# Statics and Strength of Materials: fact sheet

(12/12/94, revised 5/10/01, 12/14/02, 12/9/2010

## **Basic Statics**

How to do statics: Draw FBDs. Use force and moment balance.

#### Free Body Diagram (FBD)

A picture of a system and all the external forces and torques acting on it. At every cut there is a force from the thing it was cut from. For every motion caused or prevented there is a force or moment component. No FBD  $\Rightarrow$  no mechanics.

#### Action & Reaction on FBDs of $\mathcal{A}$ and $\mathcal{B}$

| If   | $\mathcal{A}$            | feels force         | $\overrightarrow{F}$ and couple  | $\overrightarrow{M}$ from  | В.             |
|------|--------------------------|---------------------|----------------------------------|----------------------------|----------------|
| then | $\mathcal{B}$            | feels force         | $-\overrightarrow{F}$ and couple | $-\overrightarrow{M}$ from | $\mathcal{A}.$ |
| (W   | ith $\overrightarrow{F}$ | and $-\vec{F}$ acti | ng on the same line              | e of action.)              |                |

#### Force and Moment Balance

For every FBD in equilibrium:



- The torque  $\overline{M}_{/C}$  of a force depends on the reference point C. But, for a body in equilibrium, and for any point C, the sum of all the torques relative to point C must add to zero ).
- Dotting the force balance equation with a unit vector gives a scalar equation.
  - e.g.  $\left\{\sum \vec{F}\right\} \cdot \hat{i} = 0 \implies \sum F_x = 0.$
- Dotting the moment balance equation with a unit vector gives a scalar equation, e.g.,

 $\left\{\sum \vec{M}_{/C}\right\} \cdot \hat{\lambda} = 0$ 

net moment about axis in direction  $\hat{\lambda}$  through C = 0.  $\rightarrow$ 

## Facts, definitions & miscellaneous

- The moment of a force is unchanged if the force is slid along its line of action.
- For many purposes the words 'moment', 'torque', and 'couple' have the same meaning
- Two-force body. If a body in equilibrium has only two forces acting on it then the two forces must be equal and opposite and have a common line of action.
- Caution: Machine and frame components are often not two-force bodies (e.g., transmitted force is not along a bar).
- Three-force body. If a body in equilibrium has only three forces acting on it then the three forces must be coplanar and have lines of action that intersect at one point.
- Truss: A collection of weightless two-force bodies connected with hinges (2D) or ball and socket joints (3D).
- Method of joints. Draw free body diagrams of each joint in a truss.
- Zero force member. A bar in a truss with zero tension.
- Method of sections. Draw free body diagrams of various regions of a truss. 2D/3D: Try to make the FBD cuts for the sections go through only three/six bars with unknown forces.
- Hydrostatics:  $p = \rho g h$ ,  $F = \int p dA$
- Power in a shaft:  $P = T\omega$ .
- Saint Venant's Principle: Far from the region of loading, the stresses in a structure would only change slightly if a load system were replaced with any other load system having the same net force and moment.

#### Cross section geometry

|              | Definition                   | Composite                       | $\begin{array}{c} \mathbf{annulus} \\ \mathbf{(circle:} \\ c_1 = 0) \end{array}$ | thin-wall<br>annulus<br>(approx) | rectangle                  |
|--------------|------------------------------|---------------------------------|----------------------------------------------------------------------------------|----------------------------------|----------------------------|
| A            | $\int dA$                    | $\sum A_i$                      | $\pi (c_2^2 - c_1^2)$                                                            | 2 <i>πct</i>                     | bh                         |
| $J = I_{zz}$ | $\int \rho^2 dA$             |                                 | $\frac{\pi}{2}(c_2^4-c_1^4)$                                                     | $2\pi c^3 t$                     |                            |
| Ι            | $\int y^2 dA$                | $\sum (I_i + d_i^2 A_i)$        | $\frac{\pi}{4}(c_2^4-c_1^4)$                                                     | $\pi c^3 t$                      | <i>bh</i> <sup>3</sup> /12 |
| ÿ            | $\frac{\int y  dA}{\int dA}$ | $\frac{\sum y_i A_i}{\sum A_i}$ | center                                                                           | center                           | center                     |

