.
MATH 294 FALL 1994 PRELIM 3 \# 4
5.1.35 a) A certain Fourier series is given by

$$
f(x)=\cos 2 x+\frac{\cos 4 x}{4}+\frac{\cos 6 x}{9}+\ldots
$$

i) sketch $1^{\text {st }}$ and $2^{\text {nd }}$ terms of the series.
ii) sketch the sum of the $1^{\text {st }}$ and $2^{\text {nd }}$ terms
iii) sketch $f(x)$ over several periods, noting the period length.

MATH 294 SPRING 1995 PRELIM 3 \# 1
5.1.36 Let

$$
f(x)=\left\{\begin{array}{ccc}
-1, & \text { if } & -1<x<0 \\
1-x, & \text { if } & 0 \leq x \leq 1
\end{array}\right\}
$$

a) Graph on the interval $[-5,5]$ the function $g(x)$ such that
i) $g(x)=f(x)$ if $-1<x \leq 1$
ii) $g(2-x)=g(x)$ if $1<x \leq 3$
iii) $g(x)=g(x+4)$ for all x.
b) Write an algebraic expression for $g(x)$ like the one for $f(x)$.

MATH 294
5.1.37 For the function f defined by $f(x)\left\{\begin{array}{cc}0, & \text { if } 0 \leq x<\pi \\ 3, & \text { if } \pi \leq x<2 \pi \\ f(-x), & \text { for all } x \\ f(x+4 \pi), & \text { for all } x\end{array}\right.$
a) Calculate the Fourier series of f. Write out the first few terms of the series very explicitly.
b) Make a sketch showing the graph of the function to which the series converges on the interval $-8 \pi<x<12 \pi$.
MATH 294 FALL 1995 FINAL \# 4
5.1.38 For $f(x)=\left\{\begin{array}{cc}1 & \text { if }|x| \leq c \\ 0 & c<|x|<\pi \\ f(x+2 \pi) & \text { for all } x\end{array}\right.$
you are given the Fourier series $f(x)=\frac{c}{\pi}+\sum_{n=1}^{\infty} \frac{2 \sin n c}{n \pi} \cos n x$. Here $0<c<\pi$.
a) Verify that the given Fourier coefficients are correct by deriving them.
b) Evaluate f and its series when $c=\pi$ and $x=\frac{\pi}{2}$, and use the result to derive the formula

$$
\frac{\pi}{8}=\frac{1}{2}-\frac{1}{6}+\frac{1}{10}-\frac{1}{14}+\frac{1}{18}-\ldots
$$

c) Sketch the graph of the function to which the series converges on the interval $[-3 \pi, 6 \pi]$.
d) Use the series to help you solve

$$
\left\{\begin{array}{c}
u_{t}=u_{x x} \\
u_{z}(0, t)=u_{x}(\pi, t)=0 \\
u(x, o)=\left\{\begin{array}{l}
1 \text { if } 0<x<c \\
0 \text { if } 0<x<\pi
\end{array}\right.
\end{array}\right.
$$

MATH 294 FALL 1996 PRELIM 3 \# 2

5.1.39 For each of the following Fourier series expansion:
i) $f_{i}(x)=x=2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin n x,-\pi<x<\pi$
ii) $f_{i i}(x)=1=\frac{4}{\pi} \sum_{n=1}^{n=1} \frac{n}{2 n-1} \sin \left[(2 n-1) \frac{\pi}{2} x\right], 0<x<2$
iii) $f_{i i i}(x)=x=\pi-\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}} \cos \left[(2 n-1) \frac{x}{2}\right], 0 \leq x \leq 2 \pi$
a) Give the numerical value of the series at $x=-\pi / 3, \pi$ and $12.5 \pi=39.3$. (9 answers required)
b) Find the Fourier series for $|x|,-2 \pi<x<2 \pi$.
c) Does $\int x d x=\frac{x^{2}}{2}=2 \sum_{n=1}^{\infty}(-1)^{n} n^{2}(\cos n x-1) ;-\pi<x<\pi$?

Does $\frac{d x}{d x}=1=2 \sum_{n=1}^{\infty} \cos n x ;-\pi<x<\pi$?
Give one reason why you answered "yes" or "no" to these questions.

