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5.4 Heat Equation

MATH 294 SPRING 1985 FINAL # 1

5.4.1 a) Find the solution to the partial differential equation given by

∂2u

∂x2
=

∂u

∂t
,whereu = u(x, t)

with boundary conditions
u(0, t) = 0
u(L, t) = 0

and initial condition
u(x, 0) = 1; 0 < x < L

b) What does the solution u(x, t) approach as t → ∞. Briefly explain this answer.
(No credit will be given for guessing.)
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5.4.2 Solve for u = u(x, t) where

∂u

∂t
=

∂2u

∂x2
, (0 < x < 2, t > 0),

∂u
∂x (0, t) = 0
∂u
∂x (2, t) = 0

}
t > 0

u(x, 0) = cos (2πx), 0 ≤ x ≤ 2.
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5.4.3 Find the solution to the initial/boundary value problem

∂u

∂t
= a2 ∂2u

∂x2
, 0 < x < L, t > 0

u(0, t) =
∂u

∂x
(L, t) = 0, t > 0

u(x, 0) ≡ 1, 0 < x < L.

You may use symmetry to solve a more familiar problem on 0 < x < 2L.
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5.4.4 Find any non-zero solution to the heat equation

∂u

∂t
= 3

∂2u

∂x2

that satisfies the boundary conditions u(0, t) = u(5, t) = 0. (You need not go into
great detail explaining how you find this solution.)
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5.4.5 Let ∂u
∂t = α2 ∂2u

∂x2 , 0 < x < 10 have boundary conditions

ux(0, t) = ux(10, t) = 0

a) What is the most general solution to this boundary value problem you can find.
b) Given u(x, 0) = x2, what is u(5, t→∞) in the above problem?
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5.4.6 Let ut = uxx, 0 < x < π have boundary conditions ux(0, t) = 0, u(π, t) = 0.
a) What is the most general solution you can find to this equation and the given

boundary conditions.
b) For the initial condition u(x, 0) = x2 − ex sinx what is u(1, t→∞)?
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5.4.7 A bat of length 1 is assumed to satisfy the heat equation with α2 = 1. The ends of
the bar are in ice water at temperature u = 0. At time t = 0 the temperature of
the bar is u(x, 0) = 100 sinπx. What is the temperature in the middle of the bar
at t = 2?
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5.4.8 Heat conduction in a closed-loop wire of radius 1 can be described by u(t, x) where

∂u

∂t
=

∂2u

∂x2
0 ≤ x < 2π, t > 0

and u(t, x = 0) = u(t, x = 2π) t ≥ 0. The initial distribution of temperature is

u(t = 0, x) =

 0 0 < x ≤ π
2

1 π
2 < x ≤ 3π

2
0 3π

2 < x ≤ 2π

find u(t, x) by separation of variables, what is the temperature distribution as t→
∞?



128CHAPTER 5. FOURIER AND PARTIAL DIFFERENTIAL EQUATIONS

MATH 294 FALL 1984 FINAL # 14

b) Solve the following initial-boundary value problem for the heat equation
∂u
∂t −

∂2u
∂x2 = 0 0 ≤ x ≤ L, t ≥ 0

∂u
∂x (0, t) = 0, ∂(

∂L , t) = 0
u(x, 0) = f(x) where f(x) is the function given in IV A.

c) Determine the value of H(t) given by H(t) =
∫ L

0
u(x, t)dx. If you have been

unable to find the solution in IV B, then form ∂H
∂t and use the differential equation

for u to find an ordinary differential equation for H.
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5.4.9 Find the solution of the initial-boundary-value problem
∂u
∂t = ∂2u

∂x2 0 < x < π
2 , t > 0,

u(0, t) = ∂u
∂x

(
π
2 , t
)

= 0 t > 0,
u(x, 0) = 7 sinx− 14 sin 9x

(Hint: symmetry and superposition)
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5.4.10 Find the solution of the initial-boundary-value problem
5.4.11 Find the solution of the initial-boundary-value problem

∂u
∂t = ∂2u

∂x2 0 < x < π, t > 0,
∂u
∂x (0, t) = ∂u

∂x (π, t) = 0 t > 0,
u(x, 0) = 10 sin 24x

MATH 294 FALL 1987 PRELIM 3 # 4

5.4.12 a) Find the solution of the initial-boundary-value problem
∂u
∂t = ∂2u

∂x2 0 < x < π, t > 0,
∂u
∂x (0, t) = ∂u

∂x (π, t) = 0 t > 0,
u(x, 0) = 1 + x 0 < x < π

b) What is limt→∞ u(x, t), where u(x, t) is the solution of part (a).
c) Show that your result from part (b) is a time-independent (equilibrium) solution

of the first two equations in part (a).
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5.4.13 Solve ∂u
∂t = ∂2u

∂x2 with boundary conditions ∂0,t
∂= 0 and ∂u

∂x (π, t) = 0 and initial condi-
tion u(x, 0) = 4 cos(x)− 5 cos(4x).
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5.4.14 Let α > 0. Find the solution u(x, t) of
uxx = 1

αut, t > 0 , 0 < x < 1,
ux(0, t) = ux(1, t) = 0, t > 0,
u(x, 0) = 1 + 3 cos(2πx)− 2 cos(5πx), 0 < x < 1.
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5.4.15 Consider the conduction of heat through a wire of unit length that is insulated on
its lateral surface and at its ends.
a) Use the method of separation of variables to show that the solution of the initial

value problem
∂u
∂t = ∂2u

∂x2 for 0 ≤ 1 ≤ 0, 0 ≤ t ≤ ∞;
with ∂u

∂x (0, t) = ∂u
∂x (1, t) = 0; and u(x, 0) = f(x)

is given in the form

u(x, t) = a0
2 +

n∑
i=1

ane−n2π2t cos nπx.

