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Preface

This report consists of two parts.

The first part is the text of the paper "Influence of Coupled
Deformation-Diffusion Effects on the Retardation of Hydraulic Fracture"
published in the Preprint-Proceedings of the 19th U.S. Symposium on
Rock Mechanics held at Stateline, Nevada, May 1-3, 1978, compiled by
Yung Sam Kim, published by C.I.E.P.C.E. University of Nevada-Reno, 1978,
pp. 274-282. This first part (pp. 1-9) contains the Abstract, discussion
of the Physical problem, basic aspects of the mathematical model, »
highlights of the solution and discussion of the results.

The second part (pp. 10-41) contains the details of the mathematical
analysis and solution and may be regarded as a collection of unpublished
appendices to the first part of the paper.

The body of the report has been submitted as the thesis ''Steady
State Growth of a Mode I Fracture in a Fluid Saturated Porous Elastic
Material," June 1978 in partial fulfillment of the requirements for an

Sc.M. degree in Engineering (Solid Mechanics) at Brown University.
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INFLUCNCE OF COUPLED DLFORMATION-DIFFUSION LFFECTS
@ OGN THE RETARDATICN OF HYDRAULIC FRACTURE.

INFLUENCE DES EFFETS COUPLES LEFORMATION-DIFFUSICN
SUR LE RETARD DE LA FRACTURE HYDRAULICUE,

EINFLUSS VON GEXUPPELTEN DEFORMATIONS-DIFUSIONS
EFFEKTEN AUF DAS HYDRAULISCHE BRUCHVERHALTEN.

by Andy Ruina
Gradoate Hesearch Assistant
Brown ‘Iniversity
Dept. of Fnginzering, Box D
Providence, R,I, 02412 USA

ABSTRACT

Hydraulic fracture of a saturated porous rock formation is discussed, taking into account the full
coupling hetween matTix deformation and ambient pore fluid diffusion. In order to isolate the porcus-media
effects and simplify the formulation, we consider the growth of a semi-infinite, plane-straim, mode I crack
at constant speed, v. The matrix is modeled by the equations governing quasi-statie deformation of 3 porous,
fluid-saturated, isetvonic, linear elastic medium as expressed by Rice and Cleaty [f2.]. The twe porous mediz
effects slowing the growth of hydraulie fracture discussed here ars: {1} the decrease in the stress singularity
at the crack tip with increassd speed of crack advance; (il} the decrease in pore fluid pressure near the
crack tip with increasing crack propagation speed (causing a decrease ia the Terzaghi effective tension stress}.

he magnitudes of these effects and the speads at which they become important ave found by solving (or
rartially solving) the porous media equations for two different applidd loadings, General results are found
analytically and seme datailed results are obtained numerizally. The full stress and pore pressure fields

are found near the crack tip for fast propapation speeds.

Glossary INTROLUCTION
B re prossure coefficient, dimensicnless . .
pore p j 5 ' -1 a1 Hydraulic fracture is the generic term for the
c diffusivity, [length]™{zime] ~ = [£770t]
e 2.71328 ... (vase of natural log) initiation and propagation of undergreund cracks
fii functions dascribing crack tip stress field caused by ths injection of a 'fracvuring' fluid at
i -
. . . I
ravitational constant {2J[t] . . - .
£ g e N high pressure. Applicaticns of hydraulic fracture

1
coordinate axis label, [-137
inelude [5,9,14]: 1) the apening af short

i, coordinate axis latel
. . . =3f2 . . .
X, stress intcnsity factor [forcel{ 2] / or long fissures adjacent to oil or gas wells to
z, ¢crack length . . . .
o increase the surface area or the range of the well,

T, excess pore fluid pressure [forcel(tl
q, mass flux rate of pore fluid [m]{i}-z[tjkl 2Y aiding underground waste disposal, 3) creation
r, distance from crack tip ; of an underground network in hot rock for gzothermal
v crack tip propagation speed )

' P propas P energy recovery, 4) determination of underground
x,¥ coordinate axes

isY str P ne of itorin s ini-
8 (1_u)/(1_“u) - see below (tecﬁon1g, stress oy means of menitoring the ini
a angle from positive x axis tiation and growth of hydraulic fractures.
T -1 .
K pore fluid permeability [#1°[t][ml™" ,,F—vee1l
. -1
A crack face loadirg wave number (2
& aasrE ted fracture
P pore fluid density \\_/ﬁ T
0 total stress, [fcrce][ij'z ‘{ C:gck
_ 1 i

T crack face loading, [forcejli] 2 ! P

v,v  drained, undrained Poisson’s ratio, '
. A * T e
dimensionless \;-/ ————
!
w length of crack tip decohesion zone o

FIGURE 1; Approximate geometry of typical hydraulic
TTncture. Fracturing tiwid is pumped into the well,
wnich 15 piugged above and below the region shown,
causing the inception and growth of fracture,
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Hydraulic fracture also has been suggested as part
of the mechanism in the Teton dam collapse [16].

The general process of hydraulic fracture is
as pictured (in a geometrically idealized form) in
figure 1. A fracturing fluid {not to be confused
with ambient pore fluid) is pumped into a Tegion of
a well that is plugged at the top and bottom (the
plugs are above and below the section of well
shown in the figure). The tensile stress tangent
to the well perimeier (hoop stress) increases to
the point of crazck inltiation gt which time the
measured pressure of the fracturing fluid generally
drops suddenly and then recovers to a fairly con-
stant level as more fiuwid is pumped into the ex-
tending, often vertical crack.

The fracturing fluid is often very viscous, so
as to facilitate the transport of sand or some
other propping agent into the crack, and to mini-
mize the loss of fracturing fluid through the erack
faces.

A& full understanding of the grewth of a hydrau-
lic fracture involves knowledge of the progressive
shape of thz fracture and an understanding of the
fluid dynamics within the crack (and into the crack
faces} as coupled with the deformation of the surr-
ounding medium and resultant crack growth, The
complexity of the problem Tequires that analytical
studies be highly idealized and focused on partics
ular effects.

0f particular interest is the determinatioﬁ of
conditions under which the fracture will extend and
the determination of the extent of ¢rack growth from
records of the fracturing fluid pressure and rate
of pumping.

Nordgren [11]) calculated the progressivs

length of a vertical fracture with fixed height
(smzll compared te the length}. In Nordgrents model
viscous losses between the c¢rack faces, and fluid
lass into the formation are the facters that control
crack growth,

Geertsma and deKlerk [ 6 ] analyze botk a hori-
zontal penny-shaped fracture and a vertical fracture
{with length small compared to height}. In their
model the fracture is retarded by the above effects
as well as a strong closure stress in the crack tip
region caused by an assumed lack of penetration of
fracturing fluid there, Both of the above studies
neglect the fracture toughnecss (and tensile strength}
of the rock,

The fracture toughness of the rock has been
accounted for in more recent work for the case of a
penny-shaped fracture (Abe et al., [1 1) and for a
yertical fracture with large height (Mahmoud and
Cliften [101). Ia =21l of the above studies tha
fractured formation has been modelled as isotropic,
homogeneous and linear elastic.

The fractured formation is in fact frequently
porous. The formation poresity is accounted for in
some of the above referencss by the-leakage of frac-
furing fluid inte the formation. Haimsan et al. [71,
Geertsma [5]), (and a teview by Friedman [4]) comsi-
der alterations in sitress near the well bore due to
the penetration of fracturing fluid around the well
hole, Fracture initiation is determined by the
gffective stress, Tgg ¥ P (¢gq is the tensile
hoop stress) in their model, where the pore pressure
is altered by the penetration of tha fracturinrg .
fiuid, Geertsma [5] briefly considers the effects

of fracture fluid permeating the fracturs surfaces

during crack extension. He finds that the strains



induced by the fracturing fluid pressure in the pare
svace have little effect on fracture.

