Statics and Strength of Materials Formula Sheet

(12/12/94, revised 5/10/01, 12/14/02 — A. Ruina)

Not given here are the conditions under which the formulae are accurate or useful.

Basic Statics

Free Body Diagram

A **FBD** is a picture of any system for which you would like to apply mechanics equations and of all the external forces and torques which act on the system.

Action & Reaction

Force and Moment Balance

These equations apply to every system in equilibrium:

$$\overbrace{\sum_{\substack{\text{All external} \\ \text{forces}}} \overrightarrow{\overrightarrow{F}} = \overrightarrow{0}}$$

$$\overbrace{\sum_{\substack{\text{All external} \\ \text{torques}}} \overrightarrow{\mathbf{M}}_{/C} = \overrightarrow{\mathbf{0}}}^{}$$

- The torque $\overrightarrow{\mathbf{M}}_{/C}$ of a force depends on the reference point C. But, for a body in equilibrium, and for any point C, the <u>sum</u> of all the torques relative to point C must add to zero).
- Dotting the force balance equation with a unit vector gives a scalar equation.

e.g.
$$\left\{ \sum \vec{\mathbf{F}} \right\} \cdot \hat{\mathbf{i}} = 0 \quad \Rightarrow \quad \sum F_x = 0.$$

 Dotting the moment balance equation with a unit vector gives a scalar equation, e.g.,

$$\left\{ \sum \vec{\mathbf{M}}_{/C} \right\} \cdot \hat{\lambda} = 0$$

 \Rightarrow net moment about axis in direction $\hat{\lambda}$ through C = 0.

Some Statics Facts and Definitions

- The moment of a force is unchanged if the force is slid along its line of action.
- For many purposes the words 'moment', 'torque', and 'couple' have the same meaning.
- Two-force body. If a body in equilibrium has only two forces acting on
 it then the two forces must be equal and opposite and have a common line
 of action.
- Three-force body. If a body in equilibrium has only three forces acting on it then the three forces must be coplanar and have lines of action that intersect at one point.
- truss: A collection of weightless two-force bodies connected with hinges (2D) or ball and socket joints (3D).
- Method of joints. Draw free body diagrams of each of the joints in a truss.
- Method of sections. Draw free body diagrams of various regions of a truss. Try to make the FBD cuts for the sections go through only three bars with unknown forces (2D).
- Caution: Machine and frame components are often not two-force bodies.
- Hydrostatics: $p = \rho g h$, $F = \int p dA$

Miscellaneous

- Power in a shaft: $P = T\omega$.
- Saint Venant's Principle: Far from the region of loading, the stresses in a structure would only change slightly if a load system were replaced with any other load system having the same net force and moment.

Cross Section Geometry

		Definition	Composite	annulus (circle: $c_1 = 0$)	thin-wall annulus (approx)	rectangle
1	4	$\int dA$	$\sum A_i$	$\pi(c_2^2 - c_1^2)$	$2\pi ct$	bh
	J_{p}	$\int \rho^2 dA$		$\frac{\pi}{2}(c_2^4 - c_1^4)$	$2\pi c^3 t$	
	Ι	$\int y^2 dA$	$\sum (I_i + d_i^2 A_i)$	$\frac{\pi}{4}(c_2^4-c_1^4)$	$\pi c^3 t$	$bh^3/12$
	\bar{y}	$\frac{\int y \ dA}{\int \ dA}$	$\frac{\sum y_i A_i}{\sum A_i}$	center	center	center

Stress, strain, and Hooke's Law

	Stress	Strain	Hooke's Law
Normal:	$\sigma = P_{\perp}/A$	$\epsilon = \delta/L_0 = \frac{L - L_0}{L_0}$	$\sigma = E\epsilon$ $[\epsilon = \sigma/E + \alpha \Delta T]$ $\epsilon_{tran} = -\nu \epsilon_{long}$
Shear:	$\tau = P_{\parallel}/A$	$\gamma = \begin{array}{c} \mbox{change of} \\ \mbox{formerly right angle} \end{array}$	$\tau = G\gamma$ $2G = \frac{E}{1+\nu}$

Stress and deformation of some things

	Equilibrium	Geometry	Results
Tension	$P = \sigma A$	$\epsilon = \delta/L$	$\delta = \frac{PL}{AE}$
			$\delta = \frac{PL}{AE} + \alpha L \Delta T$
Torsion	$T = \int \rho \tau dA$	$\gamma = \rho \phi / L$	$\phi = \frac{TL}{JG}$
			$ au = \frac{T ho}{J}$
Bending	$M = -\int y\sigma dA$	$\epsilon = -y/\rho = -y\kappa$	$v^{\prime\prime} = \frac{M}{EI}$
in	$\frac{dM}{dx} = V$	$v'' = \frac{d^2}{dx^2}v = \frac{1}{\rho} = \kappa$	$\sigma = \frac{-My}{I}$
Beams	$\frac{dV}{dx} = -q$		