## ENGRD/TAM 203: Dynamics (Spring 2006)

Solution of Homework 3 (assigned on Jan. 31, due on Feb. 7)
by Dennis Yang

## 1. Problem 2.3.2.

Statement. Car $B$ is driving strait toward the point $O$ at a constant speed $v$. An observer, located at $A$, tracks the car with a radar gun (see Figure 1). What is the speed $\left|\dot{r}_{B / A}\right|$ that the observer at $A$ records? Note that $r_{B / A}$ means the magnitude (same as the "length") of vector $\vec{r}_{B / A}$ while $\dot{r}_{B / A}$ means the time derivative of this magnitude.


Figure 1

Solution. Take point $A$ to be the origin of our polar coordinate system (as shown in Figure 1). Then $\left\|\vec{r}_{B / A}\right\|=r$ and $\dot{r}_{B / A}=\dot{r}$. In terms $\hat{e}_{r}$ and $\hat{e}_{\theta}, \vec{v}_{B / A}=\frac{d}{d t} \vec{r}_{B / A}$ can be given as

$$
\begin{equation*}
\vec{v}_{B / A}=\dot{r} \hat{e}_{r}+r \dot{\theta} \hat{e}_{\theta} \tag{1.1}
\end{equation*}
$$

while in terms of $\hat{\imath}$ and $\hat{\jmath}$, we have

$$
\begin{equation*}
\vec{v}_{B}=v \cos 45^{\circ}(-\hat{\imath})+v \sin 45^{\circ}(-\hat{\jmath}) . \tag{1.2}
\end{equation*}
$$

Since $\vec{v}_{A}=0$ (A is fixed), we have that $\vec{v}_{B}=\vec{v}_{A}+\vec{v}_{B / A}=\vec{v}_{B / A}$. It follows from (1.1) and (1.2) that

$$
\begin{equation*}
\dot{r} \hat{e}_{r}+r \dot{\theta} \hat{e}_{\theta}=v \cos 45^{\circ}(-\hat{\imath})+v \sin 45^{\circ}(-\hat{\jmath}) . \tag{1.3}
\end{equation*}
$$

We dot product the both sides of (1.3) with $\hat{e}_{r}$

$$
\left(\dot{r} \hat{e}_{r}+r \dot{\theta} \hat{e}_{\theta}\right) \bullet \hat{e}_{r}=\left(v \cos 45^{\circ}(-\hat{\imath})+v \sin 45^{\circ}(-\hat{\jmath})\right) \bullet \hat{e}_{r}
$$

$$
\begin{align*}
& \Longrightarrow \dot{r} \hat{e}_{r} \bullet \hat{e}_{r}+r \dot{\theta} \hat{e}_{\theta} \bullet \hat{e}_{r}=-v \cos 45^{\circ} \hat{\imath} \bullet \hat{e}_{r}-v \sin 45^{\circ} \hat{\jmath} \bullet \hat{e}_{r} \\
& \Longrightarrow \dot{r}=-v \cos 45^{\circ}(\cos \theta)-v \sin 45^{\circ}(\sin \theta) \\
& \Longrightarrow \dot{r}=-v\left(\cos 45^{\circ} \cos \theta+\sin 45^{\circ} \sin \theta\right) . \tag{1.4}
\end{align*}
$$



Figure 2

From the given geometry, we know that

$$
\begin{align*}
& \cos \theta=\frac{0.1 \mathrm{~km}}{r}=\frac{0.1 \mathrm{~km}}{\sqrt{(0.1 \mathrm{~km})^{2}+(0.2 \mathrm{~km})^{2}}} \approx 0.4472 ;  \tag{1.5}\\
& \sin \theta=\frac{0.2 \mathrm{~km}}{r}=\frac{0.2 \mathrm{~km}}{\sqrt{(0.1 \mathrm{~km})^{2}+(0.2 \mathrm{~km})^{2}}} \approx 0.8944 . \tag{1.6}
\end{align*}
$$

The substitution of (1.5) and (1.6) into (1.4) gives

$$
\begin{aligned}
\dot{r} & =-v\left(\cos 45^{\circ} \cdot 0.4472+\sin 45^{\circ} \cdot 0.8944\right) \\
& \approx-0.9487 v .
\end{aligned}
$$

Thus, $\mid \underline{\dot{r}_{B / A}|=|\dot{r}|=0.9487 v}$.