Cleary [ 2,3] has taken into account the full
consclidation-like ccupling between deformation of
the fluid-saturated soiid matrix and diffusive mo-
tions of th: ambient pore fluwid, This coupling re-
sults in a time dependent Tesponse in the formation,
in contrast to akl of the above studies, which only
include rate effects due to the motion of fracturing
fluid between and into the crack faces, Cleary
used the Biot three dimensional comsalidation equa-
tions and known plane strain dislocation solutions
[12] of these equations. He represented hydraulic
fractures and shzar faults by a superposition of
appropriate dislocations and numerically solved the
resulting integral equations, Cleary's solutions
demonstrate that both hydrauiic (mede 1) and shear
fmode 1I) fractures require increased imposed loads
to propagate at increased, cuasi-static (dymamic
terms neglected) speeds.

Rice and Simens [13] and Simens [18] varified
and improved Cleary's results for shear faults by
using analytical methods. The present paper treats
the hydraulic fracture in a manner anzlogous to the
works just mentionad [ 13,18] and confirms Cleary's
overall findings. The sclutions given here also
provide a more complete description of the crack tip
stress and pore pressure fields.

BASIC ASPECTS OF THE MOCEL

The fracture is assumad to be vertical and all
field variables are assumed to vary negligibly with
height, The calculations are thus plane strain in
the x,y plane of figure 2. After crack initiation
¢the fracture of figure 1 1s easily pictured %o bs
wall approximated by the flat crack of figure Za,

The equations to be used are Iinear and thus super-

-

pesition can be used as is indicated in figure 2a

ambient

where the compressive stress o is the tec~

tonic stress normal to ths crack face and 1(x} is

tke net loading on the crack faces and is given by

1(x} = (actual crack face load) - Uambient . Ia
ordinary linear elasticity the crack tip fields re-
sulting from constant load on & finite crack are very
close to the fields due to constant loading over a
finite length on a semi-infinitce crack (13,15},
This justifies the approximatien of Ih, at lesst for
general results ov resulis relating to behaviosr very
negar the crack tip.

In order to isolate the paTous media effects and

simplify the formulation all coupling between dis-

Placement of the crack walls and the pr
bution in the fracturing fluid is ignoced {see ear-
lier references for discussion of these cffects
f1,4,5,6,7,10,1113.

"he mathematics and formulation aze further sin-
plified by eliminating time as an independert wvaria-
ble, This is done by assuming that the erack tip al -
vanees at a constant speed v and that all field
variables do mot vary in time relative to an obser-
ver who moves with the erack tip. Thus, relative o
the crack tip the problem is 'steady state." The
Msteady state assumption is obviously a great ldeal-
ization in a process as unsteady as hydraulic frac-
ture. Nonetheless, the solutions gererated sheuld 5He
representative of the consequences of the effects
being discussed even for unsteady v ., Also, some
of the high spged results calculated for constant
may be directly applicable to unsteady v [152.

Specification of the crack face loading T1(x),
énd the speed of crack growth v , with assumpticns
about material properties is enough (in principle} *o

solve for the complete stress and strain fields.



our model the values of all field variables depend
linearly on the intensity of the.loading and in a
manner to be shown, on v . However, in the physi-
cal problem the crack face loading and the speed of
crack prepagatien, v , are not independent varia-
bles. -If crack advance is considered to depend on
attaining a critical level of some property of the
stress or strain Fields near the crack tip, then the
required magnitude of loading for any given velocity
can he determined, The central subject of this
paper is the relationship between crack tip velocity
and the magnitude of the required loading.

Criterion for Crack Extension

Two different modals are used to determine the
critical level of the stress and strain field for
crack growth., The first is btased on the critieal

of fraciure

stress intensity factor K
crit,

mechanics, In linear elasticity, with no pore fluid

effects, the stress field near a sharp crack tip is

cmbiant

t ' t

Wﬁ_frac. fluid
ff T/,,/’ pressure

{frac, fi, pressura;—- O

dominated by a term of the form
elastic .

955 = kfij(e},{znr);’ (1
where T i3 the distance from the crack tip; X,
the stress intensity factor, is dependent on the
location and strength of the external loads; and tae
functions fjj , hormalized s0 fyy[O} = 1, are
inchendeqi of the loading (assumed svmmetric about
the x-axis)}. The stress intensity factor K is
thus a single parameter which characterizes the near
tip stress field. The magnitude of any c¢ritical
npear-tip stresses oT strains are proportional to K,

hence the use of K = X as a crack extensicn

K .
orlit,

criterion,
In our case, with a fluid-infiltrated elastic
solid, it will again be found that the near crack

tip stress field has the form
 PoTOus elastic _

ij
so long as v is sufficiently small, although K

s
Kfij(e)/(er) (2

will now also depend on v ; in fact, as it turns

amb. .
uniform

4+}

o 9mbient /

FIGURE Z;

Idealization of the geometry of hydraulic fracture,

Ta) The figure at the left is an Tdealization of figure i. Since
the governing equations are linear superposition can be used to

separate the problem iate two problems at the right. The right-
mast prohlem of a homogenecus stress distribution is ignored in

the caleularions, (b) The finite crack of {Za) is further ideal-
ized to he a semi-infinite crack with loaded length equal to the
total length of the finite crack, The crack advances q¥ speed v

and is seen at the instant that the tip goes through the origin
of a coordinate system that is fixed in the solid material.
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out, it is smaller, for v > 0 , than the K the
same loads would cause on an ordinary-elastic
material. Thu# the Kcrit. concept can still be
used, provided the actual material breakdown pro-
cess happens close enough to the crack tip so that
eq. (2) is valid. As will be seen, within this
range of T the excess pore pressure p is zero,
and so the effective stress Ey 2o, +p is the
same as the total stress. (In cases where tectonic
stresses and ambient pore pressures are present, all
variables represent the excesses of quantities
above their ambient values). For large v it is
possible, as will be shown, that the physical break-
down process occurs outside the domain of eq. (2)
and another fracture criterion is required. The
effective stress criterion, Ey(m} = Ecrit. , is
used here where w is a distance representing the
size of the material breakdown zone at the crack

tip and @ is a representative effective ten-

crit,
sile stress required for failure, This criterion
is the simplest that incorporates the facts that

1) rock failure depends on the effective stress

[ 9]; 2) decohesion at the crack tip takes place
over a finite distance. This model is intended to
replace physically more realistic but computation-
ally more difficult medels [ 2,131, When the loads
and crack propagation velocity are such that the
near tip efféétive stress field is fully described
by (2) over a range of r that includes w , this

" fracture critericn and K = Kcri are equivalent,

t.

provided that K__, and o are related by

it. crit,

X =g

b L
crit. erit. (2mw)® . This is true in a very

slowly growing crack where all excess pore pressure

is fully drained.

Field Eguations

Rice and Cleary's [12] form of Biot's consti-

tutive equations for linear, isotropic, elastic,
fluid infiltrated (with linear pore pressure effects)
porous media is uséd here. The equations can be de-
rived from Darcy's law, linearity, isotropy and the
existence of an internal energy density [15]. The
isotropic form of Darcy's law used is:

;= -ooxap/axi i=1,2,3 (3
where q, is the mass flux rate of pore fluid in
the Xy direction, x 1is the permeability, o
is the fluid density and p 1is the excess pore
pressure, The permeahility is measured variously in
units of length squared [ 9] wuk , where u is the
pore fluid viscnsity, or in units of length per sec-
ond [20] pgx , where g is the local gravitational
constant, (The form of (3) changes slightly depend-
ing on the choice of permeability measure). The
restriction to plane strain reduces the full set of
equations to four equations in the three stresses
(positive in tension) and the

g , d

a
xx * yy Xy
excess pore pressure p . The assumption of steady
motion at speed v is a further simplification; and

the equations to be solved then are [13]:

acxxlax + asxylay =0, aoxyfax + Bayyjay = 0 (4a)

