Math 293 Syllabus, Fall 1996

Lecture Day                  Topics                    Text Sections      HW#(*) TA(+) 
^^^^^^^^^^^                  ^^^^^^                    ^^^^^^^^^^^^^      ^^^^^  ^^^^^
F  Aug  30     DEs, math models, computer solutions       EP1.1            1      JA 


M  Sep   2                    ''   ''     
W        4             integrals as solutions               1.2            2      TK 
F        6          slope fields   solution curve           1.3     

M        9          separable solns word problems           1.4     
W       11    linear first order eqs (esp. const coeff)     1.5            3      SM 
F       13                 population models                2.1     

M       16         equilibrium solns        stability       2.2     
W       18             velocity and acceleration            2.3            4      KS 
F       20        Euler's numerical method of solution      2.4     

M       23             constant coeff 2nd order ODEs        3.1     
W       25             forcing, guessing, resonance         3.5-6          5      EV 
--Th  26--                     --Prelim 1--           --through EP2.4--     
F       27          systems of first order ODEs             4.1     

M       30                     ''  ''     
W  Oct   2  linear algebra: linear alg. eqs in matrix form, 5.1            6      AW  
F        4    transpose, product, inverse, row operations,  ''     

M        7     solving eqs, finding inverse, eigen-things    ''     
W        9     using eigen-values vectors to solve ODEs     5.2            7      JA 
F       11        applications of systems of ODEs  5.3     

M       14        ----FALL BREAK (through tues)----         
W       16            phase plane and stability             6.1            8      TK 
F       18         predator prey models in ecology          6.3     

M       21           non-linear mechanics   chaos           6.4-5     
W       23                double integrals               TF13.1            9      SM 
F       25                       ''     

M       28             area and center or mass             13.2     
W       30                 polar coordinates               13.3           10      KS 
--Th  31--                 --scary Prelim 2--       --through TF13.1--  
F Nov    1                  triple integrals               13.4     

M        4            volume, mass, and moments            13.5     
W        6             cylindrical coordinates             13.6           11      EV 
F        8                   line integrals                13.7     

M       11                   vector fields                 14.1     
W       13                       ''   ''                                  12      AW 
F       15                   work and flux                 14.2     

M       18                conservative fields              14.3     
W       20                 Green's thm in 2D               14.4           13      JA 
--Th  21--                   --Prelim 3--           --through TF 14.2--     
F       22          surface area  surface integrals        14.5     

M       25           parameterization of surfaces          14.6     
W       27                 Catch up    misc.                              14      TK 
F       29         --THANKSGIVING   cranberries etc--    

M Dec    2                  Stokes theorem                 14.7     
W        4              divergence theorem               14.8             15      SM 
F        6                     ''  ''     

--M 16--                    --FINAL EXAM--          --EP  1 - 6 (most)--   
                                                     --TF 13 -14 (all )--  

* Problems to be handed out in lecture, generally on Mondays, due Wednesdays in lecture the week after assigned.

+ TA who writes partial solutions for the week's homework, handed out in lecture on fridays.

EP = Edwards and Penney: {\it DIFFERENTIAL EQUATIONS AND BOUNDARY VALUE PROBLEMS},

TF = Thomas and Finney (9th ed): {\it CALCULUS}.