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Slip Patterns in a Spatially Homogeneous Fault Model
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We present a model which predicts seismological complexity even with no complexity in geome-

try or heterogeneity in material properties. Fault
rate and state variable friction law at the plan
slabs. A constant velocity boundary condition

slip is numerically modeled using a Dieterich-type
ar interface of two infinitely long massless elastic
is imposed a distance H from each interface. No

geometrical, frictional, elastic, or remote loading variations are allowed in the direction parallel
to the plane of the fault, In the numerical solution & periodic boundary condition is imposed,
and the fault surface is divided into N subregions each of which is represented by a mathemat-
ical point. At these N points, all of which are mutually coupled by discretized two-dimensional
elasticity solutions, the friction law differential equations are numerically solved. The character of
the solutions depends on model parameter values and initial conditions. Solutions are found that

are periodic, quasi-periodic, or aperiodic in time;
nearly homogencous except during fast slip event

and that are spatially homogeneous for all time,
8, or essentially inhomogeneous for all time. For

given parameter values the solutions have a qualitative character which is nearly independent of
initial conditions. At any instant in time these solutions ultimately appear roughly as some super-
position of those spatial sine waves which are unstable in a linearized calculation. When spatially

complex, the solutions can simultaneously exhibit
and local propagating creep events. Special initi

steady propagating creep waves that span the

and long-term patterns of slip predicted by this

regions that have steady sliding, large slip rates,

al conditions can generate other solutions such as
whole fault. The variety of simulated slip motions
spatially homogeneous nonlinear dynamical model

suggests a possible role for dynamics, and not just complex geological structure, as a generator of
temporal and spatial complexity in seismic phenomena.

INTRODUCTION

It is natural to assume that seismic activity is complex be-
cause the Earth is complex. Fault traces meander and cross,
mechanical properties of faults and their adjoining crust are
heterogeneous, and fault loading may be due to erratic tec-
tonic processes. But some aspects of seismic patterns may
follow from the dynamics of the slip process to the extent
that they would be maintained even if all complexity in the
Earth’s structure were eliminated. The possibility of com-
plexity in a simple dynamical earthquake model is suggested
by the complicated motions observed in the one-degree-of-
freedom spring block calculations of Ruina [1983] and Gu
et al. [1984] and by the lack of spatial symmetry in the so-
lutions of the symmetric two-block model of Nussbaum and
Ruina [1987). Complexity has also been observed in solu.
tions of models with many rigid blocks coupled with elastic
springs using a variety of friction laws. To our knowledge all
of these multiblock models, excepting Nussbaum and Ruing
(1987], impose some spatial variation in properties or bound-
ary conditions. But such complex boundary conditions may
not be the only reason for spatial patterns in seismic re-
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sponse. One may use turbulent fluid flow as a suggestive
analogy [e.g., Andrews, 1978]. Fluid flow can be complex
even when the boundaries of flow are smooth, as in the fast
flow of water in a straight pipe.

To emphasize the possible role of dynamics in generat-
ing seismic complexity, we have begun to investigate the
spatially heterogeneous motions predicted in a simple fault
model that has no spatial heterogeneity in properties. The
fault is treated as a continuum, although for numerical pur-
poses it is discretized in a manner that makes the model
formally equivalent to a multiple spring block model. The
model in some ways generalizes single spring block mod-
els as well as the linearized continuum analysis of Rice and
Ruina [1983]. The calculation methods used are similar to
those used by G.M. Mavko [1980, 1983] (and unpublished
manuscript, 1984). The 10-block model of Cao and Aki
(1986] is quite similar, in that a similar friction law is used,
but those authors do not produce solutions to a continuum
model, and they also explicitly impose heterogeneous prop-
erties.

The Plan of the Paper

The presentation is organized as follows. After some def-
initions and comments about the model in general physi-
cal terms, we present a detailed discussion of the friction
law. As motivation for the nonlinear continuum problem
here, we then present some results from nonlinear spring
block studies. The details of the elasticity equations and
a summary of the full set of governing equations are then
presented, followed by a discussion of the periodic bound-
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ary conditions and the symmetries that they preserve. The
linearized-continuum and spring block results are next used
to make definite statements and to motivate speculations
about the full nonlinear continuum solutions. Next and
most significantly, numerical solutions are presented with
some observations and comments. Finally we make some
observations about the solutions and speculations based on
these observations. For reference, appendices contain dis-
cussions of some dynamics terminology (especially the word
‘instability’) and the numerical method. Definitions of all
variables and constants are given in a notation section.

Slip or Strain

At a large scale the displacement Jjump observed across the
boundaries of neighboring tectonic plates may be thought of
as slip. For the purposes of large-scale earthquake modeling
one might apply some friction law to this macroscale slip,
encompassing deformation or faulting within the fault zone
as a micromechanism. But this macroslip may be closely
related to what would be called slip at 2 human or laboratory
scale, at least during earthquakes. Seismic and geodetic data
are often well fit to a model of slip on a surface or surfaces,
although not to a resolution of millimeters. But excavations
by, for example, Weldon and Sieh [1985] support the notion
that the shear deformation during earthquakes may localize
to a scale of millimeters or less, though the applicability of
these surface observations to subsurface slip is not assured.

Last, it seems to be a general rule that any local (i-e,
stress-strain) continuum deformation law which can explain
the possibility of the sudden release of elastic energy also
predicts localization of deformation to a surface and hence
the inapplicability of that law. These continuum shear de-
formation laws predict their own demise by localization as
or before they predict sudden motions. Such deformation
laws include those where stress is a function of strain, where
stress is a function of strain rate, and where stress is related
to strain by a rate and state law of the type that we shall
employ for stress as a function of slip displacement.

So to model instabilities in a fault zone one may assume
that (1) the deformation is by slip, (2) the deformation in the
fault zone is by some kind of cataclastic flow which cannot
be described as a smooth deformation, or that (3) this cata-
clastic flow can be described on average, at the macroscale,
by a slip law. Although the friction law that we use is mo-
tivated by assumption 1, general aspects’ of our results may
apply to models based on assumption 3 as well.

Macroscopic Model of Crustal Loading

There is general agreement that the upper lithosphere is
largely elastic over the time scale of interest, so an elastic
model for the solid material adjoining the fault is employed
here, as in most earthquake models.

For definiteness, we think of our model as being the
straight strike-slip fault shown in Figure la. Even though
the driving forces for plate motion may be distributed over
large regions of the plate, we assume regions at a distance
H from the slip surface move at a constant relative displace-
ment rate, unaffected by erratic seismic slip. The viscouslike
process which restricts diffusion of earthquake related defor-
mation into the plate may be an increase in the viscosity of
the friction relation with depth, as discussed by G.M. Mavko
(unpublished manuscript, 1984) and Tse and Rice [1986), or
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IDEALIZED STRIKE-SLIP FAULT
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Fig. la. View of the physical problem. Strike slip fault in the
lithosphere. Remote tectonic loading is coupled with both the
active fault and viscous processes near the active fault. At a
distance H from the active fault the displacement rate is nearly
constant independent of earthquake activity.

may be due to viscous deformation of the asthenosphere.
Our crude approximation is that there is a finite distance
H inside which viscous effects can be neglected and outside
which the motion may be considered rigid. We also simply
assume that remote tectonic processes are constant over the
time scale of our model (many earthquake cycles). Thus we
are led to the boundary condition of a constant rate Vo ata
distance H.

Since we are interested in locking at models with the same
physical conditions imposed at every spatial point, we look
for solutions that vary horizontally along strike. We thus
neglect the pressure and material property variations with
depth which were the focus of study by G.M. Mavko (un-
published manuscript, 1984), Tse and Rice [1986), and Stu-
art [1988]. A two-dimensional representation of the fault
model is shown in Figure 15.

FRICTION Laws

Tullis [1987] briefly discusses the open question of whether
any of the friction behaviors observed in any of several labo-
ratories apply to the slip or cataclastic flow in an interplate
fault zone. An applicable friction law must have certain
features. Many of these features are in the state variable
friction laws of the general type first proposed by Dieterich
[1979a, 1981]. Further experimental and heuristic motiva-
tion for use of such laws is given by, for example, Dieterich
[19798), Dieterich and Conrad [1984], Ruina [1983, 1984],
Tullis [1987), and Tse and Rice [1986).

Earthquake Applicable Friction Laws

In order to simulate seismicity patterns the friction law
used must be capable of producing sudden slip events and
also must be sensible in the mechanical model that is be-
ing used. For the purposes of an elastic continuum seismic-
ity pattern model, the most important requirements for the
friction law are the following:

1. In at least some circumstances the friction stress must
decrease as the slip rate transiently increases (softening be-
havior). In systems with constant normal stress, some kind
of softening is necessary for there to be sudden slip.
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Fig. 1b. Elastic slab model. The frictional surfaces see rigid
boundary conditions at a distance H, where the displacement rate

is constant. The elasticity is modeled as plane strain or antiplane
shear.
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2. Healing must be possible after a slip event so that there
can be another.