## Stress, strain, and Hooke's Law

|         | Stress                  | Strain                                        | Hooke's Law                                                                                              |
|---------|-------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Normal: | $\sigma = P_{\perp}/A$  | $\epsilon = \delta/L_0 = \frac{L - L_0}{L_0}$ | $\sigma = E \epsilon$ $[\epsilon = \sigma/E + \alpha \Delta T]$ $\epsilon_{tran} = -\nu \epsilon_{long}$ |
| Shear:  | $	au = P_{\parallel}/A$ | $\gamma = change of$ formerly right angle     | $\tau = G\gamma$ $2G = \frac{E}{1+\nu}$                                                                  |

#### Stress and deformation of some things

|                        | Equilibrium                                                                      | Geometry                                                                                           | Results                                                                      |
|------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Tension                | $P = \sigma A$                                                                   | $\epsilon = \delta/L$                                                                              | $\delta = \frac{PL}{AE}$ $\delta = \frac{PL}{AE} + \alpha L \Delta T$        |
| Torsion                | $T = \int \rho \tau  dA$                                                         | $\gamma =  ho \phi / L$                                                                            | $\phi = \frac{TL}{JG}$ $\tau = \frac{T\rho}{J}$                              |
| Bending<br>in<br>Beams | $M = -\int y\sigma  dA$ $\frac{dM}{dx} = V = \int \tau  dA$ $\frac{dV}{dx} = -w$ | $\epsilon = -y/\rho = -y\kappa$ $v'' = \frac{d^2}{dx^2}v = \frac{1}{\rho} = \kappa$ $= d\theta/dx$ | $v'' = \frac{M}{EI}$ $\sigma = \frac{-My}{I}$ $\tau(y) = \frac{VQ(y)}{I(y)}$ |
|                        |                                                                                  |                                                                                                    |                                                                              |

#### **Symbols**

- A,B,C,D,G,... Points on pictures.
- A = Cross sectional area
- $a, b, c, d, h, \ell, L, r, R, w, \ldots$  Distances on pictures
- $\hat{i}, \hat{j}, \hat{k}, \hat{\lambda}, \hat{n}$  and x, y, z Unit vectors and coordinates
- c Max distance from centerline (torsion) or neutral axis (bending) E = Young's modulus,  $E_{\rm steel}\approx 30 * 10^6$  psi  $\approx 200~{\rm GPa}\approx 2 * 10^6$  Atm.
- $F, \vec{F}$  Force
- g, G Acceleration of gravity [force/mass] and Shear modulus [stress], respectively
- J, I Area moments of inertia (2nd moments of area). Polar and xx, respectively.
- $T,M,\vec{M}$  Torque, moment [distance  $\times$  force]
- P, T Tension [force]
- Q, t In beams, t(y) = thickness at y, Q(y) = first moment of area above y.
- u, v Displacement of beam [distance]
- y Distance up from neutral axis on a beam
- w Downwards loading per unit length for beams. E.g.  $w = \gamma$
- $\alpha, \beta, \gamma, \phi, \theta, \ldots$  Angles
- $\alpha$  = Coefficient of thermal expansion,  $\alpha_{\rm steel} \approx 12 * 10^{-6} / ^{\circ} C$
- $\gamma$  Density, mass per unit volume, area or length. E.g.,  $\gamma_{\rm water} \approx 10,000 \, {\rm N/\,m^3}$
- $\delta$  Elongation or displacement [distance]
- $\epsilon, \gamma$  Elongation strain [dimensionless], Shear strain [dimensionless], respectively v Poisson's ratio
- $\rho$  Radius of curvature (in bending), distance from centerline (in torsion), density
- [mass/volume], e.g.,  $\rho_{\text{water}} \approx 1000 \text{ kg/m}^3$  $\sigma$  Normal stress, tension stress. Subscripts: y = y identity, x = x
- direction, u=ultimate, all=allowable, max = maximum
- $\tau$  Shear stress
- $\phi, \theta$  Rotation of a shaft, slope of a beam