52 52 3(uu'- v)
;;f + ;;? Oy * Uyy + TT:GGTTT:GT pl =0 (4b)
2 2
) 3 v 3 3
Lt ==+ =|lo__ +a  + pl =0 (4c)
3;2 ay2 c 9x|| XX YY B{1+vui

where ¢ = 2Gx325(1*vu]2/(9(vu - v)) is the
diffusivity and B8 = (1-v)/(1-v,) . The drained
(“slcw"i and undrained ("fast'") Poisson's ratio are
denoted by v and v, the elastic shear modulus
byl G ; and ‘B is the ratio of the induced pore
pressure to the mean hydrostatic compressive stress

under undrained conditions., The terms in brackets

- in (4c) are proportional to the fluid mass content



per unit volume, The coordinates x,y are fixed in

the solid material,

Boundary Conditions

The coordinate axes are taken so that the ad-
vancing crack tip instantaneously coincides with the
origin. Due to symmetTy about the x-axis, the
equations meed only be solved for y > 0 ., The full
boundary conditions are given by using: a} symmetry,
b) the assumption that the crack faces are imperme-
able and so by eq, (33 3p/3y is zerc there, ¢
noermal compressive loads 1t(x} are applied to the
crack faces, d} all stresses vanish very far from
the crack tin, Together these give:
Iplx,0)/3y = (x,0) = 0 f0T ~wm< X <o

oxx(x,O)fﬂy =0 for 0 < x <=

Uyy(x'g) = -~ 1(x) for - w < x < 0
Do , T , a_ + 0 as x2 ¥y ™
f, X Yy Xy
()
SOLUTION

The equations (4) have only one characteristic
length c¢/v . The physical problem, however, has
two lengths: 1) the length £ over which loads are
applied, and 2} the length w of material break-
down. Three regimes of behavior are given by the
relations of these lengths where it is always
assumed that £ >> o .

Case Tr c¢fv >> L3> w, Ia this case of very slow
crack growth the excess pore pressure is totally
drained in the zeneral region of the crack face
loading and response is exactly that of an elastic
matarial with modulus G and Poisson'ﬁ ratic v

and the excess pore pressure is zero chrywherc.

. alastic - elastic
That is, Gij = cij , P50 and X =
elasti - . :
gPorous ¢ | If this corresponds to crack
K : ¥ is defin
growth then nom T Kcrit wheTe - is defined

to be the stress intensity facter that the applied

loads would cause on an ordinary elastic medium with
drained properties,

Case T1: & >» ¢fv »>> w , In this intermediate range
the material is undraincﬁ, or relatively stiffer,
over the size scale of the applied loading and
drained, or relatively softer over the region of
materinl breakdown, The solution is here obtained

by performing a fourier transfarm on equations 4
and solving the tesulting ordinary differential
equations [13] and then imposing the boundary

conditioens (5} and the Weiner-Hopf technique D337

The leading Tl(x) = oM for x < 0 (wheve

Im{i} < 0} results in an expression for GYV{X,D}
valid asymptotically as x » 0 , By superposing
loads of the form TA(X) the near tip stress field
for the loéd T(x} =1 for -2 <x<0 (z(x) =20
for x < =&} can be found, The results are that
there is a stress singularity of the form (2) near

the crack tip,

The applied load 1t required to cause

K = Kcrit would have caused a stress intensity fac-
b .
tor K = 7(BwL}” ., The relation between K
nom nom
and Kcri‘ is then a measure of retardation effects,
. :

The expression is valid for all values of v and

(i@l)_, m—d—
Afern ok — 1t . e
A sl T ////
ar M'S
g K
&
5

&

" FIGURE 3; wec /v

1 4
1] 100

FIGURE 3; Stabilization when the criterion for crack
growth is that the crack tip stiress singulariiy is
equal to a critical materiai value {1.e,, K=kerig )
“he stress iniensity factor ihe applied loads chld
have caused in an elastic material, Knom, increases
from Xepit to BKcpir 85 v increases from 0 to = .




results in

Kiom > Kcrit as vf{c/L) + 0 {6a)
K + IZE.K = BK . as v/{c/r) ~ = _(6h)
nom T:uu crit crit :

Equations {6) say that the crack tip stress

intensity is reduced by a factor 8 over what the

loads would cause on an elastic material if v 1is
The form of the relation between

large encugh,

K and X vg, ¥ 1is given in figure 3 as

nom crit,

evalvated numerically. The variables in the plot

have been chosen to suppress the dependence of the
form of the relation on 8 .
‘Case II1: ¢ >> @ »>> ¢/v , With this very fast
cTack growth material response is undrained every-
where but in a vanishing region around the crack tip
and faces [1531. The results of equations (2), (6)
and figure I are mathematically still valid but the
range of validity is too small to be physically
meaningful, The undrained elastic field causes a
pore fluid suction which can be evaluated from the
definition of B and the plane strain constraint.
Using the effective stress criterion g{w,0) = Ecrit.
the following is obtained

/X

-1
nom’ Nerie = (-2B(1+v,)/3) )

where K is now the stTess intensity that the

cTit
loads would have caused if material] response were
totally drained. Tha transition between the results
of eq, {6b) where 2 »» ¢fv >» w and eq. (7) where

2 »» w »» ¢/v 1is given by [1I5]

K v -y
nom {1 _u [Ee-vw/c__&_

wvifc
K__. Y Vil (1-e )]
erit
/ ;-1
- 2B(I+v ) (1677973 (8}
J .
where (8) reduces to (6h) and (7) for small and

large v vrespectively. The results of eq. {3) for

a few values of the paramsters v , vy e B are

Knem
K ) d/,@— e 0T
€1 FIGURE 4, = ciy T
5l .
;9{‘_2 Bilsui™
P TE vl
Wl --=-
vz
y,= 3
3 IE=ﬁS
_______ /,{|-§51|+%ﬁ"
» PEECET T AR
I-w { — =2
R {;{,=.33
lp- sz
L : H . . 1
ai i ) 10 10Q

FIGURE 4; Stabilization when the crack growth cri-
terion 15 that the effective tensile stress ahead of
the crack tip reach a eriticni value, 1.e., Glw) =
dcrit. Applied loads may need to be much higher to
cause fast growth than slow growth, depending on -
material properties,

plotted in figure 4. Equaticns (8) and (9) have
been obtained using fourier transforms and ave valid
for amy lozding t({x) which, if applied to an or-
dinary elastic material, would cause eq. (1) to be
valid over a range large compared to both cfv  and
w ,

The effect in equaticn (8} is due to pore fluid
suction in the decohesion zone (or point), the full
pore pressure field is given by

p(r,s) =

Ko 2B(I+V)

[211r]i 3

{1_e—vr{1+cose)/2cjcos(6/2} )

where 8 1s the angle from the x-axis. The level
lines of the pore pressure are giv;n in figure Sa
and the values of the pore pressure on the x-axis
in figure 5b. Note: the pore pressuré is zero on the
negative x-axi; (crack faces) so the éssumption of

impenetrability of the crack faces is not necessary

if 2 »>» cfv .

DISCUSSION

Twe mechanisms of Tetardation of hydraulic



f’"*‘\

b=

Z90

| »
1 s -]

crock Hp-*)

max. suction vx/e
by b)
" fs]
TN s
Rl N
=
kg . . .
Nz, 4 gore suction {dimensionless)
jilx ’ an the x-o%is
1
NI
[V i LI L ! l Lo
i 2 3 4 5 3]
v/

FIGURT 5; Pore pressurc field near the crack tip
for & »» c/v. la) Llnes of constant pore prossure,
ThY Dimensionless pore suction (-p) on the x-axis.

racture have been examined mathematically. The
first is due to the fact that material response
turns out to be, in effect, imhomogeneous, with the
material near the crack tip behaving ir a softer
(drained} manner than the far away (undrained)
material. The effect can alsc be thought of as be-
ing due to energy dissipated in the flow of pore
fluid. The zecond effec: is due to the fact that a
pore fluid suction {or at least a pressure less than
ambient pressure) is induced in the Tegion of mater-
fal breakdown at the crack tip thus decreasing the
effective tensile stresses in that region. The
model used to investigate this second effect is very
simple but any decchesion model is expected to yield

similar results.