## 2. Problem 2.3.3.

Statement. Explain why $\left\|\frac{d}{d t} \vec{r}(t)\right\|$ is not in general equal to $\frac{d}{d t}\|\vec{r}(t)\|$.
Solution. $\vec{r}(t)$ is a vector. $\frac{d}{d t} \vec{r}(t)$, which is also a vector, is the time derivative of $\vec{r}(t)$. $\left\|\frac{d}{d t} \vec{r}(t)\right\|$, which is always positive, is the magnitude of vector $\frac{d}{d t} \vec{r}(t)$.

On the other hand, $\|\vec{r}(t)\|$ is the magnitude of vector $\vec{r}(t) \cdot \frac{d}{d t}\|\vec{r}(t)\|$ is the time derivative of this magnitude. Thus, $\frac{d}{d t}\|\vec{r}(t)\|$ can be positive, negative, or zero as the magnitude of $\vec{r}(t)$ can increase, decrease, or be constant, with respect to time.

In terms of polar coordinates, we have

$$
\frac{d}{d t} \vec{r}(t)=\dot{r} \hat{e}_{r}+r \dot{\theta} \hat{e}_{\theta} \Longrightarrow\left\|\frac{d}{d t} \vec{r}(t)\right\|=\sqrt{\dot{r}^{2}+r^{2} \dot{\theta}^{2}}
$$

while

$$
\vec{r}(t)=r \hat{e}_{r} \Longrightarrow\|\vec{r}(t)\|=r \Longrightarrow \frac{d}{d t}\|\vec{r}(t)\|=\dot{r}
$$

It is obvious that $\dot{r} \neq \sqrt{\dot{r}^{2}+r^{2} \dot{\theta}^{2}}$ in general since $\dot{\theta} \neq 0$ in general.
Consider a particle going in circles at speed $v$. Let the radius of the circle be $r$. Then $\left\|\frac{d}{d t} \vec{r}(t)\right\|=$ $v \neq 0$ while $\frac{d}{d t}\|\vec{r}(t)\|=\dot{r}=0$ since $r$ is constant for the circle.

## 3. Problem 2.3.19.

Statement. Assume that the distance between the hill and the cloud layer is 150 ft . Neglect the dimensions of the hill. Initially, the light from the headlights makes a $20^{\circ}$ angle with the horizontal, and the light beam rotates around at the constant rate of $20^{\circ} / \mathrm{s}$ (clockwise) as the car moves up the hill. What are the initial speed and acceleration of the light spot on the cloud's underside? What are they when the light beam makes a $5^{\circ}$ angle with the horizontal?


Figure 3

Solution. As depicted in Figure 3, using polar coordinates, we can describe the motion of the light spot by

$$
\begin{align*}
\vec{r}_{L / O} & =r \hat{e}_{r} ;  \tag{3.1}\\
\vec{v}_{L} & =\dot{r} \hat{e}_{r}+r \dot{\theta} \hat{e}_{\theta} ;  \tag{3.2}\\
\vec{a}_{L} & =\left(\ddot{r}-r \dot{\theta}^{2}\right) \hat{e}_{r}+(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \hat{e}_{\theta} . \tag{3.3}
\end{align*}
$$