MATH 294 SPRING 1996 FINAL \# 5

5.1.40 Let $u(x, y)=\sum_{n=1}^{\infty} \frac{4}{\pi n^{3}} e^{-n y} \sin (n x)$

You are also given the Fourier Series $x(\pi-x)=\sum_{n=1}^{\infty} \frac{4}{\pi n^{3}} \sin (n x)$ for $0<x<\pi$ True or False (reason not required)
i) $u_{x x}+u_{y y}=0$
ii) $u(0, y)=0$
iii) $\lim _{y \rightarrow \infty} u(x, y)=\sum_{n=1}^{\infty} \frac{4}{\pi n^{3}} \sin (n x)$
iv) $u_{x}(0, y)=0$
v) $u_{x}(\pi, y)=0$
vi) $u(\pi, y)=0$
vii) $\nabla^{2} u=0$
viii) $u(x, 0)=\sum_{n=1}^{\infty} \frac{4}{\pi n^{3}} \sin (n x)$
ix) $u(x, 0)=x(\pi-x)$ if $0<x<\pi$
x) $\operatorname{div}(\vec{\nabla} u)=0$

MATH 294 SPRING 1997 FINAL \# 4
5.1.41 Let $f(x)=1,0<x<\pi$
a) Find a Fourier series for the odd (period 2π extension of $f(x)$.
b) Let $U=\operatorname{Span}\{\sin x, \sin 2 x, \sin 3 x, \sin 4 x, \sin 5 x\}$. Find \hat{f}, the best approximation in U for $f(x)$ with respect to the inner product $<f, g>=\int_{-\pi}^{\pi} f(t) g(t) d t$.
c) Find a Fourier series for the even (period 2π) extension for $f(x)$.
d) Let $V=\operatorname{Span}\{\cos x, \cos 2 x, \cos 3 x, \cos 4 x, \cos 5 x\}$. Find \hat{f}, the best approximation in V for $f(x)$ with respect to the same inner product as above.
MATH 294 FALL 1997 FINAL \# 5
5.1.42 a) Find the Fourier cosine series for $f(x)=1+x$, on $0 \leq x \leq 1$.
b) Solve the equation $u_{x x}=2 u_{t}$, subject to the constrains $u_{x}(0, t)=u_{x}(1, t)=0$, and $u(x, 0)=1+x$, for $0 \leq x \leq 1$.
MATH 294 SPRING 1998 PRELIM 1 \# 1
5.1.43 Let $f(x)=\left\{\begin{array}{cc}1 & -\frac{\pi}{2}<x<0 \\ 0 & 0<x<\frac{\pi}{2}\end{array}\right.$
a) Extend $f(x)$ as a periodic function, with period π. Sketch this function over several periods.
b) Compute the Fourier series for $f(x)$.
c) Write out the first three non-zero terms of the Fourier series.
d) To what values does the Fourier series converge at $x=-\frac{p i}{4}, x=\frac{\pi}{4}$, and $x=\frac{\pi}{2}$?

MATH 294 SPRING 1984 FINAL \# 10

5.1.44 Consider the vector space $C-0(-\pi, \pi)$ of continuous functions in the interval $-\pi \leq$ $x \leq \pi$, with inner product $(f, g)=\int_{-\pi}^{\pi} f(x)(g(x))^{*}$ where * denotes complex conjugation. Consider the following set of functions $b=\left\{\ldots e^{-2 i x}, e^{-i x}, 1, e^{i x}, e^{2 i x}, \ldots\right\}$.
a) Are they linearly independent? (Hint: Show that they are orthogonal, that is
$\left(e^{i n x}, e^{i m x}\right)=0$ for $n \neq m$
$\left(e^{i n x}, e^{i m x}\right) \neq 0$ for $n=m$
b) Ignoring the issue of convergence for the moment, let $f(x)$ be in $C_{0}(-\pi, \pi)$. Express $f(x)$ as a linear combination of the basis B. That is,

$$
f=\ldots a_{-2} e^{-2 i x}+a_{-1} e^{-i x}+a_{0}+a_{1} e^{i x}+a_{2} e^{2 i x}+\ldots
$$

find the coefficients $\left\{a_{n}\right\}$ of each of the basis vectors. Use the results from (a).
c) How does this relate to the Fourier series? Are there coefficients $\left\{a_{n}\right\}$ real or complex? What if B is a set of arbitrary orthogonal functions?
MATH 294 SPRING 1996 PRELIM 3 \# 2
5.1.45 a) Consider the function f defined by

$$
f(x)=\left\{\begin{array}{cc}
0, & \text { if }-\pi \leq x<0 \\
3 & \text { if } 0 \leq x<\pi \\
f(x+2 \pi), & \text { for all } x
\end{array}\right.
$$

Calculate the Fourier series of f. Write out the first few terms of the series explicitly. Make a sketch showing the graph of the function to which the series converges on the interval $-4 \pi<x<4 \pi$. To what value does the series converge at $x=0$?
b) Consider the partial differential equation $u_{t}+u=3 u_{x}$ (which is not the heat equation). Assuming the product form $u(x, t)=X(x) T(t)$, find ordinary differential equations satisfied by X and T. (You are not asked to solve them.)

