ENGRD/TAM 203: Dynamics (Spring 2006)

Solution of Homework 3 (assigned on Jan. 31, due on Feb. 7)

by Dennis Yang

1. Problem 2.3.2.

Statement. Car *B* is driving strait toward the point *O* at a constant speed *v*. An observer, located at *A*, tracks the car with a radar gun (see Figure 1). What is the speed $|\dot{r}_{B/A}|$ that the observer at *A* records? Note that $r_{B/A}$ means the magnitude (same as the "length") of vector $\vec{r}_{B/A}$ while $\dot{r}_{B/A}$ means the time derivative of this magnitude.

Figure 1

Solution. Take point A to be the origin of our polar coordinate system (as shown in Figure 1). Then $\|\vec{r}_{B/A}\| = r$ and $\dot{r}_{B/A} = \dot{r}$. In terms \hat{e}_r and \hat{e}_{θ} , $\vec{v}_{B/A} = \frac{d}{dt}\vec{r}_{B/A}$ can be given as

$$\vec{v}_{B/A} = \dot{r}\,\hat{e}_r + r\theta\,\hat{e}_\theta \tag{1.1}$$

while in terms of \hat{i} and \hat{j} , we have

$$\vec{v}_B = v \cos 45^{\circ}(-\hat{\imath}) + v \sin 45^{\circ}(-\hat{\jmath}).$$
(1.2)

Since $\vec{v}_A = 0$ (A is fixed), we have that $\vec{v}_B = \vec{v}_A + \vec{v}_{B/A} = \vec{v}_{B/A}$. It follows from (1.1) and (1.2) that

$$\dot{r}\,\hat{e}_r + r\dot{\theta}\,\hat{e}_\theta = v\cos 45^\circ(-\hat{\imath}) + v\sin 45^\circ(-\hat{\jmath})\,.$$
 (1.3)

We dot product the both sides of (1.3) with \hat{e}_r

$$\left(\dot{r}\,\hat{e}_r + r\dot{\theta}\,\hat{e}_\theta\right) \bullet \hat{e}_r = \left(v\cos 45^\circ(-\hat{\imath}) + v\sin 45^\circ(-\hat{\jmath})\right) \bullet \hat{e}_r$$

$$\implies \dot{r}\,\hat{e}_r \bullet \hat{e}_r + r\dot{\theta}\,\hat{e}_\theta \bullet \hat{e}_r = -v\cos 45^\circ\,\hat{\imath} \bullet \hat{e}_r - v\sin 45^\circ\,\hat{\jmath} \bullet \hat{e}_r$$
$$\implies \dot{r} = -v\cos 45^\circ(\cos\theta) - v\sin 45^\circ(\sin\theta)$$
$$\implies \qquad \dot{r} = -v(\cos 45^\circ\cos\theta + \sin 45^\circ\sin\theta).$$
(1.4)

Figure 2

From the given geometry, we know that

$$\cos\theta = \frac{0.1\,\mathrm{km}}{r} = \frac{0.1\,\mathrm{km}}{\sqrt{(0.1\,\mathrm{km})^2 + (0.2\,\mathrm{km})^2}} \approx 0.4472\,;\tag{1.5}$$

$$\sin \theta = \frac{0.2 \,\mathrm{km}}{r} = \frac{0.2 \,\mathrm{km}}{\sqrt{(0.1 \,\mathrm{km})^2 + (0.2 \,\mathrm{km})^2}} \approx 0.8944\,. \tag{1.6}$$

The substitution of (1.5) and (1.6) into (1.4) gives

$$\dot{r} = -v(\cos 45^{\circ} \cdot 0.4472 + \sin 45^{\circ} \cdot 0.8944)$$

 $\approx -0.9487v$.

Thus, $|\dot{r}_{B/A}| = |\dot{r}| = 0.9487v$.

П

2. Problem 2.3.3.

Statement. Explain why $\|\frac{d}{dt}\vec{r}(t)\|$ is not in general equal to $\frac{d}{dt}\|\vec{r}(t)\|$.

Solution. $\vec{r}(t)$ is a vector. $\frac{d}{dt}\vec{r}(t)$, which is also a vector, is the time derivative of $\vec{r}(t)$. $\|\frac{d}{dt}\vec{r}(t)\|$, which is always positive, is the magnitude of vector $\frac{d}{dt}\vec{r}(t)$.

