Statics and Strength of Materials: fact sheet
 (12/12/94, revised 5/10/01, 12/14/02, 12/9/2010-A. Ruina)

Basic Statics

How to do statics: Draw FBDs. Use force and moment balance.

Free Body Diagram (FBD)

A picture of a system and all the external forces and torques acting on it. At every cut there is a force from the thing it was cut from. For every motion caused or prevented there is a force or moment component. No FBD \Rightarrow no mechanics.

Action \& Reaction on FBDs of \mathcal{A} and \mathcal{B}

$$
\text { If } \mathcal{A} \text { feels force } \quad \overrightarrow{\boldsymbol{F}} \text { and couple } \quad \overrightarrow{\boldsymbol{M}} \text { from } \mathcal{B} .
$$ then \mathcal{B} feels force $-\overrightarrow{\boldsymbol{F}}$ and couple $-\overrightarrow{\boldsymbol{M}}$ from \mathcal{A}.

(With $\overrightarrow{\boldsymbol{F}}$ and $-\overrightarrow{\boldsymbol{F}}$ acting on the same line of action.)

Force and Moment Balance

For every FBD in equilibrium:

Moment Balance about pt C

$$
\sum_{\substack{\text { All external } \\ \text { torques }}} \stackrel{\rightharpoonup}{\boldsymbol{M}}_{/ C}=\stackrel{\rightharpoonup}{\mathbf{0}}
$$

- The torque $\overrightarrow{\boldsymbol{M}}_{/ C}$ of a force depends on the reference point C. But, for a body in equilibrium, and for any point C, the sum of all the torques relative to point C must add to zero).
- Dotting the force balance equation with a unit vector gives a scalar equation,

$$
\text { e.g. }\left\{\sum \overrightarrow{\boldsymbol{F}}\right\} \cdot \hat{\boldsymbol{\imath}}=0 \Rightarrow \sum F_{x}=0 .
$$

- Dotting the moment balance equation with a unit vector gives a scalar equation, e.g.,

$$
\left\{\sum \overrightarrow{\boldsymbol{M}}_{/ C}\right\} \cdot \hat{\lambda}=0
$$

\Rightarrow net moment about axis in direction $\hat{\lambda}$ through $C=0$.

Facts, definitions \& miscellaneous

- The moment of a force is unchanged if the force is slid along its line of action.
- For many purposes the words 'moment', 'torque', and 'couple' have the same meaning.
- Two-force body. If a body in equilibrium has only two forces acting on it then the two forces must be equal and opposite and have a common line of action.
- Caution: Machine and frame components are often not two-force bodies (e.g, transmitted force is not along a bar).
- Three-force body. If a body in equilibrium has only three forces acting on it then the three forces must be coplanar and have lines of action that intersect at one point.
- Truss: A collection of weightless two-force bodies connected with hinges (2D) or ball and socket joints (3D).
- Method of joints. Draw free body diagrams of each joint in a truss.
- Zero force member. A bar in a truss with zero tension.
- Method of sections. Draw free body diagrams of various regions of a truss. 2D/3D: Try to make the FBD cuts for the sections go through only three/six bars with unknown forces.
- Hydrostatics: $p=\rho g h, \quad F=\int p d A$
- Power in a shaft: $\quad P=T \omega$.
- Saint Venant's Principle: Far from the region of loading, the stresses in a structure would only change slightly if a load system were replaced with any other load system having the same net force and moment.

Cross section geometry

	Definition	Composite	annulus (circle: $\left.c_{1}=0\right)$	thin-wall annulus (approx)	rectangle
A	$\int d A$	$\sum A_{i}$	$\pi\left(c_{2}^{2}-c_{1}^{2}\right)$	$2 \pi c t$	$b h$
J	$\int \rho^{2} d A$		$\frac{\pi}{2}\left(c_{2}^{4}-c_{1}^{4}\right)$	$2 \pi c^{3} t$	
$I_{z z}$		$\int y^{2} d A$	$\sum\left(I_{i}+d_{i}^{2} A_{i}\right)$	$\frac{\pi}{4}\left(c_{2}^{4}-c_{1}^{4}\right)$	$\pi c^{3} t$
I	$\frac{\int y d A}{\int d A}$	$\frac{\sum y_{i} A_{i}}{\sum A_{i}}$	center	center	center
\bar{y}					

