5.5 Wave

MATH 294 SPRING 1983 FINAL \# 5
5.5.1 a) Solve the wave equation with wave speed $c=1$, boundary conditions: $u(0, t)=$ $u(6, t)=0$ and initial conditions $u(x, 0)=0, u_{t}(x, 0)=5 \sin \left(\frac{\pi x}{3}\right)$.
b) Make a clearly labeled graph of $u(3, t)$ vs. t for your solution in part (a) above.

MATH 294 SPRING 1994 FINAL \# 14

5.5.2 Verify that $u(t, x)=\frac{1}{2}[f(x+t)+f(x-t)]$ solves the initial value problem:

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}} \quad t>0,-\infty<x<\infty \\
& u(t=0, x)=f(x) \\
& u_{t}(t=0, x)=0
\end{aligned}
$$

MATH 294 FALL 1986 FINAL \# 9
5.5.3 a) Solve $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0,(0<x<1,0<y<1)$ where $u=u(x, y)$ and $u(0, y)=$ $0, u(1, y)=0, u(x, 0)=0$, and $u(x, 1)=2 \sin (2 \pi x)$.
b) Use your result from part (a) to solve

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0,(0<x<1,0<y<1)
$$

where $u=u(x, y)$ and $u(0, y)=0, u(1, y)=2 \sin (2 \pi y), u(x, 0)=0, u(x, 1)=0$.
c) Use your result from part (a) and (b) to solve

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0,(0<x<1,0<y<1)
$$

where $u=u(x, y)$ and $u(0, y)=0, u(x, 0)=0, u(1, y)=2 \sin (2 \pi y), u(x, 1)=$ $2 \sin (2 \pi x)$.
MATH 294 FALL 1986 FINAL \# 12
5.5.4 Find the solution to the initial/boundary value problem

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}=C^{2} \frac{\partial^{2} u}{\partial x^{2}}, 0<x<L, t>0 \\
& u(0, t)=u(L, t)=0, t>0 \\
& u(x, 0)=0,0<x<L \\
& \frac{\partial u}{\partial t}(x, 0)=\sin \left(36 \pi \frac{x}{L}\right), 0<x<L
\end{aligned}
$$

MATH 294 SPRING 1987 PRELIM 2 \# 2

5.5.5 Find the value of u at $x=t=1$ if $u(x, t)$ satisfies:

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial t^{2}}=2 \frac{\partial^{2} u}{\partial x^{2}} \\
0=u(0, t)=u(3 \pi, t)
\end{gathered}
$$

with

$$
\begin{aligned}
& u(x, 0)=\sin (5 x) \\
& \frac{\partial u}{\partial t}(x, 0)=\sin x
\end{aligned}
$$

MATH 294 SPRING 1987 FINAL \# 7
5.5.6 Find any non-zero solution $u(x, t)$ to

$$
\frac{\partial^{2} u}{\partial t^{2}}=4 \frac{\partial^{2} u}{\partial x^{2}} \text { with } 0=\frac{\partial u}{\partial x}(0, t)=\frac{\partial u}{\partial x}(1, t)
$$

and the extra restriction that $u(0,0) \neq u(1,0)$.
MATH 294 FALL 1987 PRELIM 2 \# 3
5.5.7 Find the solution of the initial-boundary-value problem

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}=4 \frac{\partial^{2} u}{\partial x^{2}} \quad 0<x<1 \quad t>0 \\
& u(0, t)=u(1, t)=0 \quad t>0 \\
& u(x, 0)=0 \\
& \frac{\partial u}{\partial t}(x, 0)=x . \quad 0<x<1
\end{aligned}
$$

MATH 294 SPRING 1988 PRELIM 2 \# 5
5.5.8 Once released, the deflection u of a taught string satisfies the wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=4 \frac{\partial^{2} u}{\partial x^{2}}
$$

where x is position along the string and t is time. It is held fixed (no deflection) at its ends at $x=0$ and $x=2$. At time $t=0$ it is released from rest with the deflected shape $u=3 \sin \left(\frac{\pi x}{2}\right)$. Make a plot of $u(1, t)$ versus t for $0 \leq t \leq 2$. Label the axes at points of intersection with the curve. (You may quote any results that you remember.)

MATH 294 FALL 1991 FINAL \# 3

5.5.9 The displacement $u(x, y)$ of a vibrating string satisfies

$$
\frac{\partial^{2} x}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}}=0
$$

in $0 \leq x \leq 4, t \geq 0$ and the boundary and initial conditions

$$
u(0, t)=0, u(4, t)=0, u(x, 0)=0, \frac{\partial u}{\partial t}(x, 0)=f(x)
$$

where

$$
f(x)=\left\{\begin{array}{l}
1, \quad \text { when } 0 \leq x \leq 2 \\
0, \quad \text { when } 2 \leq x \leq 4
\end{array}\right.
$$

a) Find a series representation for the solution.
b) Write down the equation for the displacement of the string at $t=4$.