Now we express $\hat{e}_{r}$ and $\hat{e}_{\theta}$ in terms of $\hat{\imath}$ and $\hat{\jmath}$ (see Figure 4)

$$
\begin{align*}
\hat{e}_{r} & =\left(\hat{e}_{r} \bullet \hat{\imath}\right) \hat{\imath}+\left(\hat{e}_{r} \bullet \hat{\jmath}\right) \hat{\jmath} \\
& =\cos \theta \hat{\imath}+\cos \left(90^{\circ}-\theta\right) \hat{\jmath} \\
& =\cos \theta \hat{\imath}+\sin \theta \hat{\jmath} ;  \tag{3.4}\\
\hat{e}_{\theta} & =\left(\hat{e}_{\theta} \bullet \hat{\imath}\right) \hat{\imath}+\left(\hat{e}_{\theta} \bullet \hat{\jmath}\right) \hat{\jmath} \\
& =\cos \left(90^{\circ}+\theta\right) \hat{\imath}+\cos \theta \hat{\jmath} \\
& =-\sin \theta \hat{\imath}+\cos \theta \hat{\jmath} . \tag{3.5}
\end{align*}
$$



Figure 4

With (3.4) and (3.5), (3.2) and (3.3) become

$$
\begin{gather*}
\vec{v}_{L}=\dot{r}(\cos \theta \hat{\imath}+\sin \theta \hat{\jmath})+r \dot{\theta}(-\sin \theta \hat{\imath}+\cos \theta \hat{\jmath}) \\
=(\dot{r} \cos \theta-r \dot{\theta} \sin \theta) \hat{\imath}+(\dot{r} \sin \theta+r \dot{\theta} \cos \theta) \hat{\jmath}  \tag{3.6}\\
\vec{a}_{L}=\left(\ddot{r}-r \dot{\theta}^{2}\right)(\cos \theta \hat{\imath}+\sin \theta \hat{\jmath})+(2 \dot{r} \dot{\theta}+r \ddot{\theta})(-\sin \theta \hat{\imath}+\cos \theta \hat{\jmath}) \\
=\left(\left(\ddot{r}-r \dot{\theta}^{2}\right) \cos \theta-(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \sin \theta\right) \hat{\imath}+\left(\left(\ddot{r}-r \dot{\theta}^{2}\right) \sin \theta+(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \cos \theta\right) \hat{\jmath} . \tag{3.7}
\end{gather*}
$$

Since the light spot is constrained to move along the cloud's underside, which is parallel to the $\hat{\imath}$ direction, it follows that $\vec{v}_{L} \bullet \hat{\jmath}=0 \mathrm{~m} / \mathrm{s}$ and $\vec{a}_{L} \bullet \hat{\jmath}=0 \mathrm{~m} / \mathrm{s}^{2}$. Then we have

$$
\begin{align*}
\vec{v}_{L} \bullet \hat{\jmath}=0 \mathrm{~m} / \mathrm{s} \Longrightarrow & (\dot{r} \cos \theta-r \dot{\theta} \sin \theta) \hat{\imath} \bullet \hat{\jmath}+(\dot{r} \sin \theta+r \dot{\theta} \cos \theta) \hat{\jmath} \bullet \hat{\jmath}=0 \mathrm{~m} / \mathrm{s} \\
\Longrightarrow & \dot{r} \sin \theta+r \dot{\theta} \cos \theta=0 \mathrm{~m} / \mathrm{s} \\
\Longrightarrow & \dot{r}=  \tag{3.8}\\
\vec{a}_{L} \bullet \hat{\jmath}=0 \mathrm{~m} / \mathrm{s}^{2} \Longrightarrow & \left(\left(\ddot{r}-r \dot{\mathrm{~s}}^{2} \theta\right.\right. \\
& \quad\left(\left(\ddot{r}-r \dot{\theta}^{2}\right) \sin \theta+(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \cos \theta\right) \hat{\jmath} \bullet \hat{\jmath}=0 \mathrm{~m} / \mathrm{s}^{2} \\
& (\ddot{r} \dot{\theta}+r \ddot{\theta}) \sin \theta) \hat{\imath} \bullet \hat{\jmath} \\
\Longrightarrow & \left(\ddot{r}-r \dot{\theta}^{2}\right) \sin \theta+(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \cos \theta=0 \mathrm{~m} / \mathrm{s}^{2}  \tag{3.9}\\
\Longrightarrow & \ddot{r}=-\frac{(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \cos \theta}{\sin \theta}+r \dot{\theta}^{2} .
\end{align*}
$$