On the other hand, $\|\vec{r}(t)\|$ is the magnitude of vector $\vec{r}(t)$. $\frac{d}{dt}\|\vec{r}(t)\|$ is the time derivative of this magnitude. Thus, $\frac{d}{dt}\|\vec{r}(t)\|$ can be positive, negative, or zero as the magnitude of $\vec{r}(t)$ can increase, decrease, or be constant, with respect to time.

In terms of polar coordinates, we have

$$\frac{d}{dt}\vec{r}(t) = \dot{r}\,\hat{e}_r + r\dot{\theta}\,\hat{e}_\theta \Longrightarrow \left\|\frac{d}{dt}\vec{r}(t)\right\| = \sqrt{\dot{r}^2 + r^2\dot{\theta}^2}$$

while

$$\vec{r}(t) = r \,\hat{e}_r \Longrightarrow \|\vec{r}(t)\| = r \Longrightarrow \frac{d}{dt} \|\vec{r}(t)\| = \dot{r}.$$

It is obvious that $\dot{r} \neq \sqrt{\dot{r}^2 + r^2 \dot{\theta}^2}$ in general since $\dot{\theta} \neq 0$ in general.

Consider a particle going in circles at speed v. Let the radius of the circle be r. Then $\|\frac{d}{dt}\vec{r}(t)\| = v \neq 0$ while $\frac{d}{dt}\|\vec{r}(t)\| = \dot{r} = 0$ since r is constant for the circle.

3. Problem 2.3.19.

Statement. Assume that the distance between the hill and the cloud layer is 150 ft. Neglect the dimensions of the hill. Initially, the light from the headlights makes a 20° angle with the horizontal, and the light beam rotates around at the constant rate of 20° /s (clockwise) as the car moves up the hill. What are the initial speed and acceleration of the light spot on the cloud's underside? What are they when the light beam makes a 5° angle with the horizontal?

Figure 3

Solution. As depicted in Figure 3, using polar coordinates, we can describe the motion of the light spot by

$$\vec{r}_{L/O} = r \,\hat{e}_r \,; \tag{3.1}$$

$$\vec{v}_L = \dot{r}\,\hat{e}_r + r\dot{\theta}\,\hat{e}_\theta\,;\tag{3.2}$$

$$\vec{a}_L = (\ddot{r} - r\dot{\theta}^2)\,\hat{e}_r + (2\dot{r}\dot{\theta} + r\ddot{\theta})\,\hat{e}_\theta\,.$$
(3.3)

Now we express \hat{e}_r and \hat{e}_{θ} in terms of \hat{i} and \hat{j} (see Figure 4)

$$\hat{e}_{r} = (\hat{e}_{r} \bullet \hat{\imath}) \hat{\imath} + (\hat{e}_{r} \bullet \hat{\jmath}) \hat{\jmath}
= \cos \theta \hat{\imath} + \cos(90^{\circ} - \theta) \hat{\jmath}
= \cos \theta \hat{\imath} + \sin \theta \hat{\jmath};$$

$$\hat{e}_{\theta} = (\hat{e}_{\theta} \bullet \hat{\imath}) \hat{\imath} + (\hat{e}_{\theta} \bullet \hat{\jmath}) \hat{\jmath}
= \cos(90^{\circ} + \theta) \hat{\imath} + \cos \theta \hat{\jmath}$$
(3.4)

$$= -\sin\theta\,\hat{\imath} + \cos\theta\,\hat{\jmath}\,. \tag{3.5}$$

Figure 4

With (3.4) and (3.5), (3.2) and (3.3) become

$$\vec{v}_L = \dot{r} \Big(\cos \theta \,\hat{\imath} + \sin \theta \,\hat{\jmath} \Big) + r \dot{\theta} \Big(-\sin \theta \,\hat{\imath} + \cos \theta \,\hat{\jmath} \Big) = (\dot{r} \cos \theta - r \dot{\theta} \sin \theta) \,\hat{\imath} + (\dot{r} \sin \theta + r \dot{\theta} \cos \theta) \,\hat{\jmath};$$
(3.6)

$$\vec{a}_L = (\vec{r} - r\dot{\theta}^2) \Big(\cos\theta \,\hat{\imath} + \sin\theta \,\hat{\jmath} \Big) + (2\dot{r}\dot{\theta} + r\ddot{\theta}) \Big(-\sin\theta \,\hat{\imath} + \cos\theta \,\hat{\jmath} \Big) \\ = \Big((\vec{r} - r\dot{\theta}^2) \cos\theta - (2\dot{r}\dot{\theta} + r\ddot{\theta}) \sin\theta \Big) \,\hat{\imath} + \Big((\ddot{r} - r\dot{\theta}^2) \sin\theta + (2\dot{r}\dot{\theta} + r\ddot{\theta}) \cos\theta \Big) \,\hat{\jmath} \,.$$
(3.7)