The magnitude of the mentioned effects and the
speed of crack propagation at which they cccur is
extremely dependent on material properties. Tae
Poisson ratiss obey the constraint that
0 v ¢ vu ¢,5 and thus 1 g 3 £ 2 . The diffu-

- s -5 2 2.2
sivity may vary in the range 10 'm fsec <c= 107m fsac
[12] and the pore pressurc cosfficicnt obeys the con-
straint 0 £ B £ 1. For reasonable numerical esi

. -3 2
mations we can take 1.1 s g ¢ 1.3, 10 "m/sec ¢ ¢
-12 .
2 10 'm /sec, .5 2 B 2,9 (12l
From fig., 3 it 1s quieckly seen that Kpo" is
required to inerease to BX .., at maximum, With
-
B = 1.2 ws sea the first effect is fajrly weak and
probably easily dominated by inhomogeneities in the
frascrure toughness, K .. , of the rock,
erit

The second, effective stress, efiect can be
much stronger as illustrated in fig. 4. 7The lead
required to canse fracture may ho several timez the
load required to fracture a drained specimen of the

same Tock (as is reflectedrin the values of

X

X ..} . This second effect begcomes important
nom’ “erit ¢

as v hLecomes greater than about defw  [see fig.
4). The decchesion length, w , can be egstimated by
comparing fracture toughness and tensile fallure
tests of the same drained rock type, Tests of an
0il shale [17) for a particular orientation have

Y
= 1.1 MPa-m and tensile strength of

riven K__.
& crit

E

ahout 154Pa thus implying w = .85 mm . I

n

10 “m*/sec this gives a velocity of about

¥ = 50 mfsec at which the effect bacomes important
The calculations here are based on a continuum

model and we cannot expect, for example, that the

Pore flﬂid Elow can be described mo simply (Davey's

law) 6Ver the size scale of w . Thus the rasults

mest be regarded as approximate.



The cenclusions reached here may be expected
to be applicable to cracks of any geometry where
the crack tip conditions are appreximately plane
strain. Models of hydraulic fracture can most sim-
ply take account of these effects by amodeling the
tock =s ardinary linear elastic with velocity depen-
dent fracture toughness given by what is called
K in eq. 8.
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'APPENDIX I
Field Equations
A brief derivation of Rice and Cleary's [12] form of Biot's con-
stitutive equations for smail deformations of a fluid saturated, isotropic,
linear-elastic porous solid follows, The derivation of the analogous
equations for coupled deformation-diffusion of a solid (like steel)
containing a mobile chemical species {like hydrogen) and linear coupled
thermo-elasticity are exactly the same with suitable redefinition of terms.
The stress O35 the strain €55 » the fluid mass content - and
the pore pressure p may be regarded as excesses relative to a state
ogj , E;j , po , m° in which body forces are equilibrate& ~ the con-
stitutive equations must then be interpreted appropriately,.

The strain of the solid phase is assumed to depend linearly and

isotropically on the stress T and the pore pressure p ,-thus

2Geij = Uij - (v/(1+v))6ijckk + ClpGij , (1.1)

where the form of (I.1) is found by looking separately at the cases
where Uij = 0 or p=0. The shear modulus is G aﬁd the drained
Poisson ratio is v , The pore pressure p 1is defined as the pressure
in a container that contains pure pore fluid, or diffusing chemical, and
is in equilibrium against matter transfer with the ambient pore fluid,
or diffusing chemical — this value cannot necessarily be identified with
any simple definition of fluid pressure inside the solid. In the case

of thermo-elasticity, p should be replaced by the deviation in the

temperature and v is the isothermal Poisson ratio.
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The alteration in fluid mass content per unit reference volume of
solid is assumed to be linearly and isotropically dependent on the total
stress Uij and the pore pressure p . This relation can be expressed

in terms of the two independent constants C, and B as
O
Am/p” = £C2/2G)‘}kk + (S/B)é] (I.2)

where p° is the pore fluid density. The variable B is a material
constant (Skempton's pore pressure coefficient) which can be interpreted
from the result that p =—Bokk/3 in an experiment that measures induced
pore pressure for stressing under totally undrained conditions (Am = 0}
In thermo-elasticity Am/p°  should be replaced with alteration in
entropy content,

From the assumed existence of an energy density, the free energy ¢
can be shown to satisfy the following differential relation (thermal

effects neglected):

P
- dp'
d¢(eij,m) = oijdeij + [ Q.F.,.(g.rj.dm ] (I.3)
P

The two Legendre transforms on Eq. (I.3) give
d{ something] = Eijdoij + (m/p(p)ldp , {1.4)

from which follow the reciprocal relations

(3e. ;/3p) = (3(m/p)/%0, ;) R (1.5)
13 " O¢ixed 11" Peixed
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which imply that the constants C1 and C2 in (I.1) and (I.2) are equal
to each other. In thermo-elasticity "[something]" is the Gibbs free
energy and other terms should be identified as before.

The material must behave as an ordinary elastic material under totally
undrained conditions(since p 1is no longer then an independent variable}
with the same shear modulus G as under drained conditions {since shear
is unaffected by pore pressure variations in (I.1)), but with a different
Poisson ratio, denoted by v, e In thermo~elasticity, Yy is the isen-
tropic Poisson ratiq. Equation (I.1) must then reduce to ZGeij = cij -
(vu/(1+vu))dijokk under undrained conditions (Am = 0) . -Equating this
relation with (I.1) expressed in terms of v and p = -Bckkf3 yields
C1 = C2 = S(vu-v)/(B(1+v)(1+vu)] .

The third constitutive law is that of Darcy which relates the ambient
pore fluid flow linearly and isotropically to the excess pore pressure (the

excess in pore pressure over the pressure field that equilibrates all

body forces - assumed to be derived from a potential) gradient,
0
q; = -p k3p/3X; ; (1.6)

vwhere s is the mass flux rate of pore fluid across a surface of unit

area fixed in the material with normal in the i-direction. The permeability
is given by « , Inlliﬁéér thermo-elasticity qifpo should be replaced by

the heat flux vectorhdivideg by absolute reference temperature (eﬁtroPy flux},
Equation (I.6) is then a statement of Fourier's law of heat conduction. The
remaining field equations are those of equilibrium, bompatability and conser-

vation of fluid mass content. In two dimensions, with inertial terms
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neglected, equilibrium is expressed by

Buxx/Bx + Baxyfay =0 , 3cxy/ax + acyy/ay =0 , (1.7}

In plane strain, compatability (the condition necessary for the exis-

tence of a2 unique displacement field) is expressed by

32£xx/3¥2 + styyfaxz = 232£xy/3x3y . (1.8)

When the'constitﬁtive law Il is modified by the plane strain constraint
that €0 = 0 and applied to compatability (1.8), and the result is
simplified by use of equilibrium (I.7), we have the plane strain compata-

bility equation expressed in terms of stresses and excess pore pressure:

{1273:
2 2 (v -v)
5+ Zllow oy * F | 7O (1.9)
dx2  dy? Yy u’ o

The equation of fluid mass conservation is
am/at + ainaxi =0 . (I.10)

In the thermo-elastic case with m/po replaced by entropy content
and qifpo with entropy flux (I.10) is a continuum statement of the
combined 1st and 2nd laws of thermodynamics, where it is assumed that the
actual stress is equal to the associated equilibrium stress,

The expression for changes in fluid mass content (I,2) can be modified
for plane strain by means of (I.1) and then substituted into the 1st term
in (I.10). Darcy's law {I.6) can be substituted into the second term

in (I.10) to obtain an expression for the conservation of fluid mass in
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terms of stress and pore pressure gradient, This result, multiplied by
an appropriate factor, can be added to the compatability relation (I1.9)
to give the following diffusion equation [12];