Since $\dot{\theta} \equiv-20^{\circ} / \mathrm{s}$, we have $\ddot{\theta}=0^{\circ} / \mathrm{s}^{2}$. By this fact and (3.8), (3.9) becomes

$$
\begin{align*}
\ddot{r} & =-\frac{2 \dot{r} \dot{\theta} \cos \theta}{\sin \theta}+r \dot{\theta}^{2} \\
& =-\frac{2\left(-\frac{r \dot{\theta} \cos \theta}{\sin \theta}\right) \dot{\theta} \cos \theta}{\sin \theta}+r \dot{\theta}^{2} \\
& =\frac{2 r \dot{\theta}^{2} \cos ^{2} \theta}{\sin ^{2} \theta}+r \dot{\theta}^{2} . \tag{3.10}
\end{align*}
$$

The substitution of (3.8) into (3.6) yields

$$
\begin{align*}
\vec{v}_{L} & =\left[\left(-\frac{r \dot{\theta} \cos \theta}{\sin \theta}\right) \cos \theta-r \dot{\theta} \sin \theta\right] \hat{\imath}+0 \mathrm{~m} / \mathrm{s} \hat{\jmath} \\
& =\left[-\frac{r \dot{\theta} \cos ^{2} \theta}{\sin \theta}-r \dot{\theta} \sin \theta\right] \hat{\imath} \\
& =-\frac{r \dot{\theta}}{\sin \theta} \hat{\imath} \\
& =-\frac{(r \sin \theta) \dot{\theta}}{\sin ^{2} \theta} \hat{\imath} \\
& =-\frac{h \dot{\theta}}{\sin ^{2} \theta} \hat{\imath} \tag{3.11}
\end{align*}
$$

where the $\hat{\jmath}$ component is automatically zero since that is how we have derived (3.8). Similarly, the substitution of (3.8) and (3.10) into (3.7) yields (note that $\ddot{\theta}=0^{\circ} / \mathrm{s}^{2}$ )

$$
\begin{align*}
\vec{a}_{L} & =\left\{\left[\left(\frac{2 r \dot{\theta}^{2} \cos ^{2} \theta}{\sin ^{2} \theta}+r \dot{\theta}^{2}\right)-r \dot{\theta}^{2}\right] \cos \theta-2\left(-\frac{r \dot{\theta} \cos \theta}{\sin \theta}\right) \dot{\theta} \sin \theta\right\} \hat{\imath}+0 \mathrm{~m} / \mathrm{s}^{2} \hat{\jmath} \\
& =\left\{\frac{2 r \dot{\theta}^{2} \cos ^{2} \theta}{\sin ^{2} \theta} \cos \theta+2 r \dot{\theta}^{2} \cos \theta\right\} \hat{\imath} \\
& =\frac{2 r \dot{\theta}^{2} \cos \theta}{\sin ^{2} \theta} \hat{\imath} \\
& =\frac{2(r \sin \theta) \dot{\theta}^{2} \cos \theta}{\sin ^{3} \theta} \hat{\imath} \\
& =\frac{2 h \dot{\theta}^{2} \cos \theta}{\sin ^{3} \theta} \hat{\imath} \tag{3.12}
\end{align*}
$$

where the $\hat{\jmath}$ component is again automatically zero since that is how we have derived (3.10).
Finally, evaluating (3.11) and (3.12) at $\theta=20^{\circ}, \dot{\theta}=-20^{\circ} / \mathrm{s}=-\frac{\pi}{9} \mathrm{rad} / \mathrm{s}$, and $h=150 \mathrm{ft}$ gives