3. When the slip rate is instantaneously increased, the
friction stress must not decrease instantaneously but tran-
siently over some slip distance. For example, an instanta-
neous jump would occur if friction stress were to (negatively)
depend only on the instantaneous slip rate. Such a law is
probably senseless on the boundary of a deformable elastic
solid since it unconditionally leads to instantaneous growth
of spatial perturbations as follows from the analysis of Rice
and Ruina [1983]). The use of two distinct coefficients of
friction, static and dynamic, also leads to such jumps and
is also problematic on the boundary of a continuum [Ruina,
1984).

State Variable Friction Laws

The state variable friction laws used since the work by
Dieterich [1979a) satisfy the needs named above while also
fitting some laboratory observations of rock friction, par-
ticularly experiments in which the slip rate is controlled to
suddenly change from one value to another. In these friction
laws the friction stress 7 depends on the normal stress o, the
slip rate V, and the surface state 6. In these relations, @ is
a state variable which is a measure of the evolving quality
of surface contact. Dieterich and Conrad [1984] present ev-
idence for a possible microscopic interpretation for a state
variable 8. But even without rigorous microscopic justifica-
tion, one can write laws for the evolution of the state @ that
allow one to fit aspects of experimental data.

Ezperimental Data

Experimental results with polished quartzite at low nor-
mal stress are shown in Figure 2a. In these experiments the
slip speed is servocontrolled to be piecewise constant at a
range of rates with the normal stress held constant. Fric-
tion stress = is plotted against slip displacement as these
jumps in slip rate are imposed.

Features of these data that we note before choosing a spe-
cific form for a constitutive law are these (not all of which
are precisely observed in all experiments) [Dieterich, 19794;
Ruina, 1983]:
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1. When the slip rate jumps up, the friction stress jumps
an amount about proportional to the log of the ratio of the
postjump to prejump slip rates. Similarly, the friction stress
jumps down when the slip rate jumps down.

9. After the friction stress T jumps up at a step increase
in slip rate, it relaxes to a lower level. The amount of net
change in friction stress long after this jump is also about
proportional to the log of the ratio of the slip rates.

3. The transient in r that occurs at step changes in slip
rate has a characteristic distance that is independent of slip
rate.

The ultimate, posttransient level of friction stress at a
given slip rate is assumed to depend only on the slip rate,
and not the slip history. One can thus discuss a steady state
friction relation 7,,(V), even though such constant rate slip
might never occur on a fault surface. Since the friction stress
in Figure 2a ultimately drops after an increase in slip rate,
we have that dr,,/dV <0 for these experiments.

The Friction Law

For the transients shown in Figure 2a to be accurately
predicted with a state variable friction law would require at
least two state variables [Ruina, 1983]. For simplicity we
approximate the transient change as an exponential decay
so that a single state variable can be used.

The particular state variable friction law that we use
(equations (1a) and (1b) below) is very close to the law used
by Tse and Rice [1986], which s in turn a slight modification
of the law proposed by Ruina [1983] as an approximation to
that of Dieterich [1979a].

r=F(V,0)= o (uo+8+Aln (‘l,':)) (1a)

# —awo = -3 (0+ 8 (7) + o (757))
(1b)

from which it follows, as explained below, that

r= o (so+(4-B)n (%) 'Cl“(VZV,)) (10)

- STEP CHANGE IN NOMINAL SLIP RATE
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Fig. 2a. Experimental data showing friction stress versus slip dis-
placement at step changes in slip rate with fine-grained quartzite.
The slip rate is increased and decreased by factors of 10 and 100.
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Fig. 2b. Simulated data using the frictionlaw (1). The simulation
assumes slip rate is controlled to be piecewise constant through
a stiff (but not rigid) machine. Slip rate of 1 (log(V) = 0) corre-
sponds to V = V; = V; in our simulations (where Vg = Vo).

where ¢ is time and 4, B, C, d., Vi, and po are positive
material constants. When 4 = B, (1) reduces to the law
used by Tse and Rice [1986] and by Stuart [1988].

The 7,, in (1¢) is the steady state shear stress for sliding
at constant speed V; 7,, can be found from (1a) and (1) by
setting d6/dt = 0 in (13), solving for @ in terms of V, using
this result in (1a) and then defining 7., = 7.

With (1), both softening during accelerating slip and re-
healing when slip slows follow from transient changes in the
state variable 8, governed by the evolution equation (1b).
These are properties of many possible state variable fric-
tion laws [Ruina, 1983]. Predictions of the law (1), with
A=1.1, B=C=1, d.=1, and V;=1, are illustrated in Fig-
ures 2b and 2¢. Figures 2b and 2¢ show the friction stress
versus slip displacement and versus slip rate for a sequence
of step changes in slip rate. A feature of the friction law
(1) (Figures 2b and 2c), not supported by the experimental

FRICTION STRESS
8.0
1 A

4.0

1
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data of Figure 2a, is a change in dr,,/dV from negative to
positive with increasing V. This feature shows in Figure 2b
as the positive change in friction stress when the slip rate
is changed from 10 to 100 and as the positive slope of the
dash-dotted line for large slip rate (Figure 2c). This feature
has been incorporated in (1) by adding one term to Ruina’s
[1983] approximation to the law of Dieterich [1979a]. This
term includes two constants: C and V;. For nonzero C, V;
is related to the transition speed at which the steady state
friction stress ceases to decrease with slip rate (with the pa-
rameters we use the transition occurs at about 2V;). At low
speeds, (V €« V), dr,,/d(InV) is (A — B — C), and at high
speeds, (V » V), dr.,/d(InV) is (A — B).

Our first numerical experiments used C=0. In this
case, (1) reduces to the simple approximation of Dieterich’s
[19794] friction law presented by Ruina [1983] and studied
extensively by Gu et al. [1984). However, the simplifica-
tion C =0 (and B > A) causes a massless spring block to
eventually slide at an infinite rate, precluding numerical sim-
ulation of multiple earthquake cycles. These unbounded slip
rates were avoided in the spring block models of Rice and
Tse [1986] and Cao and Aki[1986] by the explicit inclusion
of inertia. The problem has also been avoided in numerical
continuum simulations by Mavko [1980, 1983, also unpub-
lished manuscript, 1984), Dieterich [19795, 1981], Tse and
Rice [1986], and Stuart [1988] by not strictly satisfying all
the friction and elasticity equations at high speeds.

Using B + C > A (velocity weakening at low speeds) al-
lows instability of steady sliding. Using A > B (velocity
strengthening at high speeds) prevents unbounded slip rates
in our simulations without the difficulties of including inertia
directly in the mechanics. A > B also can be motivated by
some experimental observations [e.g., Blanpied et al., 1987].

SINGLE-SPRING-BLOCK MODELS

The spatially dependent solutions that we present are best
understood with awareness of the dynamics of a simpler but
related model: a single rigid block loaded by constant rate
motion (Vo) at one end of a spring and retarded by state vari-
able friction. Gu et al. [1984), Ruina[1983)], Rice and Ruina
(1983], and others have studied the motions that rate-and-

y
3.00 -2.00 -1.00 0.00 1.00

T
2.00 3.00 4.00 5.00

LOG (VELDC)

Fig. 2¢. Another plot of the simulation of Figure 2b. Friction stress versus slip velocity is shown as well as the
steady state dependence of friction force on slip rate (dash-dotted curve).
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state friction laws predict for a spring block (spring slider)
model. The primary and initially surprising result is that
oscillations are predicted, even when inertia is neglected.
At large amplitude these oscillations are a description of ex-
perimentally observed stick slip and may be analogous to
earthquake cycles. The character of spring block dynamics
is largely governed by the relation of the spring stiffness X
(stress per unit stretch) to a critical spring stiffness Ky
which is determined by the friction law. In the one state
variable friction law used for the simulations presented here
(where dr.,/dV]y < 0) Kerie is given by

= (@) (244 )

(2a)

1 dr.,

Kcﬂ't = _Im

Spring Block and the Dimensionless Parameter D

A common approach to understanding of slip stability
is through comparison of an unloading frictional “stiffness”
Kcrit to an elastic stiffness K. This comparison, first done in
the context of rate and state dependent friction by Dieterich
[1979a], is facilitated by use of the dimensionless instability
parameter D:

D= Keris/K (2b)

One may regard D as a parameter to be varied from one
simulation to another. A particularly simple set of simula-
tions is that with constant driving speed. Steady block slip
at constant speed (equal to the driving speed) is a possible
motion for all values of D. But small perturbations from
this steady slip lead to three different behaviors depending
on the value of D. When D < 1 (Kcrit < K), a linearized
analysis predicts that steady sliding is stable and that small
(infinitesimal) perturbations decay back to steady sliding.
If D is close to 1, this approach is oscillatory. When D =1
(Kcrit = K), a linearized analysis predicts that steady slid-
ing is neutrally stable and that small perturbations lead to

3
3]

LOG19(Vmox/Vrmin)
7.00 2.C0
o

SUF

3 1 1

0.00

1.20 1.40

D= Kerit/ K

1.60

Fig. 3a. Results of spring block simulations using the friction law
(equations (1) or (8a) and (8b)). Plotted is the range of velocity
between fastest and slowest times during the limit cycle oscillation
appropriate for the given stiffiness parameter D = K,;¢/K. Note
the strong dependence of amplitude on stiffness.
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Fig. 3b. Oscillation period for the limit cycle motion (of Figure
3a) as a function of K.rit/ K.

constant amplitude oscillations. When D > 1 (Kcrit > K),
a linearized analysis predicts that steady sliding is unsta-
ble and that small perturbations from steady sliding grow
larger. This growth is oscillatory if D is close to 1.