ﬁq._az_}_i[g + 0+ 3 = 0 . (I.11)
3x2  ay? ¢ 9t {"xx Yy Bi1+vui p] ’

e

where

_ {26(1-v 32(1+vu)2(1-2v)]
R 6 4%/ 2¢) 9(1—uu)(vu-v)J

is the diffusivity and where [Uxx + Uyy + 3p/(B(1+uu)J] is proportional
to the alteration in fluid mass ceontent, Am .,

In our problem, we are assuming the steady state condition that all
distributions of field variables move at speed v with the crack tip.
Expressed mathematically, this is f(x,y,t) = £(x-vt,y) , which implies

af af

- "V ix for any field variable £ . This result can be applied

to the diffusion equation (I.11) to give [13]:

that

—Ei + —ii + ya g__ + 0 + 3
ax2  ay? C x| xx Yy Bfl+vui Pl = o, (I.12)}

Equations (I.7),(I.%) and (I.12) now constitute a set of four equations

o and p .

i four stress variables ¢ o
in the fo xx * Tyy * Oxy
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APPENDIX II
Boundary Conditions

The coordinate axes are taken so that the origin instantaneously
coincides with the crack tip and the x-axis is parallel with the direction
of crack growth. Due to symmetry about the x-axis, the equations only
need to be solved for y » 0 with appropriate boundary conditions.

On physical grounds it can be seen that three boundary conditions are
required on all boundaries; for example, two components of traction and
the pore pressure. In our case the boundary conditions are supplied by
the following assumptions and observations:

a) There is no fluid flow across the crack faces and thus by Darcy's
law (1.6), op/3y is zero there. The pore pressure field is differentable
and symmetric so 2p/3y is zero on the x-axis ahead of the crack tip
also.

b) No shear loads are applied to the crack faces so cxy = 0 there.
Symmetry implies that Sy 0 also on the x-axis ahead of the crack tip.

c) Uyy = =T on the crack faces,

d) Differentiability and symmetry imply that éoxxlay = 0 on the
x-axis ahead of the crack tip.

e) All field variables must go to zero with increasing distance from

the crack tip. Together, these are:

ap(x,0)/3y = 0 for -« < x < (11,1}
cxy(x,o) =0 for - < x <= (11.2)
cyy[x,O)“&fet(X)'for -2 < x <0 (11.3)
acxx(x,O)fay for Q0 <x <= (11.4)

s O, + 0 as x2+y2 + (I1.5)

Py ey s Oyy s Oy
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Condition (II.4) can be expressed as

=0 for 0<x<w (11.6)
y=0

X
3
? J Uxx(x’)’)dx
o

for future calculations,
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APPENDIX III
Limiting Cases

Some results can be inferred for certain limiting cases without
recourse to fourier transforms and the Weiner-Hopf technique. These cases
have been noticed in [ 3] for Mode I cracks and some of them are discussed
at length in [18] for the analogous Mode II (shear) problem.

The only characteristic length in the governing equations (I.7), (1.9}
and (I.12) is ¢/v , the ratio of the diffusivity to the crack propagation
velocity., There are two other iengths however, in the physical problem
being analyzed. One is & , the length over which the crack face load is
applied; the other is w , the size of the breakdown zone. Throughout our
discussion, we assume £ >> w .,

Different regimes of behavior are determinedlby the relative size of
c¢/v , £ and w .

Case I: c¢fv >> & >> w, In this case of very slow crack growth, all excess

pore pressure is totally drained in the general region of the crack face

loading and the response is that of an elastic material with drained proper-
ties. This result is intuitively acceptable, but can be justified by sub-
stituting x = x/% , y = y/¢ into the equations (I.7), (I.9) and (I.12) and

noting the limiting form of these equations as c¢/v gets much larger than

2 . There result theiequations;

g .90 [ ~2 - a2)

;fx + 3:}’ =0 ——f + --—--f cxx + T =

9x 3y ax? asz Yy

: (111.1)
3o 90 (w2 23
.._.._EX + Yy = {1 _.a_— + L P = o .

ax Y 3x2  dy?

. /s




For 'the boundary conditions given, (II.1).- (I1.6), these equations

have the unique solution p =0 and o,. = c?%aStlc where the character

ij ij
of the equations in the far field is assumed to have no influence. That
is, the stress field is exactly that which the same loads would cause on
an ordinary elastic material, In particular, the stress intensity factor
observed at the crack tip is exactly the same as would be predicted for an
elastic material. This can be expressed by saying that at very low speeds,
fracture propagation requires Knom = Kcrit where Knom is defined as the

stress intensity that the applied loads would cause on an elastic medium,

and Kcr' is a material property. In this limiting case, nothing is gained

it
by looking at effective stresses or a breakdown zone,

Case II: & >> ¢/v »> w . In this intermediate range, the material is
undrained (Am=0) , or relatively stiffer over the size scale of the applied
loading (or crack length) and drained, or relatively softer, over the region
of material breakdown. This case cannot be discussed carefully without more
detailed calculation. A physical argument based on matching near tip and
far from tip displacement fields is presented in [13] to justify the

results to be shown, The transition between the results for this case and

cases I and III will also be shown.

Case III: & >> w >> ¢/v . In this very higﬁ_speed limit, the material
behavior (away from a vanishing range near the crack tip and faces) is
totally undrained., That is, crack growth is sufficiéntly fast that there
is no time for diffusion of pore fluid (except possibly at the immediate

crack tip and crack faces). This can be demonstrated by the same substitu-

e ™y o Y Mnr mrarmdedmemn T ™Y T A% and T 1737%
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become (with 2/(c/v) = = ) [18}:

3°xx _acx
=+ —=L=0 (111,2)
90X 3y
g0 g
=S AFQEED ) BE; (111.3)
09X ay
32 2
— 4 ] [ +q + 2 =0 I11I.4
[aiZ a§2][ xx * Oyy * 2P] (111.4)
3 =0 (IIL.5)

3
g |}xx YOy T Bflwui p:1 -

where n = S(vu-v)/[23(1+vu)(1-v)] and the bracketed term in (III.5) is
proportional to the alteration of fluid mass content.

The boundary conditions imply that the bracketed term in (III.5)
vanish as ; + o s0, by inspection it must vanish everywhere, Thus, the
material response is undrained. This gives the result that
P = -(1+vu)B(Uxx “ cyy)/s everywhere (that is, everywhere where ; = 1),
Applied to (III.4), we again have the standard equations of linear elas-
ticity. A result of the solution of these equations for our geometry is

2 . dxx(x,O) for x small, From this and the

L od A_I
[19] o, (x,0) = K(zrx) ™/ ‘
undrained condition, the pore pressure p(x,0) on the x-axis can be found

as can 0(x,0) = o(x,0) + p(x,0) . We have then that
o (; 0) = {1 - 2B(1+v )/3[XK /(Zwm)lfz (I11.6)
yy-? u nom * ’
. . - . . . 2 2 2,2
In carrying out this limit the region in which x* + y~ € ¢"/v" was

shrunk to a point at the crack tip, Thus, the field found for the arguments



=220 =

-~ A

X,y carries, in this case, no information about the values of the field

variables inside the region with radius of order c/v .
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APPENDIX IV
Fourier Transform and Weiner Hopf Technique
The full analysis of the problem is carried out by use of fourier
transforms. In particular, any field variable, f , is related to its

—

transform £ by:

fx,y) = J f[x,y)e_iﬁxdx (1vV.1a)

f(x,y) = 7%-] Foe,y)e™Naie (IV.1b)

where i = ¥-1 and k is a new variable used in the transform (not to be
confused with permeability)}. The transform can be applied to (1.7), (1.9}

and (I1.12) to give

L™ a ~
i 0, (Y] + 570, (y) =0 (1V.2a)
3~ N _ -
3y Txy (koY) * ik 0y () = 0 (IV.2b)
(v -v)
xZ + u

oy Oy (KsY) + UYY(K.Y) + 1£'T3:;;jTT:GT = Q (IV.2¢}

o

[ixw'c 2 k2 + 32/3:’2] [Exx(m)’) + UW(K,)’) + (3/(B(1+v)}) ;(n.)’)] =0
(Iv.2d)

