
sign convention: tension is positive. lengthening is positive.
$\Sigma M_{1 B}=0=P_{1}(5 f t)-T_{C F}(5 f t)-P_{2}(12 f t)$
$\Rightarrow \quad T_{C F}=-\frac{12}{5} P_{2}+P_{1}=-\frac{12}{5} \times 80 k+90 k=-102 k$
$\Sigma M_{1 C}=0=P_{1}(10 f t)+T_{B E_{1}}(5 f t)-P_{2}(7 f t)$

$$
\Rightarrow \quad T_{B E}=-2 P_{1}+\frac{7}{5} P_{2}=-2 \times 90 \mathrm{~K}+\frac{7}{5} \times 80 \mathrm{~K}=-68 \mathrm{~K}
$$

(2) Deformation of $B E$ \& $C F$
$A_{B E}=19.5 \mathrm{in}^{2} \quad A_{C F}=16.8 \mathrm{in}^{2}$
$L_{B E}=10 \mathrm{ft}=120 \mathrm{in} \quad L_{C F}=8 \mathrm{ft}=96 \mathrm{in}$
$E=29 \times 10^{6} \mathrm{psi}$
lengthening of $B E$:

$$
\delta_{B E}=\frac{T_{B E} L_{B E}}{E A_{B E}}=\frac{(-68 \mathrm{k})(120 \mathrm{in})}{\left(29 \times 10^{6} \mathrm{PSi}\right)\left(19.5 \mathrm{in}^{2}\right)}=-0.014 \mathrm{in}
$$

2.3-6 (Cont'd)

(a) Bar with two prismatic segments

elongation of the bar
$\delta=\sum_{i=1}^{2} \delta_{i}=\sum_{i=1}^{2} \frac{N_{i} L_{i}}{E_{i} A_{i}}$
where
$N_{1}=N_{2}=P=22 \mathrm{kN}$
$L_{1}=L_{2}=1.2 \mathrm{~m}$
$E_{1}=E_{2}=E=205 \mathrm{GPa}$

$$
A_{1}=\frac{\pi}{4} d_{1}^{2} \quad A_{2}=\frac{\pi}{4} d_{2}^{2}
$$

$$
\delta=\sum_{i=1}^{2} \frac{N_{i} L_{i}}{E_{i} A_{i}}=\frac{(22 \mathrm{kN})(1.2 \mathrm{~m})}{\left(205 G P_{a}\right)}\left[\frac{1}{\frac{\pi}{4}(20 \mathrm{~mm})^{2}}+\frac{1}{\frac{\pi}{4}(12 \mathrm{~mm})^{2}}\right]
$$

$$
=1.55 \mathrm{~mm}
$$

(b) Prismatic bar

Original bar $\quad V_{0}=\frac{\pi}{4} d_{1}^{2} L_{1}+\frac{\pi}{4} d_{2}^{2} L_{2}$
prismatic bar $\quad V_{p}=\frac{\pi}{4} d^{2} L$
$V_{0}=V_{p} \Rightarrow \frac{\pi}{4} d_{1}^{2} L_{1}+\frac{\pi}{4} d_{2}^{2} L_{2}=\frac{\pi}{4} d^{2} L$
$\Rightarrow \quad d=\sqrt{\frac{d_{1}^{2} L_{1}+d_{2}^{2} L_{2}}{L}}=\sqrt{\frac{d_{1}^{2}+d_{2}^{2}}{2}}$
$=\sqrt{\frac{(20 \mathrm{~mm})^{2}+(12 \mathrm{~mm})^{2}}{2}}$
$=16.49 \mathrm{~mm}$
$\delta=\frac{P L}{E A}=\frac{P L}{E \cdot \frac{\pi}{4} d^{2}}=\frac{4}{\pi} \frac{(22 \mathrm{KN})(2.4 \mathrm{~m})}{(205 \mathrm{GPa})(16.49 \mathrm{~mm})^{2}}$
$=1.21 \mathrm{~mm}<1.55 \mathrm{~mm}$
(Continued)

equally spaced wires, two of steel and one of aluminum The figure). The diameter of the wires is $1 / 8 \mathrm{in}$. Before they were loaded, all three wires had the same length.
3. What temperature increase ΔT in all three wires would result in the entire load being carried by the steel wires? (Assume $E_{s}=30 \times 10^{6} \mathrm{psi}, \quad \alpha_{s}=6.5 \times 10^{-6} /{ }^{\circ} \mathrm{F}$, and $a_{o}=12 \times 10^{-6 /{ }^{\circ}} \mathrm{F}$.)
PROB. 2.5-5

(1) FBD (at desired state)

(No load)
(2) Displacement
 change
$\delta_{1}=$ elongation of steel due to temperature change $=\alpha_{s}(\Delta T) L$
$\delta_{2}=$ elongation of steel due to load w/2
$=\frac{W}{2}\left(\frac{L}{E_{S} A_{S}}\right)$

$$
\delta_{3}=\text { elongation of } \mathrm{Al} \text { due to temperature change }
$$

$$
=\alpha_{A}(\Delta T) L \quad \text { (Note: no load contribution at }
$$

desired state)
(3) Compatibility:

$$
\begin{aligned}
& \delta_{3}=\delta_{1}+\delta_{2} \\
& \Rightarrow \alpha_{A}(\Delta T) L=\alpha_{S}(\Delta T) L+\frac{W}{2}\left(\frac{L}{E_{S} A_{S}}\right) \\
& \Rightarrow \Delta T=\frac{W}{2 E_{S} A_{S}\left(\alpha_{A}-\alpha_{S}\right)} \\
&=\frac{8001 \mathrm{~b}}{2\left(30 \times 10^{6} \mathrm{PSi}\right)\left(\frac{\pi}{4}\left(\frac{1}{8} \mathrm{in}\right)^{2}\right)\left(12 \times 10^{-6} /{ }^{\circ} \mathrm{F}-6.5 \times 10^{-6} / \mathrm{FF}\right)} \\
&=198^{\circ} \mathrm{F}
\end{aligned}
$$

\#2.5-5 (Cont'd)
Page $8 / 8$

Note:

1. Since there is no load on the Aluminum wire. the elongation of $A l$ is only due to the change of temperature.
2. Due to symmetry, the tension in each steed wire is $\frac{W}{2}$
3. If the temperature increase is larger than ΔT, the Al wire would be in compression, which is not possible (Wires \& strings can only support tension). Therefore, the steed wires continue to carry all the load. If the temperature increase is less than ΔT, the $A l$ wire will be in tension and carry part of the load.

Note: both problems in quiz 5 have been added to this homework set, and you should use two methods to solve problem 10. Please see quiz 5 solution for these two problems.

