Lecture Day Topics Text Sections HW#(*) TA(+) ^^^^^^^^^^^ ^^^^^^ ^^^^^^^^^^^^^ ^^^^^ ^^^^^ F Aug 30 DEs, math models, computer solutions EP1.1 1 JA M Sep 2 '' '' W 4 integrals as solutions 1.2 2 TK F 6 slope fields solution curve 1.3 M 9 separable solns word problems 1.4 W 11 linear first order eqs (esp. const coeff) 1.5 3 SM F 13 population models 2.1 M 16 equilibrium solns stability 2.2 W 18 velocity and acceleration 2.3 4 KS F 20 Euler's numerical method of solution 2.4 M 23 constant coeff 2nd order ODEs 3.1 W 25 forcing, guessing, resonance 3.5-6 5 EV --Th 26-- --Prelim 1-- --through EP2.4-- F 27 systems of first order ODEs 4.1 M 30 '' '' W Oct 2 linear algebra: linear alg. eqs in matrix form, 5.1 6 AW F 4 transpose, product, inverse, row operations, '' M 7 solving eqs, finding inverse, eigen-things '' W 9 using eigen-values vectors to solve ODEs 5.2 7 JA F 11 applications of systems of ODEs 5.3 M 14 ----FALL BREAK (through tues)---- W 16 phase plane and stability 6.1 8 TK F 18 predator prey models in ecology 6.3 M 21 non-linear mechanics chaos 6.4-5 W 23 double integrals TF13.1 9 SM F 25 '' M 28 area and center or mass 13.2 W 30 polar coordinates 13.3 10 KS --Th 31-- --scary Prelim 2-- --through TF13.1-- F Nov 1 triple integrals 13.4 M 4 volume, mass, and moments 13.5 W 6 cylindrical coordinates 13.6 11 EV F 8 line integrals 13.7 M 11 vector fields 14.1 W 13 '' '' 12 AW F 15 work and flux 14.2 M 18 conservative fields 14.3 W 20 Green's thm in 2D 14.4 13 JA --Th 21-- --Prelim 3-- --through TF 14.2-- F 22 surface area surface integrals 14.5 M 25 parameterization of surfaces 14.6 W 27 Catch up misc. 14 TK F 29 --THANKSGIVING cranberries etc-- M Dec 2 Stokes theorem 14.7 W 4 divergence theorem 14.8 15 SM F 6 '' '' --M 16-- --FINAL EXAM-- --EP 1 - 6 (most)-- --TF 13 -14 (all )--
* Problems to be handed out in lecture, generally on Mondays, due Wednesdays in lecture the week after assigned.
+ TA who writes partial solutions for the week's homework, handed out in lecture on fridays.
EP = Edwards and Penney: {\it DIFFERENTIAL EQUATIONS AND BOUNDARY VALUE PROBLEMS},
TF = Thomas and Finney (9th ed): {\it CALCULUS}.