The behavior just described corresponds to a Hopf bifur-
cation at D = 1 [Gu et al., 1984]. In summary, large D
(D > 1) corresponds to instability, and small D (D < 1)
corresponds to stability, at least in a linearized analysis of
steady sliding (see Appendix 1).

Using (1), with C = 0, Gu et al. [1984] have found ana-
lytic solutions for a massless spring block model in which fi-
nite amplitude periodic cycles exist at exactly D = 1. These
periodic motions are attained, say, by suddenly jumping the
velocity of the loaded end of the spring during steady slip.
Small jumps in the load point velocity lead to small oscilla-
tions, and larger jumps lead to larger oscillations. (Strictly,
these periodic motions are not limit cycles since they are
not unique in their neighborhoods.) For jumps of a criti-
cally large size, the resulting slip velocity becomes infinite
in finite time. When D is less than 1, small perturbations
from steady slip decay to steady slip, as predicted by the
linearized analysis discussed above. But even when D is
less than 1, sufficiently large perturbations were found to
lead to infinite velocity in finite time. When D is greater
than 1 perturbations of all sizes led to infinite velocities in
finite time. For the particular friction law used by Gu et al.
[1984), stable limit cycles never occur.

As previously discussed, the parameter values we use in
(1) prevent the unbounded velocities found by Gu et al.
[1984]. We find stable limit cycles in a spring block model
using (1) for all (linearly unstable) values of D (D > 1).

Figures 3a and 3b show the velocity range and period of
these spring block limit cycles using the friction parame-
ters given after (1) for a range of elastic stiffnesses. Figure
3a shows that when D is slightly above 1, the range of ve-
locities observed is very small (log(Vinaz/Vimin) is close to
zero). When D is much above 1, the velocity range is or-
ders of magnitude larger. The amplitudes predicted here
provide a rough lower bound on the velocity range in the
spatially varying solutions presented later, where many ef-
fective spring constants, and hence D values, are active at
once.
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Although this is not a consequence of the particular fric-
tion law that we use, it is possible to construct a one state
variable friction law which predicts limit cycles even when
steady sliding is linearly stable. That is, it is possible to
predict stick slip even when dr,,/dV > 0 and steady sliding
is stable. Also, using two state variables, Horowitz {19880]
has discussed some friction laws that predict the instability
of steady slip even with dr,,/dV > 0.

Other features of interest predicted by the spring block
model and state variable friction laws include period dou-
bling and (apparent) chaos (when two state variables are
used in the friction law) [Ruina, 1983; Gu et al., 1984].

SINE WAVE ELASTICITY SOLUTION

In our model the frictional surface is on the boundary of a
deformable elastic solid. The friction equations can only be
solved in conjunction with the relevant elasticity equations.
We solve the elasticity equations using Fourier superposition
of analytic solutions relating a sinusoidal shear traction on
the slip surface to displacement on the slip surface.

The Stiffness Function K(x)

All infinite planar fault models (with homogeneous-along-
strike, linear-elastic surroundings) have the following prop-
erty: sinusoidal shear traction on the fault causes an exactly
out-of-phase (180°) sinusoidal tangential displacement via a
(real-valued) effective spring constant K. This can be writ-
ten as follows. If

7(z) = sin(xz — @) (3a)
then
s(z) = - 22 (38)

where 7 is the shear traction on the fault, § is the slip dis-
placement, z is position along the fault, ¢ is the spatial
phase shift, and the stiffness K depends on the wave num-
ber x, geometry of the slab, and elastic constants [Rice and
Ruina, 1983]. That sinusoidal shear stress and slip displace-
ment are exactly out of phase for a large class of models
follows from application of the elastic reciprocal theorem to
two sinusoidal tractions with a phase difference of x/2 J.
Rice, personal communication, 1980).

Once one knows how a given traction distribution is com-
posed as a sum of sine waves, the corresponding slip §(z)
is determined by a real superposition. The function K (x)
(stiffness as a function of spatial frequency) fully character-
izes the geometry and material effects of the elastic slab.
The superposition of sine waves is equivalent to performing
a Fourier transform on §(z) (subtracting the boundary dis-
placement), multiplying by K(x) to find the transform of r
and then performing an inverse transform to find 7(z), all
of which is written

+ o0 400
7(z) = —2—1'- / e_“'K(n) / Pl (8(z) — Vot) dz | dx

(3¢)
Two-Dimensional Elastic Models

To determine K(x), one can use the solutions for a par-
ticular elastic model. Solutions for some two-dimensional
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elasticity (anti plane shear, plane stress, and plane strain)
models are given in (4), (5), and (6) below.

Rice and Ruina [1983] give K(x) for an anti plane shear
deformation (where one slab of Figure 15 goes into the plane
of the figure, while the other one comes out) as

K(x) = Sl
2 tanh (<[ H)

Marguerre [1931] presents the plane stress solution for a
sinusoidal traction on the boundary of an elastic slab. After

correcting some minor errors in his displacement function,
K(x) can be found as

_ GIR{T[Qs + (1= )]~ Qi - 4}
Ko = =TTy -aJ

[anti plane shear] (4)

[plane stress] (5)

where G = E/2(1+v) is the shear modulus, T = tanh(|x|H),
Q1 = |x|H(1 + v), and v is Poisson’s ratio.

If the isotropic elastic law is expressed in terms of G and
v for plane stress, one can find a corresponding plane strain
solution by substituting »/(1 — v) for v in a plane stress
solution. This substitution in (5) above gives K(«) for plane
strain as

K(k) = Gle|{T[Q:+ (1—-2v)/(1 —v)]— Qa2 — 4}
(@GT-TG-®) /(- -Q:

[plane strain] (6)

where Q3 is defined as Q; = |«k|H/(1 — v) and T is defined
as in (5).

One might find models (i.e., functions K(x)) that take
better account of the three dimensionality in Figure 1a than
any of the two-dimensional models ((4), (5) and (6)). But
in all cases, K = G/2H when x = 0 and increases mono-
tonically with «, becoming proportional to Gk as x — oo.
Within these constraints we do not expect that the details
of various elastic models have any effect on the variety of
solutions predicted by the fault model. For example, plots
of K(x) for anti plane shear (4) and for plane strain (6) with
v =0 are nearly identical (Figure 4a). In a few simulations

<
® r

STIFFNESS FUNCTIONS FOR ANTI—~PLANE SHEAR AND PLANE STRAIN

[w]
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Fig. 4a. Stiffness K(x) as a function of wave number « in the
elasticity solution for a slab of thickness 2H. The function is
shown both for antiplane shear (4), that used in most of the
simulations, and for plane strain (6) with v = 0.



HoROWITZ AND RUINA: SLIP PATTERNS IN A SPATIALLY HOMOGENBOUS FAULT MODZEL

{not shown here) we have compared fault slip motions based
on plane strain solution (6) (with ¥ = 0) to the anti plane
shear solution (4). We observed only slight differences in
the numerically calculated results and no difference in the
qualitative nature of the solutions. Because of the simplicity
of the analytic expression (4) as compared to (5) or (6), all
solutions presented here are based on the anti plane shear

K(x) (4).

Elastostatic Modes

As will be discussed later, we only consider slip that is
spatially periodic with period L. Thus only discrete wave
numbers x, appear in the Fourier superposition, and the
Fourier transform is effectively a Fourier series. We define a
stiffness K, for a mode n by

2nx
K=K (27) (7)
[e.-g., Ko = K(0), K3 = K(%)). Thus, for spatially pe-
riodic solutions the fault elasticity is fully characterized by
the set of numbers Ka (n =0,1,2,...). The stiffness curves
in Figure 4b, one for each n, show how Kn/Ko depends on
L/Hx for anti plane shear elasticity solutions (4).