MATH 294 FALL 1993 FINAL \# 14

5.5.10 a) Solve the wave equation $\left(a^{2} u_{x x}=u_{t t}\right.$ to find the displacement $u(x, t)$ of an elastic string of length ℓ. Both ends of the string are always free $\left[u_{x}(0, t)=0 ; u_{x}(\ell, t)=\right.$ $0]$ and the string is set in motion from its equilibrium position, $u(x, 0)=0$, with an initial velocity, $u_{t}(x, 0)=V_{0} \cos \frac{3 \pi x}{\ell}$. Assume for this problem that it is legitimate to differentiate any Fourier series term-by-term. If you use separation of variables, consider only the case with a negative separation constant.
b) Write the solution to the wave equation $\left(a^{2} u_{x x}=u_{t t}\right)$ for the boundary conditions $u(0, t)=h_{L}$ and $u(\ell, t)=h_{R}$ with initial conditions $u(x, 0)=h_{L}+\left(h_{R}-\right.$ $\left.h_{L}\right) \frac{x}{\ell}$ and $u_{t}(x, 0)=0$.
MATH 294 SPRING 1994 FINAL \#8
5.5.11 Consider

$$
\begin{gathered}
u_{x x}=u_{t t}-\infty<x<\infty, \quad t>0 \\
u(x, 0)=0, u_{t}(x, 0)=g(x)
\end{gathered}
$$

where $g(x)$ is a given function.
a) Show that $u(x, t)=G(x+t)-G(x-t)$ satisfies the above wave equation and initial conditions for a suitable function $G(x)$. How are $G(x)$ and $g(x)$ related?
b) Find $u(x, t)$ if $u_{t}(x, 0)=g(x)=\frac{x}{1+x^{2}}$.

MATH 294 SPRING 1993 FINAL \# 15

5.5.12 a) The solution to

$$
\begin{aligned}
& u_{t t}=u_{x x}-\infty<x<\infty \\
& u(x, 0)=e^{-x^{2}} \\
& u_{t}(x, 0)=0 \text { is of the form } u(x, t)=\varphi(x+t)+\varphi(x-t) . \text { Find the solution without } \\
& \text { using Fourier series. }
\end{aligned}
$$

b) Find the solution of

$$
\begin{aligned}
& u_{x x}=u_{t} \quad 0 \leq x \leq 1 \\
& u(0, t)=1 \\
& u(1, t)=2 \\
& u(x, 0)=1+x
\end{aligned}
$$

Hint: The solution may be time-independent.

MATH 294 FALL 1995 FINAL \# 15

5.5.13 If $u(x, t)=F(x+t)+G(x-t)$ for some functions F and G,
a) Find expressions for $u(x, 0)$ and $u_{t}(x, 0)$ in terms of F and G.
b) If also $\left\{\begin{array}{c}u_{t t}=u_{x x}-\infty<x<\infty \\ u(x, 0)=e^{-x^{2}} \\ u_{t} x, 0=0\end{array} \quad\right.$ find expressions for F and G, and sketch the graph of $u(x, t)$ when $t=0,1$, and 2 .
MATH 294 SPRING 1998 PRELIM 1 \# 4
5.5.14 Consider the following partial differential equation for $u(x, t)$,

$$
\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}}=0, \quad 0 \leq x \leq 1
$$

with boundary conditions $u(0, t)=u(1, t)=0, t>0$, and initial conditions $u(x, 0)=f(x)$ and $\frac{\partial u}{\partial t}(x, 0)=0, \quad 0 \leq x \leq 1$. which, if any, of the functions below is a solution to the initial/boundary-value problem? Justify your answer.
a) $u(x, t)=\sum_{i=1}^{n} b_{n} e^{-\pi^{2} n^{2} t} \sin n \pi x, b_{n}=2 \int_{0}^{1} f(x) \sin n \pi x d x$
b) $u(x, t)=\sum_{i=1}^{n} b_{n} \cos n \pi t \sin n \pi x, b_{n}=2 \int_{0}^{1} f(x) \sin n \pi x d x$

MATH 294 SUMMER 1990 PRELIM 2 \# 5

5.5.15 Consider the partial differential equation

$$
(*) \frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}, \text { for } 0 \leq x \leq L
$$

with conditions
i) $u(0, t)=0$,
ii) $u(\ell, t)=0$
iii) $\frac{\partial u}{\partial t}(x, 0)=0$,
and
iv) $u(x, 0)=f(x)$.
a) Verify that $u(x, t)=\sum_{i=1}^{n} C_{n} \sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{n \pi c t}{L}\right)$ is a solution to $\left(^{*}\right)$ and the conditions (i), (ii), and (iii).
b) Suppose $f(x)=\sin \left(\frac{\pi x}{L}\right)$. What values for the C_{n} 's will satisfy condition (iv)?
c) For a general piecewise smooth function $f(x)$; Determine the formula for the C_{n} so that condition (iv) is satisfied.

MATH 294 FALL 1992 UNKNOWN \# 4

5.5.16 Solve the initial-boundary-value problem

$$
\begin{gathered}
u_{t t}=u_{x x}, 0<x<1, t>0 \\
u(0, t)=u(1, t)=0, t>0 \\
u(x, 0)=8 \sin 13 \pi x-2 \sin 31 \pi x \\
u_{t}(x, 0)=-\sin 8 \pi x+12 \sin 88 \pi x
\end{gathered}
$$

MATH 294 SPRING 1996 FINAL \# 5 MAKE-UP

5.5.17 Consider $u(x, y, z, t)=w(a x+b y+c z+d t)$ where w is some differentiable function of one variable, and the expression $a x+b y+c z+d t$ has been substituted for that variable.
a) Find restrictions on the constants a, b, c, and d so that u will be a solution to the three dimensional wave equation $u_{x x}+u_{y y}+u_{z z}=u_{t t}$
b) Find a solution to the wave equation if (a) having $u(x, y, z, 0)=5 \cos x$ and $u_{t}(x, y, z, 0)=$ 0.