These are four ordinary differential equations in four variables. They
can be solved in terms of the yet to be determined constants (constant

with Tespect to y ) a = a(k) , b =b(k) , d =d(x) , (see £3]1, 33);



G, = -[d + (ny-1)ade™ +[1 - (x2+n2)(Kf-n2)]be*“y (1V.3a)
ﬁ;y = [d + (my+D)ale™ + [1+(x2+n2)/ (x2-n2)Tbe™™ (IV.3b)
Exy = [ikd/m + icyale™ - [2ikn/(c2-n2)Tbe (IV.3c)
p= 28;?::?1§I-v) [} :E;v ae™ . be'“f} (1v.3d)

where, in order to eliminate solutions that grow exponentially with y ,

m = m{k) and n = n(k) are defined such that:
m2(k) = k2 , Re{m(x)} 2 0O
n2(k) = k% - ikv/c , Re{n(k}} 0 ., (1v.4)

Any analytic functions a(x) , b{x) and d{x) that lead to well defined
inverse transformations will result in solutions to the field equations.
The boundary conditions (I1.1) - (11.6), can also be transformed by

(IV.1a) and the results expressed in terms of a , b, and d from (IV.3}:

mua + nb = 0 {IV.5a)
2nb/ (k2-n2) + d/m = © (IV.5b)

a+ 1+ (c24n2)/(x2-n2)]b + d = -7(k) + F (x) (IV.Sc)';:
-2ma + 2n3/(x2-n2) + md = G (x) (IV.5d)

where

F(x) = J 6. (x,0)e ¥Xgx
o VY

0 X
+ - -ikx 3 ' '
G (x) = 1:J e 3§-J cxx(x ,Y)dx dx
- 0

u = (v =v}/(1-v) .
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Though the transform inversions are carried out for x as a real
variable we make use of the fact that the equations make sense for «
a complex variable. First, notice is made (for later use) that the un-
known functions F~ and G' are analytic functions in the lower and
upper x plane respectively. Equations (IV,5a), (IV.5b} and (IV,5d)
can be solved simultaneously for a , b and d in terms of 6" . This

gives

a(x) = G+(K)
2mik) (n-1y
+
- _~uG (x)
b('c) - ZH(K) (1"1 L] (IV-6)
dexy = BL O

(r-1) (k2-n?) .
This result can be applied directly to (IV.5¢) to give, after some mamipu-

lation,

6" 2ip m(x) - ~
K 1:1 + €k [n(r) - 1]] =F (¢} - 1(¢) . (IV.7)

2(u~1)m(x v

This is apparently a single equation in the two unknowns F (x) and G+(:).
However, it can be solved by the following device which is the substance of
the Weiner-Hopf technique, The idea is to rewrite (IV.7) in such a way that
the two sides are analytic functions in two overlapping half planes of

the complex plane, This is done by factorizing the functions m(x) and

n{x) fsee {IV.4), as follows:

m(c) = m (Im (k) , n(k) =m (I & , (1V.8)

1/2

where m+(K) = K with branch cut on the negative imaginary axis,
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- . ~1/2 . s s . , .
m (k) = (x-ig) / with branch cut on the positive imaginary axis from ie
to ie and with € > 0 an arbitrarily small constant, later to be made

/2

to approach zero, and n (x) = (K—iv/cjl with branch cut on the positive
imaginary axis from iv/c. The superscripts + and - refer to the upper
and lower half planes (respectively) over which the functions are analytic.

By using the decomposition (IV,8), equation (IV.7) is immediately separated

as desired {closely parallel to [13])

G () _[F () - T()Im (k)

< - , (1v.9)
2(u-1)m () D (k)

where

D (k) = 1 + 2ipcx [m (k) -1
Vot

For Im(x) € 0 and v > 0, we have n (x) # 0, and so D (x) is
analytic for all Im(k) € 0 . It has the limiting values D (0} =1
and D7 (k) > l-p = (1-v )/ (1-v) as || > « . The function D (k) also
has no zeros in the lower half «x plane.

Transition from Case 1 to Case II

Three different loadings, t{X), will be used in the solution. The
first two will give the principal result for limiting case II as well as the
transition from case I to case II. First t(x) will be taken as constant
over a length & representing the fracture length; =t(x) = v for
-Lsxs5 0, Instead of using t(x) directly in the solution, it is to be
iix

thought of as a superposition of loads of the form Tltx) = e for

x < 0 where X has a small negative imaginary part (i.e., Tl(—“) =0 ).

The crack face loading can be reconstructed by the superposition integral
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(x) = 3%.J T )d = %F‘I T an (1v.10)

where ?(1) is the density of tl(x] in t(x) , and is found from

T() = -(1/id) (L-exp(irL)) . Cavan

By the same superposition the value of any field quantity can be found

from the value of that quantity due to the load TA(X) .

1 [0
£ = 5;-J _grooa, (1v.12)

where fk is the response to Tl(X) .
For our initial calculation we use rl(x) as the loading, From

{I.8a)} its transform is found to be

o) = YIio-a1 . (IV.13)

This is now applied to (IV.9), to which the same term is added to both

sides of the equation to obtain

e, w1 o) we], nw ey
n* () D ()iGr-x) i(Ai-x) IDT(A) D—(KJJ D™ (x)

(Iv.14)}

This equation (similar to Al5 in [131), though originating from use
with real values of k , has been separated so that the left and right sides
are analytic in all of the upper and lower complex k plane respectively.
FoT x real, the two sides of (IV.14) are identical. Each can be

analytically continued in a unique way to all of either the upper or lower
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« plane, and thus both sides of the equation are representations of a
function that is analytic in the whole «x plane (entire function),

Examination of the right-hand side of Eq, (IV.14) shows that the
entire function is bounded by a constant as || + « with Im{x} < 0
and thus the function is a constant, This can be seen since the first
term on the right side of (IV,14) is of order xlsz'(x) as Kk -+ o,
However, by looking at the arguments used in limit case I and replacing 2
by x* , a typical point inside the "drained region," x* << ¢fv , it is
seen that the material response is of the ordinary linear elastic type
in this range (even though we cannot yet say p=0 in this case) and thus
by standard results of linear elastic fracture mechanics the stress field
rmist have the form of Eq. (2) (i.e., o5 is of order M2 a5 xs0 )
where the K will depend on the far field in a way about to be shown.
When this is applied to the definition of F (x) , (IV.5), the result is
that F (k) is of the order « /2 45 k> = sothe prodict m (k)F (x)
is finite as k + = ,

Because the right side of (IV.14) is constant, it may be evaluated
for any convenient value of «x . It is possible to do this evaluation for
the case » + 0 . Since D (0) is finite, all terms are easily evaluated
except the rightmost term, This is evaluated as follows:

Very far from the crack tip, the stress field must be of order less
than r—l for finite strain energy. When this requirement is applied to
the definition of F (k) in (IV,5), it shows that F (x)} 1is of order

less than x'z as k + 0, This gives the result that



G (k) , _n ) N N WS NN ) F™ ()
n') DT A oy bt | bt
é'iL;'m:€A) ) (1V.15)
2 by

The stress intensity factor, Kk , for the loading rl(x) can be

found by noting from (II.3) and (IV.5¢) that
E;y(n,O) = 1/[i0-k)] + F"(x) (1V.16)

where F (k) is found from the right side of Eq. (IV.15). It can be
seen from (IV.15) and (IV,16) that ;;y(K,UJ asymptotically approaches

