

2.2-13 The horizontal rigid beam ABCD is supported by vertical bars BE and CF and is loaded by vertical forces $P_1 = 90$ k and $P_2 = 80$ k acting at points A and D, respectively (see figure). Bars BE and CF are made of steel $(E = 29 \times 10^6 \text{ psi})$ and have cross-sectional areas $A_{BE} = 19.5 \text{ in.}^2 \text{ and } A_{CF} = 16.8 \text{ in.}^2 \text{ The distances between}$ various points on the bars are shown in the figure.

Determine the vertical displacements δ_A and δ_D of points A and D, respectively.

Sign convention: tension is positive, lengthening is positive.

$$\Rightarrow T_{CF} = -\frac{12}{5}P_3 + P_1 = -\frac{12}{5} \times 80 k + 90 k = -102 k$$

$$\Sigma M/c = 0 = P_1(10ft) + T_{BE}(5ft) - P_2(7ft)$$

2) Deformation of BE & CF

$$A_{BE} = 19.5 \text{ in}^2$$
 $A_{CF} = 16.8 \text{ in}^2$

$$Acc = 16.8 \text{ in}^4$$

lengthening of BE:

$$\delta_{BE} = \frac{T_{BE} L_{BE}}{E A_{BE}} = \frac{(-68k) (120 in)}{(29 \times 10^6 \text{ ps}) (19.5 in^2)} = -0.014 in$$

(Continued)

Page 2/8

lengthening of CF

$$\delta_{CF} = \frac{T_{CF} L_{CF}}{E A_{CF}} = \frac{(-102 \text{ k}) (96 \text{ in})}{(29 \times 10^6 \text{ psi}) (16.8 \text{ in}^3)} = -0.020 \text{ in}$$

3 Displacement (beam ABCD is assumed to be rigid)

$$\delta_A = \delta_{BE} - \Delta_1 = \delta_{BE} - \Delta_2$$

$$= 2 \times (-0.014 \text{ in}) - (-0.020 \text{ in})$$

$$\delta_D = \delta_{CF} + \Delta_3 = \delta_{CF} + \frac{1}{5} \Delta_2$$

=
$$\delta_{CF} + \frac{7}{F} (\delta_{CF} - \delta_{BE})$$

$$=\frac{12}{5}x(-0.020 \text{ in}) - \frac{7}{5}x(-0.014 \text{ in})$$

Note: "-" means Shortening since "+" is lengthening

2.3-6 A steel bar 2.4 m long has a circular cross section of diameter $d_1 = 20$ mm over one-half of its length and diameter $d_2 = 12$ mm over the other half (see figure). The modulus of elasticity E = 205 GPa.

(a) How much will the bar elongate under a tensile load P = 22 kN? (b) If the same volume of material is made into a bar of constant diameter d and length 2.4 m, what will be the elongation under the same load P?

2.3-6 (Contid)

Page 3/8

(a) Bar with two prismatic segments

elongation of the bar

$$\delta = \sum_{i=1}^{2} \delta_{i} = \sum_{i=1}^{2} \frac{N_{i} L_{i}}{E_{i} A_{i}}$$

$$N_1 = N_2 = P = 22 kN$$

$$A_1 = \frac{\pi}{4} d_1^2$$
 $A_2 = \frac{\pi}{4} d_2^2$

$$\delta = \frac{\sum_{i=1}^{N} \frac{NiL_i}{E_i A_i}}{\frac{1}{205 \, GPa_i}} \left[\frac{1}{\frac{\pi}{4} \, (20 \, mm)^2} + \frac{1}{\frac{\pi}{4} \, (12 \, mm)^2} \right]$$

(b) Prismatic box

original bar Vo = 7di L1 + 7di L2

prismatic bar
$$V_P = \frac{\pi}{4} d^2 L$$

$$V_0 = V_p \implies \frac{\pi}{4} d_1^2 L_1 + \frac{\pi}{4} d_2^2 L_2 = \frac{\pi}{4} d^2 L$$

$$\Rightarrow d = \sqrt{\frac{d_1^2 L_1 + d_2^2 L_2}{L}} = \sqrt{\frac{d_1^2 + d_2^2}{2}}$$

$$= \sqrt{\frac{(20mm)^2 + ([2mm)^2}{2}}$$

$$\delta = \frac{PL}{EA} = \frac{PL}{E \cdot \frac{\pi}{4} d^2} = \frac{4}{\pi} \frac{(22 \text{ kN}) (2.4 \text{m})}{(205 \text{ GPa}) (16.49 \text{ mm})^2}$$

(Continued)

2.5-5 (Cont'd) Page 8/8
Note:
1. Since there is no load on the Aluminum wire.
the elongation of Al is only due to the change
of temperature.
2. Due to symmetry, the tension in each steel wire $\frac{W}{2}$
3. If the temperature increase is larger than ΔT ,
the Al wire would be in compression, which
is not possible (Wires & Strings can only support
tension). Therefore, the steel wires continue
to carry all the load. If the temperature
increase is less than ΔT , the Al wire will
be in tension and carry part of the load.
lote: both problems in quiz 5 have been added to this omework set, and you should use two methods to solve

problem 10. Please see quiz 5 solution for these two problems.