Equivalence of Nonlocal Spring Block Model

Once the slip surface is discretized for numerical purposes,
the elasticity could alternatively be defined by an appropri-
ate set of springs connecting every node to every other node.
Thus one may think of the surface points as interacting with
each other in a nonlocal manner which is mediated by the
two- (or three-) dimensional elastic material. Although our
model is in this sense a spring block model we have paid

PARAMETER PLANE
g - KEY: SOLUTION TYPE
%3] * 8 — Aperiothc Modulanan
+ & _ Perodic Moduiation |
e * —  No Moduianon ;
o "0 ~ Discussed & Dispiayed
o (see tigure N) i
<+ Solid symdols are
better determined

i
than open symbois ;
n=20

n=15

L/(Hr)

n=10

0.0

1.0 1.1 1.2 1.3 1.4 15
Kerit/ Ko (points).  Kp / Kqg (curves)

Fig. 4b. Elasticity and parameter plane. Curves show the elas-
ticity relationship between nondimensionalized periodic length
L/(H~), a nondimensional stiffness K./Ko, and mode number
n. Each curve corresponds to a single mode number n. These
curves follow from the antiplane shear curves of Figure 4a. Plot-
ted as points, using the same numerical values on the axis, are
L/Hx and D for several model calculations. The shapes of the
amplitude envelope modulations for simulations at the given pa-
rameter values are keyed in the box. The solutions displayed in
subsequent figures are circled and labeled with their figure num-
bers. The relation of the elasticity curves to the parameter points
is discussed in the text.

10,205

attention to using a sufficient number of stiffly connected
nodes that we accurately simulate an elastic continuum.

Inertia Is Neglected

Calculations are simplified considerably by neglecting in-
ertia. The effect of elastodynamic radiation could be ap-
proximated by the addition of a linear viscous term to the
friction law (1a). This viscous term, proposed by Burridge
and Knopoff [1967], incorporates inertia exactly for an elas-
tic half-space if its planar boundary does not deform. We
have used such a linear viscous term in a few simulations
(not shown here). Its effect, roughly like that of the C term
in (1), is to damp large-amplitude motions.

Stability of Elastostatic Modes: Ko and Kerit

An important feature of the Ky is their relation to Kepit,
where K. is the critical stiffness (2a) for unstable steady
sliding in a linearized analysis. But, as with the single spring
block, it is desirable to have one parameter to characterize
the stability of the system. Since K, increases with n, the
greatest system instability is associated with Ko, and it is
natural to use the parameter

D= Kcﬂ't/KO

The values of two parameters D and L/H~, for the simula-
tions presented here, are also plotted in Figure 4b as points
(using the same numerical values on the axis for D as for
Kn/Ko).

To find the approximate value of Kerit/ Kn (the degree of
instability for mode n in a given simulation), use Figure 45
as follows: read off D for that simulation, read off Kn/Ko
(from the nth curve) at the L/Hx value of the simulation,
then find Kevit/Ka = D/(Ka/Ko). Values of Kevit/Kn
greater than 1 mean that the nth mode is linearly unstable,
while values less than 1 are linearly stable. This means
that one finds the unstable modes visually from Figure 4b as
those whose stiffness curves are to the left of the simulation
point. The stable modes are those whose stiffness curves
are to the right of the simulation point. For example, the
solid square labeled with 10 inside a circle at L/(H~x) = 20
and D = 1.125 has seven linearly unstable modes. The
K.vit/ Ky ratios for simulation 10 are Kerie/Ko = 1.125,
Kerit/ K1 = 1.120, Keit/Ka = 1.109, ..., Kerie/ Ko = 1.005,
K.rit/ K7 = 0.967, etc.

DiscussION OF GOVERNING EQUATIONS

Here we summarize the governing equations in a nondi-
mensional form; they are

#=60+In(V) (8a)

6=-V [é+Bln(V)+c‘1n(1i’V>] (8b)
+ o0 + 00
%=_§1;/e-"“’f{(k) /e""‘ (V-Ya) dz | di (8¢c)

with K (&) = Ko|&|/tanh|&k|. Equations (8a) and (8b) are
the friction law from (1a) and (1b). Equation (8¢) is the time
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derivative of (3¢), the relation between slip displacement and
shear traction as governed by the elasticity equations.

The dependent variables #+ = (7/(0A) — o/ A), 6 = /A,
and V = V/V, are functions of the independent variables
t = Vit/d. and & = z/H. The quantity # = Hx is a
dummy transform variable. Parameters (with the values
that we used in the simulations) are Vo = Vo/Ve =1, B =
B/A =0.909, C = C/A = 0.909, and Ko = Gd./(20AH),
which was varied.

It should be noted [Tse and Rice, 1986] that since uo does
not appear in the governing equations (8), the predicted mo-
tions are independent of the background friction coefficient.
Thus the solutions found here apply equally to “high stress”
and “low stress” faults.

Symmetry of Governing Equations

The governing equations have symmetries that should be
noted for two reasons. First of all, the extent to which the
solutions have the same symmetries as the governing equa-
tions is interesting. Second, every solution of the governing
equations is related to a family of solutions through the sym-
metries of the governing equations.

The model is spatially homogeneous and has no explicit
dependence on time so the equations are invariant to time
and space translation. That is, replacing (#,%) with (z —
2o, — &o), where Zo and #, are any real constants, does not
alter the governing equations. So any solution generates a
family of solutions by replacing (,%) with (2 — 2o, — &),
where #o and £, parameterize the family. For reasons that
one can infer by looking at Figure 1b from the front and back
of the page, the equations are also invariant to reflection in
space. That is —£ can be substituted for # without altering
the equations, and a solution reflected in space is a new
solution.

Periodic Boundary Conditions

Numerical solution forces the use of a finite spatial domain
for the fault. In order to eliminate end effects we have used
periodic boundary conditions, with period L. In the region
over which we solve, the leftmost and rightmost points are
tied together exactly as any othem neighboring points any-
where else on the fault. Periodic solutions are still solutions
to the original infinite problem, but there are presumably
spatially nonperiodic solutions to the infinite problem that
cannot be found with the periodic restriction. Also, solu-
tions to the infinite problem found using the periodic con-
straint might change their character in time if subject to
small perturbations and no periodic constraint.

The periodic boundary condition reduces the Fourier
transform of (8¢) to a Fourier series. The continuous trans-
form variable i is replaced with the sequence of wave num-
bers kn = 2n(xH/L). The important translation (in space
and time) and reflection (in space) invariance of the original
equations is preserved by the periodic boundary condition.

The periodic boundary condition may be regarded as a
simplification that allows us to do a finite domain problem
with relatively little difficulty, or an artifact that the numer-
ical method imposes on our infinite problem. For better or
worse, L (or the dimensionless ratio L/Hx) is a parameter
that affects the solutions. One expects that for large L/Hx
the qualitative features of the solutions are not distinguish-
able from the infinite problem, L/Hx — oo.
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Parameters Varied in the Calculations

The remainder of this paper discusses solutions of (8) with
periodic boundary conditions. The two parameters that we
systematically vary are K, (equivalent to varying any of d.,
o, G, H, or a proportional change in all of 4, B, and C) and
L/Hx.

Instead of reporting the value of K, in our discussion we
report the value of the dimensionless stability parameter D
which we have generalized from (2b) as D = K.t/ Ko.

D= ——= (9a)
Ko K,
Kepit 20H< CcVy )

D= =222 (A_B_C+ 22 9b
Ko - Ga, \ATB-CHyoy) OB

Characteristic Lengths

Equation (9b) shows that the instability parameter D can
also be viewed as proportional to the ratio of a characteristic
length in the elastic solid H to a characteristic length found
from the friction law and the elastic constants (all terms
besides H in (9b)). In very rough terms one might think of
this latter length as the size of a breakdown zone in a shear
fracture model [Tse and Rice, 1986].

SOLUTIONS TO THE LINEARIZED EQUATIONS

Before proceeding to the numerical solutions of the non-
linear continuum problem we first discuss what is known or
might be surmised about them from a linearized continuum
analysis.