$$
\begin{aligned}
& \vec{v}_{L}=-\frac{h \dot{\theta}}{\sin ^{2} \theta} \hat{\imath} \\
&=-\frac{150 \mathrm{ft} \cdot\left(-\frac{\pi}{9} \mathrm{rad} / \mathrm{s}\right)}{\sin ^{2} 20^{\circ}} \hat{\imath} \\
& \approx \underline{447.6 \mathrm{ft} / \mathrm{s} \hat{\imath} ;} \\
& \vec{a}_{L}= \frac{2 h \dot{\theta}^{2} \cos \theta}{\sin ^{3} \theta} \hat{\imath} \\
&= \frac{2 \cdot 150 \mathrm{ft} \cdot\left(-\frac{\pi}{9} \mathrm{rad} / \mathrm{s}\right)^{2} \cos 20^{\circ}}{\sin ^{3} 20^{\circ}} \hat{\imath} \\
& \approx \frac{858.6 \mathrm{ft} / \mathrm{s}^{2} \hat{\imath} .}{}
\end{aligned}
$$

Evaluating (3.11) and (3.12) at $\theta=5^{\circ}, \dot{\theta}=-20^{\circ} / \mathrm{s}=-\frac{\pi}{9} \mathrm{rad} / \mathrm{s}$, and $h=150 \mathrm{ft}$ gives

$$
\begin{aligned}
& \vec{v}_{L}=-\frac{h \dot{\theta}}{\sin ^{2} \theta} \hat{\imath} \\
&=-\frac{150 \mathrm{ft} \cdot\left(-\frac{\pi}{9} \mathrm{rad} / \mathrm{s}\right)}{\sin ^{2} 5^{\circ}} \hat{\imath} \\
& \approx \underline{6893 \mathrm{ft} / \mathrm{s} \hat{\imath} ;} \\
& \vec{a}_{L}=\frac{2 h \dot{\theta}^{2} \cos \theta}{\sin ^{3} \theta} \hat{\imath} \\
&= \frac{2 \cdot 150 \mathrm{ft} \cdot\left(-\frac{\pi}{9} \mathrm{rad} / \mathrm{s}\right)^{2} \cos 5^{\circ}}{\sin ^{3} 5^{\circ}} \hat{\imath} \\
& \approx \frac{5.500 \times 10^{4} \mathrm{ft} / \mathrm{s}^{2} \hat{\imath} .}{}
\end{aligned}
$$

Alternative Solution. Using unit vectors $\hat{\imath}$ and $\hat{\jmath}$, we have

$$
\vec{r}_{L / O}=\frac{h}{\tan \theta} \hat{\imath}+h \hat{\jmath} .
$$

Next, $\dot{h}=0$ since $h$ is constant. $\theta$ is a function of $t$ with $\dot{\theta}=-20^{\circ} / \mathrm{s}=-\frac{\pi}{9} \mathrm{rad} / \mathrm{s}$ and $\ddot{\theta}=0$. Then it follows that

$$
\begin{aligned}
\vec{v}_{L} & =\frac{d}{d t} \vec{r}_{L / O} \\
& =\frac{d}{d t}\left(\frac{h}{\tan \theta}\right) \hat{\imath}+\frac{d}{d t} h \hat{\jmath} \\
& =-\frac{h \dot{\theta}}{\sin ^{2} \theta} \hat{\imath},
\end{aligned}
$$

which is exactly the same as (3.11). In addition,

$$
\begin{aligned}
\vec{a}_{L} & =\frac{d}{d t} \vec{v}_{L} \\
& =\frac{d}{d t}\left(-\frac{h \dot{\theta}}{\sin ^{2} \theta}\right) \hat{\imath} \\
& =\frac{2 h \dot{\theta}^{2} \cos \theta}{\sin ^{3} \theta} \hat{\imath},
\end{aligned}
$$

which is exactly the same as (3.12).