D™ (=)m™ (A)/ (iAD” (A)) Y/ 2

as x + o , We already know that cyy(x,ﬁ)
has the form K/¥2mx as x + 0 , which implies that cyv(x,OJ has a
Fourier transform which is asymptotically equal to KIl~i)K-1f2/2 as

x > = , Comparing this to the result in the previous sentence, and using
I-v

1/8 =

D (=) T » We have

A2 m ()
BK T . . (IV.16)

To find the asymptotic stress intensity factor for the loading pic-
tured in Figure 2b, we use the superposition outlined by equations (IV.11)

and (IV.12):

BX = i3y J 'zm:EA; [1 - exp(irg)lda . (1v.17)
- 22D

In this equation, D (1) also depends on v , and material properties as

seen in (IV.9). Equation (IV.17) can be re-expressed so that it is clear
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that the dependence is only on the two dimensicnless parameters
B = (l-v)/(l-vu) » Y = V&/c and the loading as represented by the loading
parameter K = Y8r2 , [19], the stress intensity factor the same loads

would cause on an elastic solid:

(1+1)K ® .3/2.. is
X = nom s A-(l-e ) ds (1V.18)
4Y2n BD (s,v)

where

- > 1/2
- 2i(B-1)s 5 -
D (siT} 1+ -1 =D s
v [;8-17}172 }

and where all multivalued functions have branch cuts on the positive
imaginary axis. The limiting values of D~ are

D™(s,y) > 1/8 as v+ 0 ;D (s,vy) >1 as v+ e, (1V.19)

The integral in (IV.18) is evaluated by changing the contour (as in [ ])
to one that wraps around the positive imaginary axis and calling s = iy .

There results

{ = onom Jw 0320 e Y)Re ¢~43;—-£dw (IV.20)
254172 D(¥/Y)

where

Dey/v) = 1 _'Z&Eﬁ%l&ﬁ:ll[?l_i)/(¢/Y))'1/2 - l] .
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Using the limiting values of D (same as limiting values of D in

(Iv.19}), and the fact that

J 320 yay = 252

0

we obtain from (IV,20) that

Knom +X as vy =vife>0 (Iv.21a)
ve
Knom + BK as y = -c_+ w0 {1v.21b)

Equations (IV.Z21) give, respectively, the results of limit case I
and limit case II, These limiting values agree exactly with the results
of [13] for the shear fault and agree qualitatively with the numerical
results of [ 3]. The transition of (IV.21) from limit case I to limit
case 1T is evaluated on the computer and shown in Figure 3. The results
are essentially similar to those in Rice and Simons [13] Fig. 4 (where
Gnom/Gcrit = icm/Kirit ) but, the transition from the slow limit value to
the fast occurs in our case at about v&/c¢c = 1.5 whereas for the shear
crack, the transition occurs at about vg/c = 10 . The result here is
similar to those of Cleary [ 3] for an almost identicalnproblem. His
calculation however, is done using a loading that diminishes linearly from
a value T at the crack tip to zero a distance & from the crack tip.
Since the loading is weighted towards the crack tip, his loaded length is
effectively less than ours; a greater value of & should be required by
him to obtain the same dimensionless increase in Knom . That is, we

would expect his curve to fall to the right of ours in Fig. 3. The

fact that this does not happen may be partially explained by the material
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response to a point load moving with the crack tip a distance £ behind.

Solution to Point Force

Take 7t{(x) = t&8(x+%) where &(x)} 1is the Kronecker delta function,

Use the transform (IV.la) to get ?(A) = elll . Using the solution for

Kl of Eq. (VI.16) and the superposition of Eq., (IV.12), the result for

K is found:

ke — T | §Y2A8,5-15 y3as . (1v,22)
8L(1-1)1/% |

Using the result from Tada et al. [19] that this point load would cause
the stress intensity factor Knom = 1¥2/7% and changing variables by

S = iy one obtains:

X
K = DOm »,u“l/ze“"Re;, 1 zdw : (IV.23)
gvT D/ v)

Q

Using the limiting values of D and the fact that

»

J v 2y = 5

o}

we again obtain

K +X as vife >0
nom (1V.24)

Knom + 8K as vifc =+ =

The details of the transition are found by evaluation of the integral
(IV.23) on the computer, which is carried out for a range of values of B.
It is noted that for this loading the peak stabilizing effect (considering

the end zone to be infinitesimal) occurs at about v&/c = 2 and that at
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that value K__ /K has a value greater than R ., The very large

nom’ “crit
and very small vy 1limits discussed in the body of the paper still apply

here as shown in Eq. (IV,24) and Figure 6.

It should be pointed out here that the solution for all field
variables due to the loading t(x) 1is available by direct integrationm,
That is, the results of (IV.15) can be applied to find a , b and d,
(Iv.6), which in turn determine f , fﬂe transform of any field variable,
through (IV.3). These can be inverted with (IV.1b) and the general
solution then found through superposition (IV.12). Though straightforward,
these steps are quite [!) cumbersome and the results would ultimately
depend ‘on the numerical evaluation of a single or double integral.
Fortunately, these calculations are hﬁt needed for the results we seek.

Though we have solved a portion of the full field equations, we have
not checked explicitly any of the boundary conditions. Instead we put
trust in our method of solution based on the fact that it works for a

mathematically simpler limiting case discussed in the next section.



_ 32 -

KHOTI"I

Kerit

FIG. 6 INCREASE IN REQUIRED LOADS WITH
INCREASING SPEED FOR A POINT LOAD
A DISTANCE / FROM THE CRACK TIP.
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" 'APPENDIX V

Asymptotic Boundary Condition

Before the transition from case II to case III can be discussed, the
solution to the relevant field equations must be obtained,

In this case we have £ >> ¢/v and 2 >> w (the relative size of
w and c¢/v does not matter at this point). Therefore, by previous argu-

+

ments in the far field where r >> ¢/v (but still 1 << L}, stresses

are dominated by the £ 1/2 terms of ordinary linear elasticity. In

the range of r = ¢/v the field is not known. The full coupled equations
nust be used, but the boundary conditions are simplified. The loading

on the crack faces in the region r g c/v has vanishing effect as

tv/ec + = (as in [18}). Instead, the near-tip region is effectively loaded

1/2

by the distant 1~ elastic field. The problem posed then is one for
which there are no loads on the crack faces but the solution must asymp-
totically approach the far field r /2 elastic selution.

The fourier transform and resulting equations follow as before through

(1Iv.9), in which we now set ¥(m) = 0 to give

G' () _ F (Im (x)

- - . v.1)
2{u-1)m" (x) D (x}

The stress field immediately at the ¢rack tip was shown to have the

standard r_l/2 singularity. This, with the asymptotic boundary condition

means that oyy(x) = Knom g(x)}/72nx where Knom is the far field stress

intensity factor and g(x) is a bounded function that approaches 1 as
This has two useful consequences: 1) From the definition of F~

X+ w
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the right side of (V.1) is bounded as «k »+ « , 2) By direct calculation
F (k) is asymptotically approximated by ~(l—i)Knomnc-I"z/Z as k>0,
Since the right side of (V,1) is bounded as '« + = , the right side is
a constant for all «x with negative imaginary part and the left side is
the same constant for all « with positive imaginary part (as argued
before}. The asymptotic form of F (k) and the limiting value D (0) =1

are used to evaluate the constant from which it is found that
F(x) =X ,(-1)D (x)/(2m (x)) (V.2a)

6'(e) = K (u-1)(A-Dm () . (V.2b)

By using the fact that

M2y = Sra-1y/VE
[+]

and the asymptotic forms of (V.2a) as k » 0 or = , it can be seen that

F (k) is the transform of a function cyy(x,O) such that
o (x,0) ~ (1-wk_ /2% as x -0 (V.3a)
yy ! * Nom -
g_ (x,0) ~ K /(21x)1/2 as X -+ o« (V.3b)
Yy ? nom * :

Equation (V.3b) is a verification of the boundary conditionm and (V.3a)
is a duplicate of the result found in (IV,21b), In this case, however,
the result applies to any crack face loading that is not singular at the
crack tip and has a length scale large compared to c¢/v {(unlike (IV.21b)
which was found from the specific loading of Fig, (2b).).

