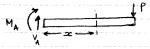

HW 15 Solutions, Prepared by Vijay Muralidharan & Pankaj Porwal. Due on Dec. 10, 2002


9.3/11

cantilever beam AB supporting a load P at the free end (see figure). Also, determine the deflection δ_B and angle of rotation θ_B at the free end. (Note: Use the second-order differential equation of the deflection curve.)

PROB. 9.3-11

Take a section at a distance x

$$\sum M_{z}=0 \Rightarrow M+P(L-z)=0$$

$$M=-P(L-x)$$

we know that

So
$$v'' = -\frac{p}{ET}(L-x)$$

integration
$$v' = -\frac{\rho}{EI} \left(Lx - \frac{x^2}{2} \right) + C_I$$

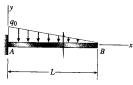
one more integration

$$v = -\frac{P}{E_1} \left(\frac{Lx^2}{2} - \frac{x^3}{6} \right) + C_1 x + C_2$$

$$V(0) = 0 \Rightarrow C_2 = 0$$

 $V(0) = 0 \Rightarrow C_1 = 0$

so
$$v = -\frac{\rho}{EI} \left(\frac{Lx^2}{2} - \frac{x^3}{6} \right)$$


and
$$\theta = v' = -\frac{f}{EI} \left(Lx - \frac{x^2}{2} \right)$$

So
$$\delta_{g} = v(L) = -\frac{P}{EI} \left(\frac{L^{3}}{a} - \frac{L^{3}}{6} \right)$$

$$\theta_{B} = \vartheta'(L) = -\frac{\rho}{ET} \left(\frac{L^{2} - \frac{L^{2}}{4}}{2} \right)$$

OR is negative => Clockwise rotation.

9.3-13 A cantilever beam AB supporting a triangularly distributed load of maximum intensity q_0 is shown in the figure. Derive the equation of the deflection curve and then obtain formulas for the deflection δ_B and angle of rotation θ_B at the free end. (Note: Use the second-order differential equation of the deflection curve.)

PROB. 9.3-13

Take eight past of the FBD with section

at a distance oc.

$$\frac{\mathcal{L}_{\bullet}(L-x)}{L}$$

$$\geq M_x = 0 \Rightarrow M + \frac{1}{3} (L - x) \left(\frac{9}{2L} (L - x) (L - x) \right) = 0$$

$$M = -\frac{90}{6L}(L-x)^3$$

$$v'' = -\frac{9}{6EIL} \left(L - z\right)^3 - 0$$

integrating 1

$$v' = \frac{\gamma_0}{6(\epsilon i L)} \frac{(L-x)^4}{4} + C_1$$

$$c_1 = -\frac{2}{24} L^3$$

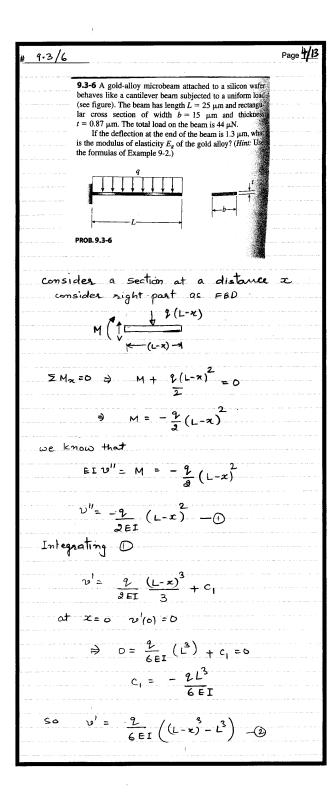
integrating 2

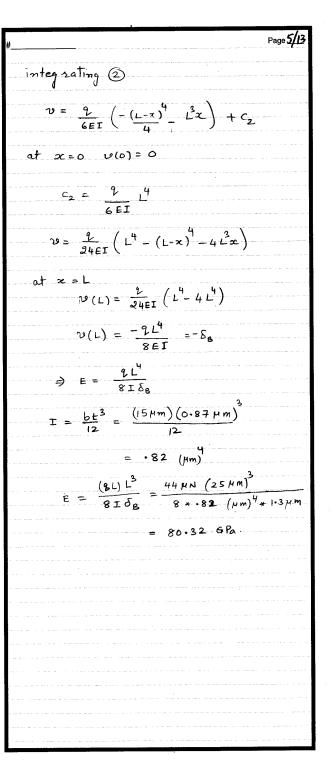
$$v = \frac{90}{2461L} \left[-\frac{(L-z)^5}{5} - \frac{L^4x}{2} \right] + C_2$$