MATH 294 FALL 1992 FINAL \# 7
5.1.46 For each of the following Fourier series representations,
$1=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2 n-1} \sin [(2 n-1) x], 0<x<\pi$,
$x=2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin n x,-\pi<x<\pi$,
$x=\frac{\pi}{2}-\frac{4}{\pi} \sum_{n=1}^{\infty^{n}} \frac{1}{(2 n-1)^{2}} \cos [(2 n-1) x], 0 \leq x<\pi$,
a) Find the numerical value of the series at $x=-\frac{\pi}{3}, \pi$ and $12 \pi+0.2$ (9 answers required).
b) Find the Fourier series for $|x|,-\pi<x<\pi$. (Think - this is easy!).

MATH 294 FALL 1998 FINAL \# 1

5.1.47 Consider the functions $f(x), S(x)$, and $C(x)$ defined below. [Note that $S(x)$ and $C(x)$ can be evaluated for any x even though $f(x)$ is only defined over a finite interval.] $f(x)=1$
$S(x)=$ the function to which the Fourier sin series for $f(x)$ converges (using $L=\pi$),
$\underset{C}{\text { and }}(x)=$ the function to which the Fourier cos series for $f(x)$ converges (using $L=\pi$).
a) Sketch $S(x)$ over the interval $-3 \pi \leq x<3 \pi$. (This can be done without finding any terms in the sin series.)
b) Sketch $C(x)$ over the interval $-3 \pi \leq x<3 \pi$. (This can be done without finding any terms in the cos series.)
c) Find $S(x)$ explicitly. (This requires some simple integration.)
d) Compute $C(x)$ explicitly. (This can be done with no integration. If done with integration all integrals are trivial.)

MATH 294 SPRING 1999 PRELIM 3 \# 3
5.1.48 Consider the function $f(x)=1,0<x<3$.
a) Calculate the Fourier sine series for $f(x)$ on $0<x<3$.
b) Although the function $f(x)$ is defined only over $0<x<3$, the Fourier sine series exists for all x. Sketch over $-6 \leq x \leq 6$ the function to which the Fourier sine series for $f(x)$ converges. (Note that you should be able to do this part even if you don't have the correct solution to part a).

MATH 294 SPRING 1983 PRELIM 3 \# 1 MAKE-UP

5.1.49 Find the Fourier Cosine Series for the function $f(x)=x, 0 \leq x \leq 1$.

MATH 294 SPRING 1984 FINAL \# 11

5.1.50 A simple harmonic oscillator of mass M and stiffness K is acted on by the pulsed periodic force $F(t)$ shown in the figure.

a) Determine the forced response of the oscillator (particular solution) to this excitation - in the form of an infinite series.
First note that the excitation function can be written in the form:

$$
F(t)=\frac{4}{\pi} \sum_{i=1}^{n} \frac{\sin \frac{n \pi}{2} \sin \frac{n \pi}{4}}{n} \sin \frac{n \pi t}{4}
$$

Write a brief explanation of this representation.

MATH 294 FALL 1987 FINAL \# 4 MAKEUP

5.1.51 Consider the function $f(x)=30 \leq x \leq \pi$
a) Compute the Fourier series of the odd extension of f on $[-\pi, \pi]$.
b) To what value does the series (obtained in (a)) converge when $x=0, x=$ 1 , and $x=54$? (3 answers required).
c) Compute the Fourier series of the even extension of f on $[-\pi, \pi]$.
d) To what value does the series (obtained in (c)) converge when $x=0, x=$ 1, and $x=105,326 ?$

MATH 294 SPRING 1987 FINAL \#8 *
5.1.52 It is claimed that the function $f(t)$ graphed below

is equal to the series

$$
S(t)=\frac{a_{0}}{2}+\sum_{i=1}^{n} a_{n} \cos \left(\frac{n \pi t}{3}\right)+b_{n} \sin \left(\frac{n \pi t}{3}\right)
$$

at all points $0<t<3$ except perhaps $t=1$ and $t=2$.
a) Extend $f(t)$ any way that you like over the whole interval $-3<t<3$ and graph your extension. (There are many answers to this question, and 3 particularly nice ones.)
b) For the extension you have drawn, find b_{17}.
c) What is $S(1)$?
d) What is $S(7.75)$?