Using the definitions of m , n , m ,m ,n from (IV.4) and (IV.8),
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the result of (V.2b) can be used to find the constants in (IV.6).

a(c) = K (1-1)/(2m” (x))
b(x) = «uK - (1-i)/(2n" (x)) (V.4)
d(k) = —cpKnom(1+i)m“(n)fv .

These constants can be used in (IV.3) to give the full transforms of
all field variables. These transforms can be inverted by the same general

formula used by Simons [18] and found in Carrier, Crook and Pierson (1966),

pg. 93. For our purpeses, this equation can be written as

i£ Brey) = L o yE(eria) (x-in]Y?
(k-iX)1/?
(v.5a)
then G(x,y) = () -r(ark)/2 + x(a—k)/zccs(G/Z)
Ya2nr
and if G(x,y) = 7 e-Y[(K-ia)(x+ik)]1/2
(k10 (V.5b)

1-i e-¢a+k)r+(a-k)x)/zsin(efz)
2Ry

then G(x,y) =

for a,K,y >0 ,

These two transform formulas are used extensively in the calculations

that follow, as are the following two rules about the derivatives of a

field variable whose transform G has the form G = :E(rc)e"g(‘()y
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trans‘f.{ —a?;c;(x,y)} = kG (x,¥) v.62)
transf. { % G(x,y)} = g,y . (V.6b)

While deriving (IV.3), it was found that the variables solving the

field equations (1.,9) and (I.12) have transforms given by:

—

-~ ~ oL -m{x)y
S Uyy + 2np =2 (L-p)a(k)e (V.7a)

Sax ¥ Tyy + U = L) /pTb00)e (v.7b)

By using (V,S5a) with the definitions of m{x) and n(x) , both of (V.6)

can be inverted directly to give

K
nom
g._ +dg__+2np =2 cos{8/2) (V.8a)
xx ry BYinT

Knom -v{r+x}/ (2¢c)

Ox Ty * 2n/u)p = 2 —— e cos(8/2) . (V.8b)
Yy BY2rT

Equations (V.8) can be solved for the mean normal stress and pore

pressure to give

~

K
+ a0 }/2 = nom [1 _ ue—vr(1+cose)/(2c) cos (8/2) (v.9a)
Yy '/ﬁ? J

{v

XX

"

_ e-vr(1+cose)/2c cos(8/2) . (V.9b)

P,

nom

Y2nr

1

=K _23(11‘\)“) |
p =

Also, while deriving (IV,3), it was found that

1

[

.oz
-3 - MY |2 e, .10
(ny 0, )/2 = (d+mya)e + [(Kz-nz)] e (v.10)
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With some manipulation and use of (V.,5), this becomes

.(Uyy".‘axx) . -.ZCuKnom -—?—' COS(B/Z) [1 ;}-.e_Vr(lq_cosa),(Zc)]g
2

2 i v 8x { /5;;- j

K 3 Jcos(98/2)] ~ cp 3 [sin(8/2) _-~vr{l+cosd}/(2¢c)
- Yoo | ——— | + — = |—————— ¢ .
il M M T

BYVASS

The inverse transform of ny can also be found from (IV.3c) to be

_ Hekoom 5 jL_[sin(ﬁ{Z)] ) Zz__g_[cos(s/Z)]

%% T ¥ X | s ue 3x | 5
\
3 e-r(1+cose)v/(2c) g
-2 S cos(8/2)]} . (v.12)
34 Y2nr }

Equations (V.9), (V.11) and (V.12) are the solution to the field
equations for v&/c >> 1 and x << & . They can be solved for o _,

oyy s ny and p . The resulting calculation is cumbersome and is thus

only carried out on the x axis for o, and p and on the

s @

y * %xx * %yy

y axis for Oy * The solution then takes the form

c;{y(x,ﬂ) = 0 (vV.13a)
=X 2B(1+v ) 3

p(x,0) = =2 2 [1-9"foc , (x>0) (v.13b)
f21x ’

o__(x,0) = Knom 1 - & [l_e-vx/'c]l (x>0) (V.13c)
XX ey vx ’



o (0 - Ko 1 - ;1[%e—vx/c c a e-vx/c)] (x>0)
y)’ » /_2_1?; vx 2 »
(V.13d)
0, (%,0) = 0, (x,0) = p(x,0) = 0 , (x<0) (v.13e)
o (0,y) = _nom _ 1 - u|:2e"’"/2° s (1-e""”'2°)] (V.13£)
xy*? 2/ T/ T% yv

A few features of the solution may be pointed out here. Firstly, the
functions satisfy the boundary conditions and asymptotically approach the
expected elastic fields as r+0 and 1+ , This is not immediately
apparent in (V.11) and (V.12), but can be seen clearly in (V.%b) and (V.13)
by comparing with the field predicted for an ordinary elastic body [15].
Secondly, (V.9b) and (V.13e) show that the pore pressure is zero on the
crack faces, Thus the equations satisfy a zero pore pressure boundary
condition on the negative x-axis. In a model of hydraulic fracture, this
fact is perhaps of little significance, It is interesting to note for other
applicatians that the solution satisfies two different boundary conditions —
both no pore fluid flow through the crack faces and zero pore pressure on
the crack faces,

Since the concept of drained and undrained behavior is used often in
porous media discussions, it is interesting to check the degree of "drained-
ness'" at each point in the body; call it & (similar to a parameter used
in Simons [18]) and define A = p/pu ,

_ '2B(1+vu)'°xx+°yy

Py = 3 7
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is the pore pressure the stresses would imply if the medium were totally
undrained, Use of (V.9b) shows that lines of constant A are parabolas
opening around the negative x-axis with focil . at the origin. This is the

same result obtained in Simons [18] for the shear fault,

Transition from Case II to Case III

Here we have c¢/v 3% &£ and we examine the transition as w goes from
much smaller to much larger than c¢/v with increasing v . The criterion

used for crack propagation is that the Terzaghi effective stress,

6 =o+p reach a level of Ecrit at a distance « ahead of the crack tip,
This criterion is expressed by the relation o(w) = acrit . Using (V.13b)
and (V,13d), this becomes
K v =y
Flw) = acrit _ mom J, _ 1?U {ée-vw/c _ %%_ _ -vm/c)} l_e-vu/c
Y2Tw
(V.14)
Qf interest is how much greater Knom in {V.14) is than the Kcrit

required for the same fracture criterion in a totally elastic body; i.e.,

Kcrit -

The sought effect is then included in the equation which follows from (V.14):
-1

ZB(lfv )

£ (1-e “"‘“"’ﬂ — - L as)

=11 -

K lav

K V=N _
nom u [ze—vw{ c_

The form of the function (V.15) is such that the general shape of the

Knom/Kcrit vs. v curve is unaffected by the other parameters in the equation.
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Figure 4 illustrates the effect for a few values of material constants

(constants chosen from Rice and Cleary [121]).
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APPENDIX VI
Application to Unsteady Crack Growth
One may expect the solution for constant v to be applicable, at least
approximately, to unsteady v in some circumstances, For example, if f
is:a field variable its value is a functional of the full history of crack
tip motion in addition to the position of the point at some current time ¢t .
One might assume this functional can be simplified to £ = £(X,Y,V,V,V,V «..)
where x and y are coordinates relative to the crack tip. The incremental

change of f at a material point would then be

df = [(8f/3x)v + (Of/avIv + ...1dt .

Neglecting terms from v on, one is left with an expression for which all

terms can be calculated from the general steady state solution:
af = {{pf/ax)v + (3f/3v)v)dt .

If however, |(3f/ax)v] >> |3f/av)v]| then df = -(3f/8x)vdt which is
exactly the value of df that the steady state solution implies. This
condition should prevail near the crack tip where spatial gradiants (9f/3x)

are very high,