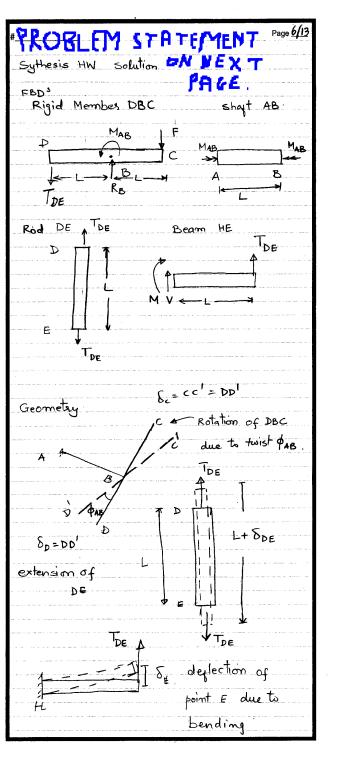
at
$$x=0$$
 $v(0)=0$

$$C_2 \pm \frac{96}{24EIL} = \frac{5}{5} = \frac{9.}{120EI}$$

$$v = \frac{90}{120 \text{ FIL}} \left[\frac{5}{120 \text{ FIL}} - \left(\frac{1}{120 \text{ FIL}} \right) \right]$$


et z=L


$$v_{B} = v(L) = \frac{20}{120 \text{ EIL}} \left(L^{5} - 0 - 5 L^{5} \right)$$


$$v_{B} = \frac{20 \text{ L}^{4}}{30 \text{ EI}}$$

$$\theta_{g} = \upsilon'(L) = -\frac{90L^{3}}{24EI}$$

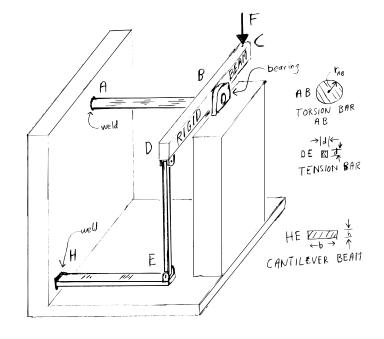
 $\theta_{\rm B}$ is negative \Longrightarrow Clockwise rotation.

T&AM 202 Synthesis HW question

due Tuesday Dec 10, 2002

This version last edited December 5, 2002.

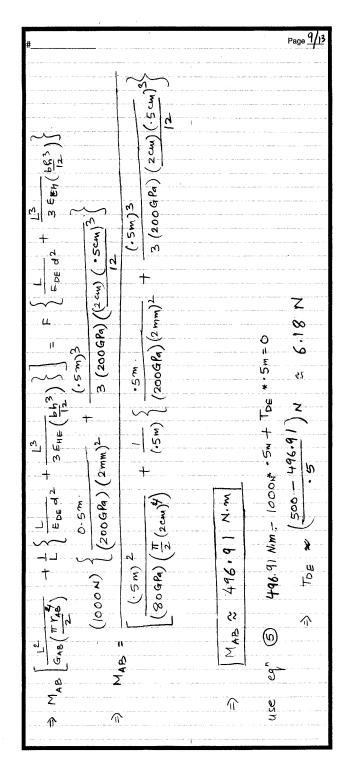
Structure and geometry description:


Torsion bar AB is welded to a rigid support at its left end at A and is supported by a bearing at B. Rigid beam DBC is welded to, and rotates with, the right end of the bar AB. The load F is applied to point C on DBC. The width of this beam can be neglected when considering the length of AB. Tension rod DE hangs from a pin joint at D and pulls up on a pin joint at E. Cantilever beam HE is welded to the wall at H and has its end pulled up by the pin at E.

The load F tries to rotate the beam DBC clockwise (as viewed from the right). This motion is resisted by the torsional stiffness of rod AB and would also be resisted by the bending stiffness of HE but for the compliance of tension rod DE which diminishes this resistance.

Assume linear elastic behavior throughout. The structure is stress-free when there is no load (F = 0).

Given


$$\begin{split} L_{AB} &= L_{HE} = L_{DB} = L_{BC} = L_{DE} = 0.5 \, \mathrm{m} \\ r_{AB} &= 2 \, \mathrm{cm}, \; G_{AB} = 80 \, \, \mathrm{GPa}, \\ d &= 2 \, \mathrm{mm}, \; E_{DE} = 200 \, \, \mathrm{GPa}, \\ b &= 2 \, \mathrm{cm}, \; h = .5 \, \mathrm{cm}, \; E_{HE} = 200 \, \, \mathrm{GPa} \\ F &= 1000 \, \mathrm{N}. \end{split}$$

- a) What is the deflection of point C?
- b) What is the maximum shear stress on any surface in bar DE?
- c) What is the maximum tension stress in bar HE?
- d) What is the maximum tension stress on any surface in bar AB?