Hint: The equation X ′′ + λX = 0, 0 ≤ x ≤ 1, with X ′(0) = X ′(1) = 0 has nonzero
solutions only for an infinite number of constants λ = n2π2, for n = 0, 1, 2, 3, . . . .
The corresponding solutions are Xn(x) = An cos nπx.
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5.4.16 Solve 
ut = uxxon0 < x < `
u(0, t) = u(`, t) = 0

u(x, 0) =
{

1 `
4 ≤ x ≤ 3`

4
0 otherwise

You may leave Fourier coefficients unsimplified after doing the integrals.
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5.4.17 a) The solution to

Utt = uxx; −∞ < x <∞
u(x, 0) = e−x2

ut(x, 0) = 0

is the form u(x, t) = ϕ(x + t) + ϕ(x− t). Find the solution without using Fourier
series.

b) Find the solution of

uxx = ut 0 ≤ x ≤ 1
u(0, t) = 1
u(1, t) = 2
u(x, 0) = 1 + x

Hint: The solution may be time-independent.
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5.4.18 Consider

uxx = ut, 0 < x < 1, t > 0
u(0, t) = 0,
u(1, t) = −1,

u(x, 0) = 0

a) Find v(x) if u(x, t)→ v(x) as t→∞
b) Find a Fourier series solution for u(x, t).
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5.4.19 Consider the condition of heat through a wire of unit length that is insulated on
its lateral surface and at its ends. This implies boundary conditions ux(0, t) = 0 =
ux(1, t), t ≥ 0.
a) Verify that solutions u(x, t) to the heat equation with the initial condition

u(x, 0) = f(x) piecewise continuous first derivatives may be given in the form

u(x, t) =
a0

2
+

n∑
i=1

ane−n2π2t cos(nπx)

b) Find u(x, t) when f(x) = 2 + 5 cos(3πx).?
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5.4.20 Consider the heat equation

ut = 0.04uxx

u(x, 0) = sin
(πx

2

)
− 1

2
sin(πx)

u(0, t) = 0
u(2, t) = 0

a) Find the solution to this problem.
b) Verify by substitution that your answer to part (a) does in fact satisfy all four

of these equations. (You can get full credit for this part by checking everything,
even if your answer to (a) is wrong.
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5.4.21 a) Find the full solution to

uxx = ut 0 < x < π, t > 0
u(0, t) = u(π, t) = 0
u(x, 0) = x

You may find problem 2 helpful in solving this.
b) Using only the first two terms in your solution, write out u(x, 0) and u(x, 1).

Sketch these terms and their sum. Comment on your plot.

e0 = 1
e−1 = .368
e−2 = .135
e−3 = .050
e−4 = 0.018
e−5 = .007

MATH 294 SPRING 1998 PRELIM 1 # 3

5.4.22 Consider the one dimensional heat transfer problem

uxx = ut, 0 ≤ x ≤ 1

with boundary conditions u(0, t) = 0, u(1, t) = 1, t > 0,
and initial conditions u(x, 0) = 0, 0 ≤ x ≤ 1.
a) Find the long time, i.e. time independent, solution reached as t→∞.
b) Find the time-dependent solution u(x, t) that satisfies the given boundary and

initial conditions.
MATH 294 SPRING 1998 FINAL # 2

5.4.23 Find the solution of the initial value problem

∂u

∂t
= 2

∂2u

∂x2
on0 < x < 1fort > 0,

with

∂u

∂x
(0, t) =

∂u

∂x
(1, t) = 0

and

u(x, 0) =
{

1, 0 < x < 1
2

0, 1
2 < x < 1
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5.4.24 Solve, for t > 0 and 0 < x < π, the partial differential equation 2∂2u
∂x2 = ∂u

∂t with the
boundary conditions that u(0, t) = 0, u(π, t) = π,
and the initial condition that u(x, 0) = x + sin(x).
(This problem can be solved completely without any integrations.)

MATH 294 UNKNOWN 1990 UNKNOWN # 5

5.4.25 Solve the initial boundary value problem

ut = uxx, 0 < x < π, T > 0,

u(0, t) = ux(π, t) = 0,

u(x, 0) = 18 sin
(

9x

2

)
.

(Hint: u(x, y) = X(x)T (t); you may use the fact that the only nontrivial solution
here occurs when X is a linear combination of a cosine and a sine.)

MATH 294 FALL 1990 FINAL # 5

5.4.26 Find the steady state temperature distribution in the plate shown.

MATH 294 FALL 1990 FINAL # 4 MAKE-UP

5.4.27 Find the steady state temperature distribution in the plate shown.
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5.4.28 Find the steady state temperature distribution in the plate shown.