In the problem considered here, steady slip at the driving
rate is a solution of the governing equations (i.e., V(z,t) =
Vo, é(z,t) = 0). One can consider small perturbations to
this solution. The linearized analysis of Rice and Ruina
(1983] is then applicable. In the linearized solutions, spatial
perturbations can again be constructed from a sum of sine
wave perturbations each with wave number x. But unlike
the nonlinear problem that we consider here, in the linear
problem each wavelength perturbation grows or dies in time
independently of other wavelengths. Each wavelength per-
turbation behaves exactly like a spring block model with the
appropriate stiffness K(«). If the slab is compliant enough,
there is a critical wave number xc,i¢ which has the asso-
ciated stiffness Kepie = K(kerie). All waves of perturba-
tion from steady sliding with smaller wave number than
this critical wave (greater wavelength) grow exponentially
in time. The longer the wavelength, the faster the expo-
nential growth. Waves with wave number greater than K,
(smaller wavelength) decay toward zero amplitude. Pertur-
bations with the critical wave number x = x.pi persist.
They manifest themselves as oscillating standing waves of
arbitrary (in both space and time) phase. Superposition of
two such waves of appropriate relative phase leads to prop-
agating creep waves. Both right going and left going creep
waves are solutions. The work presented here was in fact
originally motivated by a desire to find a nonlinear general-
ization of these creep wave solutions.

In the linearized solutions, longer-wavelength perturba-
tions grow exponentially faster than shorter-wavelength per-
turbations. So a random initial condition, which contains all
wavelengths, will lead to solutions which are eventually dom-
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inated by homogeneous (x=0, wavelength=00, or mode 0)
slip motion. This property of the linear solution might sug-
gest that eventually all motions in our nonlinear model will
reduce to homogeneous motions, with all points on the fault
moving in unison. This is not what we observe, however, in
the numerical simulations described below.

NONLINEAR SINGLE SRING BLOCK SOLUTIONS
T0 THE CONTINUUM MODEL

The nonlinear spring block solutions discussed previously
are directly relevant to the elastic slab model since spring
block solutions are solutions to the elastic slab equations
(8). However, they are only precisely applicable when the
initial conditions are spatially homogeneous.

One can also use the single spring block solutions to specu-
late about the behavior or the continuum problem for nonho-
mogeneous initial conditions. From the exponential growth
in the linearized continuum solutions we were led to the ten-
tative guess that spatially homogeneous motion (mode 0)
would eventually dominate the motion for any initial con-
ditions. But a contrasting guess can be constructed from
the nonlinear oscillatory spring block solutions. One might
imagine that each spatial mode behaves as a single spring
block and is decoupled from every other mode. The fault
motion thus predicted is a sum of spatial sinelike waves of
various wavelengths each oscillating at its own frequency
(in a possibly nonsinusoidal manner). The resulting motion
would appear complicated in space-time though spikes in
the Fourier transform in time (or space-time) would reveal
its underlying simplicity.

NUMERICAL METHOD

The details and general principles involved in our time
stepping numerical solution are explained in Appendix 2.

Node Spacing and the Continuum Approzimation

We assume that the continuum equations (8) have solu-
tions that are smooth (have no discontinuities in value and
slope) and demand that the numerical solutions should show
this smoothness. A criterion for achieving this smoothness is
that node spacing be close enough so that all computed vari-
ables (e.g., stress and slip rate) and their spatial derivatives
(as calculated with first differences) vary much less from one
node to another than their total variation over all nodes.

We have not found a formula for choosing an adequately
close nodal spacing to meet this criterion. Clearly, a nec-
essary criterion is that the nodal spacing be such that
Kpny2 > Kerit (i.e., that the stiffness associated with mo-
tion between neighboring nodes be greater than the criti-
cal stiffness) since otherwise one node could exhibit spring
block dynamics out of step with the motions of its immedi-
ate neighbor. Thus Tse and Rice [1986] claimed that if the
characteristic length in the friction law d. is reduced from
one simulation to the next, then accurate continuum mod-
eling requires that node spacing be proportionally reduced.
For a fixed physical model this corresponds to proportion-
ally increasing the number of nodes with 1/d., so as to keep
Kny3 > Keris (since Kcris is proportional to 1/d. and Kny,
is proportional to N). Tse and Rice [1986] also present a
fracture mechanics argument that the size of a breakdown
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zone would scale with the distance d. for equilibrium crack
growth and a rate-independent friction law. We have found
from our numerical solutions that nodal space scaling based
on the arguments above are not adequate. More nodes are
required to smoothly represent the shear fracture or disloca-
tionlike stress concentrations that arise in the simulations,
perhaps because the effective stress drop in the propagating
events (=fractures) is also a function of d.. The node close-
ness required for relatively small node-to-node variation in
the values of variables was found to be a very strongly in-
creasing function of D = Kcrit/ Ko, going from 32 to 1024
when D changed from 1.1 to 1.6 for a fixed L/Hx. The
numerical results that we show do have small node-to-node
variations and thus seem to properly capture the continuum
(N — o0) solutions.

The time steps, adjusted as described in Appendix 2, also
decrease in size with increased D, since slip events then in-
volve faster slip rates and greater accelerations.

NUMERICAL SOLUTIONS

The numerically predicted stress and motion (7(z,t),
V(z,t)) depend on model parameter values and initial con-
ditions. The parameters varied in the simulations here are
D = Kevit/ Ko (keeping B and € constant) and L/Hx, the
axes for the points in Figure 4b. Initial conditions were ei-
ther those that we thought might generate steady propagat-
ing creep waves or small random perturbations from steady
sliding. Solutions were continued in time until the long-term
nature of the solution was determined or until cost concerns
intervened. The qualitative nature of the solution at long
times was only once seen to depend on initial conditions.
The two points on Figure 4b halfway between the numbered
points (8 and 9) have different solution types following from
two different initial conditions. Evidently, for some param-
eter values the phase space of our solutions seems to have
more than one region of attraction.

Small- Amplitude Nearly Spring Block Motion

Simple, nearly spring block, fault motion is shown in Fig-
ures 5a-5d for fault motion very near D = 1. Wherever D
is less than 1, we find the fault asymptotically tends toward
a stable solution of steady sliding at the far-field driving
velocity Vp. This is exemplified by the simulations labeled
with a circled star as “5ab” just to the left of the L/Hx
axis at L/Hx = 12 on the parameter plane of Figure 4b.
Figure 5a shows the time history of the slip velocity at a
particular point along the fault when D is just less than 1.
In Figure 5a, the slip rate is oscillating at one node with
the amplitude of oscillation decaying approximately expo-
nentially in time toward the ultimate steady sliding solu-
tion. For simulations using other parameters (below) the
amplitude envelopes of such one node traces show different
shapes. Figure 5b shows the ultimate spatially homogeneous
slip from the solution in Figure 5a. Slip is displayed as a
function of position along the fault at a sequence of times.
Slip displacement monotonically increases in time (no back
slip) in all of our simulations. Hence the sequence of dis-
placement curves never cross each other. In similar figures
below, the time intervals between curves may vary as slip
progresses allowing the shape of the slip distribution to be
seen during both rapid and slow slip.
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Fig. 5a. Solutions near the mode 0 oscillation boundary. L/H» = 12.0,

D = Kcrit/Ko =~ 1. Amplitude

envelope for a one node trace at D = 0.99 showing velocity oscillations decaying with time. Many oscillations are
compressed together in order to show the shape of the amplitude envelope.

When D is slightly over 1 (Figures 5¢ and 5d), we find
the entire fault executing sustained “spring block” (k = 0)
oscillations. Figure 5¢ displays friction stress as a function
of time and position for very small, nearly homogeneous os-
cillations. The surface plot and the contour plot underneath
present the same results two different ways. A slight amount
of nonhomogeneous spatial structure is found in this solu-
tion, visible as a closed narrow contour in Figure 5¢ and is
a remnant of a heterogeneous initial condition.

Amplitude Envelopes

The above solutions all lead to a constant amplitude en-
velope in a long time plot of slip velocity at one node versus
time. With other parameter values we find other shapes
for the amplitude envelope. We have catalogued our so-
lutions by the shape of these amplitude envelopes in the
legend of Figure 4b as constant (no modulation), periodic,
or aperiodic. A constant amplitude envelope corresponds
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100.0
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Fig. 8b. Slip displacement versus position at a sequence of times showing spatial mode 0 deformation at an

essentially constant slip rate. D = 0.99.
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Fig. 6¢. Perspective plot showing small amplitude mode 0 oscillations. D = 1.01.

to a periodic solution of the governing equations. A pe-
riodically modulated amplitude envelope corresponds to a
quasi-periodic (or possibly periodic with a longer period)
solution. And an apparently aperiodic amplitude envelope
corresponds to a chaotic (or possibly quasi-periodic with
multiple period) solution.

Mode 0 Solutions

If the initial condition is pure mode 0 (spatially homoge-
neous), then the linearized theory of Rice and Ruina [1983]
predicts a pure mode 0 solution for all time. Symmetry re-
quires that in our nonlinear problem, no matter how large D
is, we will also obtain a spatially homogeneous solution. But
numerical simulations indicate that for D somewhat greater
than 1 spatial homogeneity in the oscillatory mode 0 mo-
tion is unstable with respect to small spatial perturbations.