Note. 1. The member DBC is a rigid member so there will be no dyormation of member DBC. 2. Deflection of point D in member CBD will be same as the sum of deflection of HE at E due to bending and extension of member DE due to tension. DD = \$AB L (i) [Assuming small displacement. If displacement is large then we can consider $\frac{DD'}{I} = Sin(\phi_{AB})$ also $DD' = \delta_E + \delta_{DE} - (ii)$ from (b) and (ii) $\phi_{AB} L = \delta_E + \delta_{DE} - 0$ strength of material result A) Twist of AB $\phi_{AB} = \frac{M_{AB} L_{AB}}{G_{AB} J_{AB}} - 2$ JAB = Trab 3 LAB = L

#	Page 8/13
B) stretch of DE	
$S_{DE} = \frac{T_{DE} L_{DE}}{F_{DE} A_{DE}} - 3$	
$A_{DE} = d^2 ; L_{DE} = L$	
c) Deflection of point E in beam	o HE
$ \begin{array}{ccc} 3 & \text{EHE} & \text{HE} \\ \hline 1 & = & \underline{bh}^3 & \\ 12 & 3 & \\ \end{array} $ (from problem 9.3/11)	
FBDs and Mechanics	
Consider FBD of DBC:	
ZMB=0 => MAB + TDE L-F. L	=0-G
From eq O	
ϕ_{AB} L = δ_{E} + δ_{DE}	
use eq? ② ③ and ④	
$\frac{M_{AB} L}{G_{AB} J_{AB}} = \frac{T_{DE} L}{E_{DE} d^2} + \frac{T_{DE} L^3}{3 E_{HE}}$	$\frac{6h^3}{12}$
and from eqs	
$T_{DC} = (FL - M_{AB}) \frac{1}{L}$	
$\Rightarrow \frac{M_{AB} L}{G_{AB} \left(\frac{\pi r_{AB}^2}{2}\right)} = \frac{L}{E_{DE} d^2} + \frac{L^3}{3E_{HE} \left(\frac{bh}{L^2}\right)}$ $\left(F_L - M_{AB}\right) L$	
The second of th	

#II/13
E) Max Tension stress in beam HE (bending of beam solution) Mymax T
$\epsilon_{\text{max}} = \frac{M_{\text{my}} m_{\text{max}}}{I}$
Menax = TDE * L
Ymax = 1/2
$G_{\text{max}} = \frac{T_{\text{DE}} * L h}{I * 2}$
(6.18 N) (0.5m) (0.5 cm)
$(2cm)(.5cm)^3$ 12
= 37.068 MPa.
d) Max tension stress in box AB.
Faom torsion theory we know that
max Shear stress in a shaft with a circular section occurs at the outer
Radius, Consider or stress dement
and max tension
stress will occur at
a 45° angle:
Smax = Tmax at a 45 section
M. F
$G_{\text{max}} = Z_{\text{max}} = \frac{M_{\text{AB}} \Gamma_{\text{AB}}}{J} = \frac{2 M_{\text{AB}}}{H \Gamma_{\text{AB}}^3}$
2 (496,91)
$= \frac{2(496.91)}{\pi(2\times10^{2} \text{m})^{3}}$
= 39.53 MPa

#	13/13
Resultant of the triangue through the Centroid o	lar load acts f triangle, This must
also act through B.	
$h = \frac{d_{\text{max}}}{3}$	
FBD of part BC of p	anel!
12 dm 1 D V B 2 h Sino	<u>ax</u> = 21
Maximum bending moment	occurs at section B.
$M_{\text{max}} = M_{\text{p}} = \frac{1}{2} \left(\frac{2q_0}{3} \right) \left(\frac{1}{5} \right)$	$\left(\frac{2h}{\ln a}\right) \times \frac{1}{3} \left(\frac{2h}{\sin a}\right)$
$= \frac{490h^2}{9sin^2x}$	
90 = Ydmax b = Y(3h)(6)
$M_{max} = \frac{4 Y b h^3}{3 \sin^2 \alpha}$	\rightarrow \bigcirc
Also, Mmax = (Sallow) (bt	
From OSO, we get	
Gallow $\left(\frac{bt^2}{6}\right) = \frac{47b}{3sin}$	<i>k</i> ³
$\Rightarrow t_{min} = \sqrt{\frac{8Yh^3}{6allow \sin^2 \alpha}}$	
Hence, the result.	