Since the light spot is constrained to move along the cloud's underside, which is parallel to the \hat{i} direction, it follows that $\vec{v}_L \bullet \hat{j} = 0 \text{ m/s}$ and $\vec{a}_L \bullet \hat{j} = 0 \text{ m/s}^2$. Then we have

$$\vec{v}_L \bullet \hat{j} = 0 \text{ m/s} \implies (\dot{r} \cos \theta - r\dot{\theta} \sin \theta) \, \hat{\imath} \bullet \hat{\jmath} + (\dot{r} \sin \theta + r\dot{\theta} \cos \theta) \, \hat{\jmath} \bullet \hat{\jmath} = 0 \text{ m/s}$$
$$\implies \dot{r} \sin \theta + r\dot{\theta} \cos \theta = 0 \text{ m/s}$$
$$\implies \dot{r} = -\frac{r\dot{\theta} \cos \theta}{\sin \theta} \, ; \tag{3.8}$$

$$\vec{a}_L \bullet \hat{j} = 0 \text{ m/s}^2 \implies \left((\ddot{r} - r\dot{\theta}^2) \cos\theta - (2\dot{r}\dot{\theta} + r\ddot{\theta}) \sin\theta \right) \hat{\imath} \bullet \hat{\jmath} \\ + \left((\ddot{r} - r\dot{\theta}^2) \sin\theta + (2\dot{r}\dot{\theta} + r\ddot{\theta}) \cos\theta \right) \hat{\jmath} \bullet \hat{\jmath} = 0 \text{ m/s}^2 \\ \implies (\ddot{r} - r\dot{\theta}^2) \sin\theta + (2\dot{r}\dot{\theta} + r\ddot{\theta}) \cos\theta = 0 \text{ m/s}^2 \\ \implies \ddot{r} = -\frac{(2\dot{r}\dot{\theta} + r\ddot{\theta}) \cos\theta}{\sin\theta} + r\dot{\theta}^2 \,.$$
(3.9)

Since $\dot{\theta} \equiv -20^{\circ}/\text{s}$, we have $\ddot{\theta} = 0^{\circ}/\text{s}^2$. By this fact and (3.8), (3.9) becomes

$$\ddot{r} = -\frac{2\dot{r}\dot{\theta}\cos\theta}{\sin\theta} + r\dot{\theta}^{2}$$

$$= -\frac{2\left(-\frac{r\dot{\theta}\cos\theta}{\sin\theta}\right)\dot{\theta}\cos\theta}{\sin\theta} + r\dot{\theta}^{2}$$

$$= \frac{2r\dot{\theta}^{2}\cos^{2}\theta}{\sin^{2}\theta} + r\dot{\theta}^{2}.$$
(3.10)

The substitution of (3.8) into (3.6) yields

$$\vec{v}_L = \left[\left(-\frac{r\dot{\theta}\cos\theta}{\sin\theta} \right) \cos\theta - r\dot{\theta}\sin\theta \right] \hat{\imath} + 0 \,\mathrm{m/s}\,\hat{\jmath} \\\\ = \left[-\frac{r\dot{\theta}\cos^2\theta}{\sin\theta} - r\dot{\theta}\sin\theta \right] \hat{\imath} \\\\ = -\frac{r\dot{\theta}}{\sin\theta}\,\hat{\imath} \\\\ = -\frac{(r\sin\theta)\dot{\theta}}{\sin^2\theta}\,\hat{\imath} \\\\ = -\frac{h\dot{\theta}}{\sin^2\theta}\,\hat{\imath}, \qquad (3.11)$$

where the \hat{j} component is automatically zero since that is how we have derived (3.8). Similarly, the substitution of (3.8) and (3.10) into (3.7) yields (note that $\ddot{\theta} = 0^{\circ}/s^2$)