MATH 294 SPRING 1988 PRELIM 1 \# 1

5.1.53 A function $f(x)$ in the interval $(-\pi, \pi)$ is graphed below.

The Fourier series for this function is:

$$
\frac{a_{0}}{2}+\frac{1}{3} \cos (x)+\frac{1}{7} \cos (2 x)+a_{3} \cos (3 x)+\ldots+b_{1} \sin (x)+b_{2} \sin (2 x)+\ldots
$$

a) What is the value of $\int_{-\pi}^{\pi} f(x) \cos (2 x) d x$? (A number is wanted.)
b) What is the value of the Fourier Series at $x=0$?
c) What is the value of Fourier Series at $x=\frac{\pi}{2}$?
d) What is your estimate for the value of b_{1} ? (Any well justified answer within .2 of the instructors' best estimate will get full credit.)
e) What is your estimate for the value of $\frac{a_{0}}{2}$? (Any well justified answer within .2 of the instructors' best estimate will get full credit.)

MATH 294 SUMMER 1990 PRELIM 2 \# 6

5.1.54 Let $f(x)=1-x, 0 \leq x \leq 1$.
a) Use the even extension of $f(x)$ onto the interval $[-1,1]$ to get a Fourier cosine series that represents $f(x)$.
b) Sketch the graph of $f(x)$ and its even extension, and on the same graph sketch the $2^{\text {nd }}$ partial sum of the cosine series.
MATH 294 FALL 1990 FINAL \# 5 MAKEUP
5.1.55 Given the function $f(x)=x-1$ on $0 \leq x \leq 1$
a) Determine its Fourier cosine series. What value does this series have at $x=0$?
b) Write down the integral forms for the coefficients a_{n} and b_{n} of the full Fourier series.

MATH 294 FALL 1993 PRELIM 3 \# 1 *
5.1.56 a) Develop a Fourier Series for a rectified sine wave

$$
f(x)= \begin{cases}A_{0} \sin \omega x & 0<\omega x<\pi \\ -A_{0} \sin \omega x & -\pi<\omega x<0\end{cases}
$$

$$
\text { and } f\left(x+\frac{2 \pi}{\omega}\right)=f(x)
$$

b) What is the Fourier series for the (unrectified) sine wave: $f(x)=A_{0} \sin \omega x$?
c) What is the value of the Fourier series in parts a.) and b.) when evaluated at $x=\frac{3 \pi}{2 \omega} ?$
d) Comment on the derivative of $f(x)$ at $x=0$. Assuming that the Fourier Series can be differentiated term by term, what is its derivative at $x=0$?
MATH 294 FALL 1996 PRELIM 3 \# 2 MAKE-UP
5.1.57 Let $f(x)=\pi ; 0<x<\pi$.

NOTE: (In parts a and b it is unnecessary to evaluate the integrals for any coefficients a_{n} or b_{n}, but the integrals do need to be written explicitly.
a) Express $f(x)$ as a Fourier series of period 2π that involves an infinite series of $\sin \left(\frac{n \pi x}{L}\right)$ terms alone $; n=1,2,3, \ldots$ Sketch the function to which the Fourier series converges for $-3 \pi \leq x \leq 3 \pi$.
b) Express $f(x)$ as a Fourier series of period 4π that involves an infinite series of $\cos \left(\frac{n \pi x}{L}\right)$ terms alone $; n=1,2,3, \ldots$ Sketch the function to which the Fourier series converges for $-3 \pi \leq x \leq 3 \pi$.
c) Sketch an extension of $f(x)$ of period 6π such that the Fourier series of this $f(x)$ contains both sine and cosine terms.
d) Write the simplest possible Fourier series for $f(x)$ (i.e., one containing the fewest terms).

110CHAPTER 5. FOURIER AND PARTIAL DIFFERENTIAL EQUATIONS

MATH 294 SPRING 1997 PRELIM 1 \# 3
5.1.58 Consider the periodic function $f(t)$ shown in the figure below.

a) Find a general explicit expression for the Fourier sine coefficients b_{n} of $f(t)$
b) Find, explicitly, the first three nonzero terms in the Fourier series for $f(t)$.

