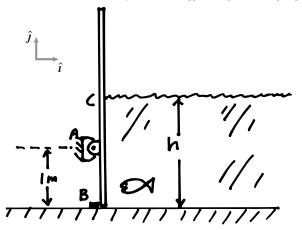
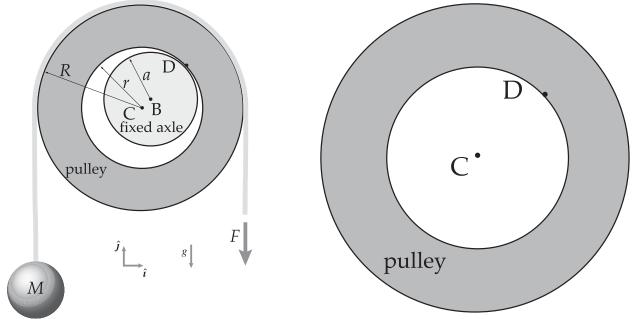
Your Name: _____


ENGRD 202 Quiz 5

Section day & time: _____


April 4, 2003

TA name & section #:

9) (7 pts) Water is held in a reservoir by a board with negligible weight that is 5 meters long. It is hinged 1 meter off the bottom at A and kept from leaking by a seal at B. What is h when the board starts to pull away from the stop at B? At that h what is the force of the hinge on the board? Assume $\rho = 1000 \text{ kg/m}^3$, g = 10 N/kg.

- 10) (10 pts) A mass M is steadily raised by pulling with a force F on a rope going over a negligible-mass pulley on an unlubricated journal bearing (no ball bearings). The friction coefficient between the pulley and its axle is $\mu = \tan \phi$. (The figure at right is the start of a drawing for one useful FBD.)
 - a) Find F in terms of M, g, R, r, a and μ (or ϕ or $\sin \phi$ or $\cos \phi$ whichever is most convenient, for example $\cos(\tan^{-1}(\mu))$ is just $\cos \phi$). [Hint: Finding the location of the contact point D is probably part of your solution.]
 - b) Evaluate F in the special case that M = 100 kg, g = 10 N/kg, r = 1 cm, R = 2 cm, and $\mu = \sqrt{3}/3$ (so $\phi = \pi/6, \sin \phi = 1/2, \cos \phi = \sqrt{3}/2$).
 - c) What happens instead if μ is very large, say the limit $\mu \to \infty$? Does the needed force F go to ∞ or what?