LOG (VELOC) AT ONE NODE
0.000

200.0 300.0 400.0 500.0

TIME

'IOIO.O

Fig. 6d. Onenode trace for D = 1.01 showing velocity oscillations
maintained with time.

That is, if a little bit of spatial noise is added to the initial
conditions, or even if one node is perturbed, the solution will
evolve into a nonhomogeneous solution of a type depending
on its parameter values.

Standing Waves and Traveling Waves

We know of two persistent solutions to the linearized equa-
tions of our model: standing wavesand traveling waves. The
homogeneous (mode 0) oscillations described above are ex-
amples of standing waves. Both standing waves and creep
waves seem to have corresponding fully nonlinear solutions.
These special solutions seem to require precise initial condi-
tions.

A mode 1 creep wave solution is shown in Figure 6. This
solution was found by performing a sequence of simulations.
An analytically constructed linearized creep-wave of Rice
and Ruina [1983] was used as an initial condition for a nu-
merical nonlinear simulation with nonphysical XK () values
(K(" = "wuvc) < Kevie and K(K' < "wnvc) > Kcril) which
let the wave grow in size without substantially changing
shape. A wave grown in this manner was then used as an
initial condition for the model with K(x) like those in the
other simulations presented here (where K increases with x).
When properly started, the wave will traverse the length of
the fault many times. However, in all of our continuum sim-
ulations with sufficiently large N, the creep wave transforms
to another solution type after a large number of cycles. Us-
ing just eight nodes, we once did obtain a steady creep wave,
but with an increase in the number of nodes (and the quality
of the continuum approximation) the wave changed shape.
We think that creep waves are a solution of the continuum
system but are unstable to slight perturbations.

Though steady creep waves are interesting in their own
right, they may not be of much geophysical significance since
they require precise initial conditions and eventually change
their form if there is even slight deviation from these condi-
tions.
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Fig. 6. Creep wave. L/Hx = 4.5, D = 1.125. One of the special solutions possibly existing anywhere on the
parameter plane. After some time this motion changed into the motion shown in Figure 7.

Periodic Amplitude Envelopes

In contrast to the solutions just discussed we have found
motions which seem stable in that they seem to maintain
their qualitative nature forever. A relatively simple exam-
ple of such a solution is shown in Figures 7a-7Tc¢ (note the
difference in time scale between Figure 7a and Figures 7}
and 7¢). The solution changes shape slightly from cycle
to cycle. Over the span of about 100 cycles, the region of
fastest slip moves from one point on the fault (Figure 7b)
to another (Figure 7¢) and back again. Thus the slip ve-
locity amplitude envelope is periodic with a period of about
100 spring-block-like cycles (Figure 7a). The unstable creep
wave of Figure 6 is also from this point in the parameter
plane.

1.00
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-0.50

LOG (VELOC) ; NODE NUMBER 25
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= .00
o

1 T T T
6ngo. 0 egoen. o 10000.0 12000.0
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T T
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Fig. 7a. Periodic amplitude envelope for velocity versus time at
one node. The period is about 1000 time units. The solution has
the simple spatial structure shown in Figures 7b and 7¢c. L/H~x =
4.5, D = 1.125.

Steadily Drifting Event Center

Figures 8a-8¢ show another relatively simple solution with
a periodic amplitude envelope. However, in contrast with
Figures 7, the solution of Figures 8 shows an event that
moves leftward from cycle to cycle. This displacement, com-
bined with the periodic boundary conditions (by which the
extension of the fault to the left is the right end of the fault),
leads to the periodic amplitude envelope observed in Figure
8c. The combination results in a solution that is periodic in
space-time (i.e., f(z,t) = f(z + zo,t + o), where zo and ¢,
are constant and (2o, %) is the period in space-time). This
space-time periodicity is another example of a type of evo-
lution found in this system. Note that the plot in Figure 8¢
is not exactly periodic (e.g., the details of the three small
time scale spikes are different in the two amplitude envelope
peaks) since the drift per cycle is not an integer fraction of
the fault length. Thus the solution is quasi-periodic in time.

Complez Events

Figure 9 shows an example of a complex global event. This
type of solution has the whole fault moving quickly at about
the same point in time but with strong events at several dif-
ferent positions and slightly different times. The amplitude
envelope of Figure 9¢ is apparently aperiodic. This solution
evolves in an irregular way. The patterns of shading in the
long-duration serial plot of Figure 9a, show the loci of strong
events changing with time. It must be reemphasized, how-
ever, that our simulations are on a spatially homogeneous
fault. No strong or weak patches are built into the material
properties along the fault, and hence event centers occur
where they do only because of the fault’s prior history.

Figure 10 shows another complex simulation. Motion at
a given point is still a modulated oscillation, but the shape
and amplitude of the oscillation vary from point to point.
In the time period of Figure 104, node 12 moves at nearly a
constant rate. Near the start time of Figure 10a a creep-like
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DiscussioN
The dependence of solution type on parameter values is

summarized by the key labeling the points on the parameter
ness of the various mode numbers determines the number of

spatially sinusoidal modes that are linearly unstable for the

plane of Figure 4b. The relation of a given point to the stiff-
given parameter values.

Number of Active Spatial Modes

This is slightly greater than
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Fig. 7b. Perspective view of the solution of Figure 7a during one part of the amplitude modulation.

to the apparently aperiodic amplitude envelope in Figure
105. From Figure 10a the velocity fluctuates over roughly

1.2-1.4 orders of magnitude.
the rough lower bound of 1 order of magnitude provided

event propagates from node 60 to node 40 where fast slip is
then triggered. Like the solution of Figure 9, the shape of
this solution also slowly changes over many cycles leading
by the single spring block velocity range data of Figure 3a.
Complex solutions of this type have been found only at high
values of L/Hx.
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amplitude envelope. Over the course of one amplitude

Figure 7b to that

Fig. 7c¢ The solution of Figure 7a at another part of the
envelope cycle the solution changes from that shown in
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Fig. 8a. Simple spatial structure, periodic in space-time.
L/Hx = 4.5, D = 1.375. Slip displacement versus position at
& sequence of times is shown. One simple event center (region of
high-speed slip) drifts from cycle to cycle with a constant speed.
The whole fault is quiet for a long time (dark black bands) un-
til faster motion begins. Two “creep wave”-like events spread
out (with different propagation velocities) from a nucleation site
(initially at about node 250 or 80). Where they meet, the high-
velocity event occurs. The time interval between individual lines
is constant (but not an integer fraction of the period of the cycle.)

At a typical instant in time, long after transients from
the initial conditions have washed out, the fully nonlinear
solutions have about the same number of spatial maxima or
minima in velocity or slip displacement as they have linearly
unstable modes. For the simulations reported here, Figure
7 has one maximum and modes 0 and 1 linearly unstable;

SLIP
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Figure 8 also has one maximum but modes 0, 1, and 2 un-
stable; Figure 9 has about eight maxima and modes 0-11
unstable; and Figure 10 has about five maxima and modes
0-6 unstable. So it appears that all linearly unstable modes
(wavelengths) are active (have nonnegligible Fourier compo-
nents) in the general solution of this problem.

Continuing our earlier speculations based on single spring
block solutions, perhaps the strength of a spatial mode’s ac-
tivity may be correlated with K .ii/Kn for that mode (see
Figure 3). Modes with a large K.rit/Kn ratio (very unsta-
ble) seem to appear with larger amplitudes than modes with
a small ratio (slightly unstable). This would be predicted
if spatial modes behaved as fully uncoupled single spring
blocks. If many spatial modes had roughly equal degree of
linear instability, then they would have roughly equal spec-
tral components in the nonlinear solution. Figure 4b shows
that at high values of L/ Hx, many low wave number (long
wavelength) modes have K.vit/ Ky values nearly equal to
D. Thus, if the spatial structure is in fact reasonably well
described by the linearly unstable modes, these low wave
number modes would appear in solutions with amplitudes
approximately equal to that of mode 0. On the other hand,
the solutions shown in Figures 7, 8, and 9 clearly indicate
coupling between modes since all parts of the fault move in
a nearly coordinated motion. However, a possible explana-
tion of Figure 10 is that the competition (beating) between
nearly independent modes results in the visual complexity
observed.

Large Values of D

A friction law in which friction depends on the instanta-
neous rate of slip is obtained by the singular limit d. — 0
in which case r = r,,, and 7 is governed entirely by (1¢).

As expected from spring block simulations, we find that as
D increases, the magnitude of velocity peaks increases (for

Fig. 8b. A perspective plot of the events of Figure 8a. The fault is quiet (although slowly slipping) for long times

between moments of activity.
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Fig. 8c. Velocity at node 25 is plotted for 62 cycles of the motion
shown in Figures 8a and 8b. The periodic modulation of the
amplitude envelope is caused by the event center moving past
node 25. Note that the velocity range for the event center (high
peaks) is about 1 order of magnitude higher than for the rest of
the fault.
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all initial conditions). Seismic emissions (nodal velocities
reaching very high values) would occur in this model if D
were high enough. For high D an accurate model clearly
would require the inclusion of inertia (neglected here).