	Stress	Strain	Hooke's Law	
Normal:	$\sigma=P_{\perp} / A$	$\epsilon=\delta / L_{0}=\frac{L-L_{0}}{L_{0}}$	$\begin{gathered} \sigma=E \epsilon \\ {[\epsilon=\sigma / E+\alpha \Delta T]} \\ \epsilon_{\text {tran }}=-v \epsilon_{\text {long }} \end{gathered}$	
Shear:	$\tau=P_{\\|} / A$	$\gamma=\begin{gathered} \text { change of } \\ \text { formerly right angle } \end{gathered}$	$\begin{aligned} \tau & =G \gamma \\ 2 G & =\frac{E}{1+v} \end{aligned}$	

Stress and deformation of some things

	Equilibrium	Geometry	Results
Tension	$P=\sigma A$	$\epsilon=\delta / L$	$\delta=\frac{P L}{A E}$
Torsion	$T=\int \rho \tau d A$	$\gamma=\rho \phi / L$	$\delta=\frac{P L}{A E}+\alpha L \Delta T$
Bending	$M=-\int y \sigma d A$	$\epsilon=-y / \rho=-y \kappa$	$v^{\prime \prime}=\frac{M L}{E I}$
in	$\frac{d M}{d x}=V=\int \tau d A$	$v^{\prime \prime}=\frac{d^{2}}{d x^{2}} v=\frac{1}{\rho}=\kappa$	$\sigma=\frac{-M y}{I}$
Beams	$\frac{d V}{d x}=-w$	$=d \theta / d x$	$\tau(y)=\frac{V Q(y)}{I t(y)}$

Symbols

A,B,C,D,G,... Points on pictures.
$A=$ Cross sectional area
$a, b, c, d, h, \ell, L, r, R, w, \ldots$ Distances on pictures
$\hat{\boldsymbol{\imath}}, \hat{\boldsymbol{J}}, \hat{\boldsymbol{k}}, \hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{n}}$ and x, y, z Unit vectors and coordinates
c Max distance from centerline (torsion) or neutral axis (bending)
$E=$ Young's modulus, $E_{\text {steel }} \approx 30 * 10^{6} \mathrm{psi} \approx 200 \mathrm{GPa} \approx 2 * 10^{6} \mathrm{Atm}$.
$F, \overrightarrow{\boldsymbol{F}}$ Force
g, G Acceleration of gravity [force/mass] and Shear modulus [stress], respectively
J, I Area moments of inertia (2nd moments of area). Polar and $x x$, respectively.
$T, M, \overrightarrow{\boldsymbol{M}}$ Torque, moment [distance \times force]
P, T Tension [force]
Q, t In beams, $t(y)=$ thickness at $y, Q(y)=$ first moment of area above y.
u, v Displacement of beam [distance]
y Distance up from neutral axis on a beam
w Downwards loading per unit length for beams. E.g. $w=\gamma$
$\alpha, \beta, \gamma, \phi, \theta, \ldots$ Angles
$\alpha=$ Coefficient of thermal expansion, $\alpha_{\text {steel }} \approx 12 * 10^{-6} /{ }^{\circ} \mathrm{C}$
γ Density, mass per unit volume, area or length. E.g., $\gamma_{\text {water }} \approx 10,000 \mathrm{~N} / \mathrm{m}^{3}$
δ Elongation or displacement [distance]
ϵ, γ Elongation strain [dimensionless], Shear strain [dimensionless], respectively v Poisson's ratio
ρ Radius of curvature (in bending), distance from centerline (in torsion), density [mass/volume], e.g., $\rho_{\text {water }} \approx 1000 \mathrm{~kg} / \mathrm{m}^{3}$
σ Normal stress, tension stress. Subscripts: $\mathrm{y}=$ yield, $y=y$ direction, $x=x$ direction, $u=u l t i m a t e, ~ a l l=$ allowable, $\max =$ maximum
τ Shear stress
ϕ, θ Rotation of a shaft, slope of a beam