$$\vec{a}_{L} = \left\{ \left[\left(\frac{2r\dot{\theta}^{2}\cos^{2}\theta}{\sin^{2}\theta} + r\dot{\theta}^{2} \right) - r\dot{\theta}^{2} \right] \cos\theta - 2 \left(-\frac{r\dot{\theta}\cos\theta}{\sin\theta} \right) \dot{\theta}\sin\theta \right\} \hat{i} + 0 \,\mathrm{m/s^{2}} \,\hat{j} \\\\ = \left\{ \frac{2r\dot{\theta}^{2}\cos^{2}\theta}{\sin^{2}\theta} \cos\theta + 2r\dot{\theta}^{2}\cos\theta \right\} \hat{i} \\\\ = \frac{2r\dot{\theta}^{2}\cos\theta}{\sin^{2}\theta} \,\hat{i} \\\\ = \frac{2(r\sin\theta)\dot{\theta}^{2}\cos\theta}{\sin^{3}\theta} \,\hat{i} \\\\ = \frac{2h\dot{\theta}^{2}\cos\theta}{\sin^{3}\theta} \,\hat{i}, \qquad (3.12)$$

where the \hat{j} component is again automatically zero since that is how we have derived (3.10).

Finally, evaluating (3.11) and (3.12) at $\theta = 20^{\circ}$, $\dot{\theta} = -20^{\circ}/\text{s} = -\frac{\pi}{9}$ rad/s, and h = 150 ft gives

$$\vec{v}_L = -\frac{h\hat{\theta}}{\sin^2{\theta}}\hat{i}$$
$$= -\frac{150 \,\text{ft} \cdot \left(-\frac{\pi}{9} \,\text{rad/s}\right)}{\sin^2{20^\circ}}\hat{i}$$
$$\approx \frac{447.6 \,\text{ft/s}\,\hat{i};}{20^\circ}$$

$$\vec{a}_L = \frac{2h\dot{\theta}^2 \cos\theta}{\sin^3\theta} \hat{\imath}$$
$$= \frac{2 \cdot 150 \,\mathrm{ft} \cdot (-\frac{\pi}{9} \,\mathrm{rad/s})^2 \cos 20^\circ}{\sin^3 20^\circ} \hat{\imath}$$
$$\approx \frac{858.6 \,\mathrm{ft/s^2} \,\hat{\imath} \,.}{}$$

Evaluating (3.11) and (3.12) at $\theta = 5^{\circ}$, $\dot{\theta} = -20^{\circ}/\text{s} = -\frac{\pi}{9}$ rad/s, and h = 150 ft gives

$$\vec{v}_L = -\frac{h\dot{\theta}}{\sin^2{\theta}}\hat{i}$$
$$= -\frac{150 \,\text{ft} \cdot \left(-\frac{\pi}{9} \,\text{rad/s}\right)}{\sin^2{5^\circ}}\hat{i}$$
$$\approx \frac{6893 \,\text{ft/s}\,\hat{i};}{2}$$

$$\vec{a}_L = \frac{2h\dot{\theta}^2\cos\theta}{\sin^3\theta}\hat{i}$$
$$= \frac{2\cdot150\,\mathrm{ft}\cdot(-\frac{\pi}{9}\,\mathrm{rad/s})^2\cos5^\circ}{\sin^35^\circ}\hat{i}$$
$$\approx 5.500\times10^4\,\mathrm{ft/s}^2\,\hat{i}\,.$$

Alternative Solution. Using unit vectors \hat{i} and \hat{j} , we have

$$\vec{r}_{L/O} = \frac{h}{\tan \theta} \hat{\imath} + h \hat{\jmath}.$$

Next, $\dot{h} = 0$ since h is constant. θ is a function of t with $\dot{\theta} = -20^{\circ}/\text{s} = -\frac{\pi}{9}$ rad/s and $\ddot{\theta} = 0$. Then it follows that

$$\begin{aligned} \vec{v}_L &= \frac{d}{dt} \vec{r}_{L/O} \\ &= \frac{d}{dt} \left(\frac{h}{\tan \theta} \right) \hat{\imath} + \frac{d}{dt} h \, \hat{\jmath} \\ &= -\frac{h \dot{\theta}}{\sin^2 \theta} \, \hat{\imath} \,, \end{aligned}$$

which is exactly the same as (3.11). In addition,

$$\vec{a}_L = \frac{d}{dt} \vec{v}_L$$
$$= \frac{d}{dt} \left(-\frac{h\dot{\theta}}{\sin^2 \theta} \right) \hat{\imath}$$
$$= \frac{2h\dot{\theta}^2 \cos \theta}{\sin^3 \theta} \hat{\imath},$$

which is exactly the same as (3.12).

П