Additionally, as D increases, the spatial gradient of ve-
locity increases in the region between quickly slipping and
slowly slipping regions on the fault. The effect of D on both
velocity gradients and peak magnitudes requires a great in-
crease the number of nodes in order to provide an appro-
priately smooth solution. Thus D strongly affects the cost
of computation. Computation time goes from minutes to
hours with a change in D from 1.1 to 1.5.

The parameter values used in our simulations were not
chosen for their geophysical significance. Accurate geo-
physical modeling may require much greater values for D
than used in any of the simulations here. For some pur-
poses, D = Kerit/ Ko is reasonably approximated by'f(g" =
oHA/(Gd.), the value it would have if we had used C =0
and B = 24 in the friction law. It is the (possibly) large ra-
tio of plate thickness H to friction transient length d. that,
compared to ¢/G, drives D to (possibly) large values. Once
we have assumed that B is greater than A (so dr,,/dV <0),
it is the indeterminacy of the length d. that seems to be
of greatest importance in determining the qualitative na-
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Fig. 9a. Complex global event. L/Hx = 20.0, D = 1.375. Slip displacement versus position is shown for a large
number of times. At a given point on the fault repeated slip, with a period about cqual to that for a spring block
with the same D (= 1.375), is followed by necar quiescence. The details of the slip distribution only change slightly

in each cycle so the motion appears nearly periodic over a time period of a few cycles.
Many event centers (regions of high slip speed) are active
as light colored regions (high slip speed gives sparse line

slip distribution change drastically over many cycles.

during the same overall cycle. Event centers are visible

But the details of the

spacing and light color) surrounded by darker regions with (barely visible) converging “creep waves” (see Figure
8b for clear examples of “event centers” and “creep waves”). The wider light regions are “creep wave” nucleation
sites. The long-term evolution of the solution is complex. Notice that event centers migrate different amounts
from event to event, are created where none previously existed, become inactive, and merge with others over the

duration of this figure.
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Fig. 9b. A perspective view of the first few cycles of Figure 9a. The character is similar to Figure 8 in that there
are long times of relative quiet followed by periods of activity. Close examination reveals a change of the activity
patterns in just these three cycles: the two events centered around node 250 or so in the first cycle merge into a
broad single event at the second cycle that becomes narrower at the third cycle.

ture of the solution. In the extreme one might let d. — 0,
thus replacing the state variable friction law with a instan-
taneous velocity-dependent friction law. This is equivalent
to D — oo, however, and the nature of solutions at this
extreme is unstudied. One would hope for an asymptotic
theory to supersede the full calculations in that case. On
the other hand, it is possible that high values of D affect the
dynamics of fault systems as strongly as high values of the
Reynolds number affects the dynamics of fluid flow. Thus
understanding the dynamics of high D fault slip may be as
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Fig. 9c. The aperiodic amplitude envelope slip velocity versus
time at node 25 for the duration of Figure 8a. The high-speed
peaks at around 550 and 780 time units represent an event center
migrating past node 25. The velocity range for these event centers
is about 2 orders of magnitude higher than the surrounding fault.

difficult a problem as understanding high Reynolds number
(turbulent) fluid flow. The geophysical importance of these
problems depends on the size of a field relevant value for d..

Implications for Prediction

This model, as well as any other model which is expressed
as a system of differential equations, is inherently determin-
istic. But since one of the primary features of our fault
model is its ability to produce complex (perhaps chaotic) so-
lutions, one could ask whether earthquake prediction is pos-
sible in principle since chaotic systems are notorious for their
sensitive dependence on initial conditions (e.g., Thompson
and Stewart [1987] or Moon [1987)).

Predictions of the long-term future behavior of the fault
system will probably depend semsitively on the measured
condition of the fault. However, for a useful prediction, one
may only care about the next cycle of activity. A measure-
ment of the fault state (with some finite precision) might
lead to approximate predictions about the subsequent mo-
tions of the fault. However, it is not clear whether the time
scale for information loss is the same as the time scale for a
large earthquake cycle. Perhaps, instead, the time scale for
information loss corresponds to the time scale of microseis-
mic events. This latter contingency seems especially possible
if an appropriate D is large. Like meteorological forecasts,
near term prediction based on a dynamical model might
be fairly accurate at some time scale with longer-term pre-
dictions correspondingly less accurate. Horowitz [1988a) ad-
dresses related issues using some of the techniques of chaotic
dynamics.

Low-Speed Slip Between Events

One property of the friction law used here is that a fault
system continues to slide very slowly during the intervals
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Fig. 10a. A perspective plot of a few cycles from a com

at node 10 only crosses the 0 contour). Also, it has multi
that are isolated from one another in both space and tim
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plex solution. L/H~ = 20, D = 1.125
This solution has a region (near node 12) that slips at nearly the driving velocity (a line parallel to the time axis

ple event centers (at about nodes 21, 35, 45, 81, and 101)
¢. Crecplike waves propagate along certain regions of the

fault (e.g., a creeplike wave moves from about node 110 wrapping around to about node 10 and then subsides).

between activity. Whether lack of field observation of slip
in apparently locked regions represents a failure in the par-
ticular friction law being used, or a detection threshold, or
both, is a somewhat academic question. It is possible to
construct friction laws with similar structure to (1) that do
make sense at zero slip rate and that would probably predict
similar dynamical behavior to that presented here.

Accelerating Slip and Creep Events

In the complex motions reported here, accelerating slip or
a propagating creep event always precedes rapid slip. Prop-
agating creep events commonly appear as parts of solutions,
(e.g., Figure 9a). Events propagate in either direction at a
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Fig. 105, The aperiodic amplitude envelope for velocity of slip
fluctuations for the same simulation as Figure 10a. Note the
longer time scale.

rate that depends on parameter values and also on the state
of the fault before the event. The greatest slip rates are
found to occur when and where two creep events collide. We
do not know the relation between these propagating creep
events and the steady but unstable creep waves of Figure 6.

Heterogeneities Not Needed to Localize Events

The complicated solutions that we have found in our sim-
ple model come from the dynamics of the system. Only
unrealistically symmetrical initial conditions give simple so-
lutions. The complicated, perhaps chaotic [Horowitz 1988a),
solutions indicate that earthquake patterns may be as nat-
ural to fault slip as (chaotic) turbulence is to fluid flow.
While the geometry and boundary conditions of our model
are clearly oversimplified, the results show that an event
need not be located at some special location along strike.
We also demonstrate repetitive events whose spatial prox-
imity might be misinterpreted as occurring at a strong patch
since, in this model, locations of repetitive events are not
mechanically distinct from neighboring locations.

Heterogeneous Properties Inhibit Complez Solutions?

In the calculations of Mavko (1980, 1983, also unpublished
manuscript, 1984], Tse and Rice [1986], and Stuart [1988),
strong heterogeneity (with depth) was assumed for the fault
properties. In all of these solutions the final character of
seismicity seems to be a stable limit cycle with fairly sim-
ple spatial structure. Comparing those simulations with the
simulations here, it seems that spatial complexity in mo-
tion might be inhibited by heterogeneity in properties and
encouraged by smoothness in properties. It seems possi-
ble that the spatial symmetry of our model contributes to



10,296

the complexity of the solutions. Thus it may be that the
heterogeneity of fault structure does not always make slip
dynamics complex, but in some ways contributes to keeping
earthquake slip patterns simple, possibly suppressing results
of the type shown here.

SUMMARY

A variety of spatially and temporally varying solutions are
found from a simple homogeneous model. Phenomena which
may be considered geophysically suggestive include creep
waves and an overall complexity of fault activity. In our
simulated earthquake process, we see event centers which
seem to behave something like what one may observationally
call asperities or strong patches. But unlike the common
picture of large-scale asperities these centers are sometimes
seen to be created, to migrate, and to disappear over many
cycles.

APPENDIX 1: SOME TERMINOLOGY

The word instability is used in the contexts of dynamical
systems and earthquake mechanics to have various different
meanings many of which are relevant to the discussion here.

A solution to a set of differential equations is said to be
(asymptotically) stable if, subsequent to any small perturba-
tion from that solution, the solution is asymptotically reap-
proached. Otherwise the solution is unstable. Most often
this definition is applied to solutions that are constant in
time, such as constant rate slip in a spring block model. In
these cases the stability analysis generally involves study of
solutions to autonomous linear differential equations. Such
analysis has been performed by, e.g., Rice and Ruina [1983)
for steady slip solutions using rate and state friction laws
and is discussed in the text.

However, a periodic or quasi-periodic solution can also be
asymptotically stable or unstable depending on whether or
not all small perturbations asymptotically reapproach that
solution. Stability analysis of nonconstant solutions is gen-
erally much more difficult, and few results are known about
state variable frictional systems. Periodic motions that are
stable are called stable limit cycles. Most classical models of
stick slip are descriptions of stable limit cycles. An unstable
periodic motion is called an unstable limit cycle only if there
are no other periodic motions that are infinitesimally close.

The definition of asymptotic stability just presented is
equivalent to linear stability except in the special cases
where linear stability analysis is indeterminate.

A model or system of differential equations is said to be
structurally unstable if some qualitative feature it predicts
(e-g., the existence or nonexistence of limit cycles) would
disappear if the governing equations were changed infinites-
imally.

In contrast to the dynamical uses of instability just dis-
cussed, motion that is observed when sliding is unsteady
(e.g., stick slip) is often loosely called “unstable motion.”
However such motion can itself be asymptotically stable if
it persists after small perturbations.

In common usage, a sudden motion or event is termed an
instability. In some earthquake models this definition can
be made precise: instability is when the ratio of the slip
rate to the controlled boundary rate becomes infinite. This
infinite ratio generally coincides with a point in the defor-
mation process at which not all of the governing equations
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can be satisfied. However, in models that use sufficiently
rate-dependent material properties, or that include inertia,
this definition of instability becomes somewhat arbitrary.
From a seismological point of view, one would like to define
motion associated with seismic signals as instabilities. How-
ever, this definition requires the distinction of an arbitrary
threshold in some measure of event size (slip rate, moment,
etc.) in order to separate creep events, accelerating slip,
creep after events, etc., from instabilities. We use the words
slip event rather than instability to describe motions that
are relatively fast compared to some kind of average.

APPENDIX 2: NUMERICAL SOLUTION METHOD

The various slip variables (7, 8, V, § are calculated at
N (=8, 32, 128, 512, or 1024) nodes on the frictional sur-
face (Figure 15). Each node (labeled by the subscript 1)
must satisfy the friction law and is elastically coupled to ev-
ery other node. The node spacing measured as a physical
distance in Figure 15 depends on the dimensionless model
variable L/Hx, the number of nodes N, and the overall
length scale H (i.e., dimensional distance between nodes is
L/N = Hx(L/Hx)/N).

There are a number of ways that the discretized prob-
lem can be written as 2N coupled first-order autonomous
ordinary differential equations in time. There is also some
choice in the independent variables to be used in the cal-
culations. It seems most natural to use the total slip & as
one of the independent variables. However, our simulations
have very large slip distances, and the elasticity calculation
would then require the numerically dangerous subtraction
of large, nearly equal numbers (the slip displacement § and
the load point displacement Vpt). We chose to use @ as one
independent variable so the same program could be used
with two state variables in the friction law (though no two
state variable simulations are presented here). For illustra-
tive purposes we explain our time stepping method using #
as the other independent variable. One may be helped in un-
derstanding the physical model and the governing equations
by thinking through the Euler’s method solution below. We
have

bi(i+ A = 6:(D) + b:(d) Al (A1)

fi(i+ Al = #(D) + 7)) Al (A2)
and the auxiliary equations

Vit + Af) = exp[ri(i+ Al) — bi(i+ Af)]  (A3)

bi(t+ Ad) = &i(D) + Vi(hai (A4)

where 1 ranges from 1 to N. The right-hand sides of (A1)
and (A2) can be evaluated from the values of § and 7 at the
previous time step £ using (8) as follows. In (A1), §; (D) is
found from direct application of (8b) using Vi(i) and 6, ().
The term on the right-hand side of (A2), #, is found from
the elasticity solution (8¢) using the values of V at all of
the nodes. Equation (A3) is (8a) solved for V;. Equation
(A4) for &; is only needed for display purposes. With the
solution (Al) and (A2), §; is not independent and could
have been found (with greater accuracy and greater com-
putational cost) using the values of #;, Vot and the Fourier
transform elasticity solution instead of with (A4).
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Evaluation of the right-hand side of (A2) requires solution
of the elasticity equations (8) at every time step. We use the
fast Fourier transform (FFT) as a truncated approximation
to an exact Fourier series solution. The computation time
with this algorithm is proportional to Nlog N as contrasted
with an N? proportionality when using a Green’s (influence)
function superposition and resulting matrix multiplication.
The FFT is used with the K(x) supplied by the sine wave
elasticity solutions described in the text.

The time stepping method we actually used, a two-point
Runge-Kutta (midpoint) method (described in any numeri-
cal methods text) is very similar to the Euler’s method de-
scription just given. Also, we used V as an independent
variable rather than r. The time steps were automatically
adjusted during integration and are typically limited so that
no node slips more than 0.05d. to 0.1d. per time step or
changes its slip rate by more than 5-10%. Both of these
conditions are needed since parts of the solutions involve
very rapid slip and parts have large changes in slip rate over
small slip distances. These conditions on the time steps are
an approximate way of imposing a formal bound on the nu-
merical error in the time integration. When many nodes
(e.g., 1024) were used, the time step was further reduced
to avoid numerical instabilities associated with “stiff” dif-
ferential equations. (This numerical “stiffness” results from
the high physical stiffness associated with the highest elas-
tostatic modes.) We have tested the dependence of several
representative solutions on the size of the time steps and
found that convergence was reached (within the resolution
of our graphical output) using time steps restricted as de-
scribed.

NoTATION

constant in friction law associated with direct rate
dependence.
constant in friction law associated with @ depen-
dence on slip rate.
normalized B, identical to B/A.
constant in friction law associated with @’s depen-
dence on slip rate.
normalized C, identical to C/A.
constant in friction law, the characteristic slip dis-
placement.
D dimensionless constant, D = K.ni¢/K for a
spring block and D = K.i:/Ko for an elastic
slab; D is a measure of system stability, D <
1 =>stability and D > 1 =>instability.
Young’s elastic modulus.
Function in friction law.
elastic modulus (Lamé shear constant) for isotropic
elastic slab, also a function in friction law.
thickness of elastic slab, represents distance to con-
stant rate tectonic motion.
node number on discretized frictional surface.
stiffness ([stress]/[distance]) of a spring or of a slab
for wave number «.
K dimensionless K, identical to Kd./oA.
K, stiffness K of slab when the whole length slips si-
multaneously, identical to G/(2H).

K, dimensionless Kpo, identical to Gd./(20AH).

K, stiffness of slab for mode number n.
K..;¢ dimensionless parameter associated with the fric-
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tion law (defined in equation (2a)), spring stiffness
K is compared to Kcri¢ by means of D to determine
stability.

K.t dimensionless K¢pit, identical to K risde /(o A).

L length of the elastic slab, period of the periodic
boundary condition.
N number of nodes used in the spatial discretization
of the elastic slab’s surface.
n the sinusoidal mode number under discussion, 0 <
n< N/2.
@1,Q; expressions used in sine wave elasticity solution
(defined after equations (5) and (6)).
= tanh(|x|H), expression used in sine wave elasticity
solution.
t time.
t dimensionless ¢, identical to Vit/d..
to time offset, an arbitrary constant.
V slip rate between elastic slabs (V = V(z,t)), iden-
tical to §.
V dimensionless V, identical to V/V;.

Vo constant in boundary condition for the slabs equal
to relative average motion rate for slabs; driving
speed in spring block model.

Vo dimensionless Vg, identical to Vo /Vs.

V. constant in friction law, associated with transition
from negative to positive steady state rate depen-
dence.

z position along the fault.

# dimensionless z, identical to z/H.

Zo position offset, an arbitrary constant.

§ slip displacement of a block (8§ = §(t)), or relative

slip displacement of slabs (§ = §(z, t)).

@ state variable in the friction law, implicitly defined
by equation (1b), 8 = 6(t) for block, 8 = 6(z, t) for
slabs.
dimensionless 6, identical to 8/ A.

& wave number of sine wave slip displacement on elas-
tic slab.

Kerst that x whose associated stiffness is K pis.

Kwave Wave number of the fundamental component of a

simulated creep wave.

& dimensionless , identical to Hx.

po constant in the friction law, the nominal coefficient
of friction.

v elastic constant of isotropic elastic slab, Poisson’s

ratio.

o normal component of stress transmitted across slab

interface, does not depend on z or ¢.

T shear component of stress transmitted across slab

interface, the friction stress, 7 = r(z, t) for slabs.

# dimensionless 7, identical to (7/(c4) — po/A).

T.s steady state value of r at a given V, defined in
equation (1¢).

¢ phase of slip and of stress sine wave on elastic slab,

defined implicitly in equation (3a).

() changein ().

() time derivative: d( )/dt or 8( )/8% or d( )/di de-
pending on context.

»
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