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Abstract. Singular terms in the crack tip elastic stress field of order & ~ r=>/2 r=3/2___ are often neglected,
thus rationalizing the use of the K field, & ~ r~'/2, as the dominant term for fracture mechanics. We find the
common explanation for neglecting the more singular terms in the series solution for the crack tip stress field
unsatisfying. Further, the more singular terms are non-zero and are needed to understand the energetics of fracture,
i.e, J and G. Given that the singular terms are generally present, the rationale for the validity of the small scale
yielding assumption (the basis of linear elastic fracture) is more subtle than any argument which depends on the
elimination of terms with stress o ~ r=3/2 +=5/2 __ Our explanation for the validity of small scale yielding is
as follows. First, with or without small scale yielding, the stress field outside of the nonlinear zone does contain
more singular terms. In the limit as the nonlinear zone at the crack tip shrinks to zero size (SSY) we show that the
772 term in the Williams expansion dominates both the more singular and the non-singular terms in an annular
region somewhat removed from this zone. Further, in this limit the magnitude of the & ~ 7~'/2 term is almost
entirely determined by tractions on the outer boundary. Our theory and examples are for representative prob-
lems in mode III anti-plane shear fracture. We expect, however, that the general results also apply to mode I and
mode II fracture.

1. Imntroduction

Central to Linear Elastic Fracture Mechanics (LEFM) is the concept of the stress intensity
factor introduced by Irwin [1]. This concept is commonly introduced by finding the asymptotic
stress field at the tip of a planar crack using the complete Williams expansion [2a,b]. For a
crack loaded under plane strain mode I conditions, the stress expansion in the neighbourhood
of a crack tip has the form

oii = Y amr™2fM(9)

= ot a0 + a1 6) +
Ki -
+—==/0) + ao+ a0+, (1)

\2wr

where (r,6) is a local polar coordinate system at the crack tip and where K| = a_1+/27 is
called the mode I stress intensity factor. The higher order singularities r~3/2,7=3/2, p=2 etc.
in (1) are usually eliminated from consideration, e.g. by Williams [2a], by one or another
‘physical’ arguments.

However, we find these arguments unsatisfying in that they are not rationally based, as we
will discuss later. They are also questionable on the basis of their incorrect conclusion, that
the more singular terms in the Williams expansion are in general not present. The presence of
the more singular terms will be discussed in subsequent sections.
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The central subject of our paper is not whether or not singular terms and non-singular terms
always exist in the elastic field outside the nonlinear zone: they do. Our main point is this:
given that these terms do exist, how is one to justify the small scale yielding approximation
and how accurate is it? Why and when does the K r=1/2 term in the stress field effectively
dominate all other terms?

The original motivation for this work was twofold:

(1) Many people incorrectly believe that the more singular terms do not exist. The existence
of these terms is not pointed out in textbooks and usually not in the fracture literature,
either. We wanted to highlight the presence of these terms and also show the flaws in the
common arguments for their rejection.

(2) Since many researchers in and around fracture mechanics (e.g. [8]) and ourselves had
doubts about either the dominance of the K field or the justification for this dominance,
we wanted to find a more satisfying explanation.

Our hope is that this paper will help better justify SSY for both students and researchers.

OUTLINE OF THIS PAPER

In the next section we critique the common reasons for neglecting the more singular terms
in the stress field expansion. We then review the concept of small scale yielding and the
energetics of crack growth in the context of the existence of these terms.

We then set up a model mode III fracture problem with a nonlinear inner zone 2. We
use this model to demonstrate that the higher order singular terms in (1) generally do exist
in a physical problem where £ has finite but possibly small dimension when compared to
relevant specimen geometry. We also show the relationship of these higher order terms to
the underlying physical quantities (such as the dimension of (2). These calculations lead to
explicit conditions for satisfaction of the small scale yielding assumptions. Furthermore, we
show how the full series given by (1) approaches the usual series (2) for any fixed (z, y) as
the dimension of 2 goes to zero, assuming some smoothness in the inelastic behaviour in the
crack tip region. Finally we discuss the energy release rate, weight functions, and matched
asymptotics.

For mathematical simplicity and ease of presentation we restrict our analysis throughout to
the special case of antiplane shear deformation where there is only one nontrivial displacement
w(z,y). We expect that a more complicated analysis would lead to similar results for mode I
and mode II fracture.

2. Examination of classical reasons for ignoring higher singularities

The usual arguments for throwing away more singular terms in the stress field expansion are
these.

(1) The strain energy in the region of the crack tip must be bounded.
(ii) The displacement in the region of the crack tip must be bounded.
(iii) Uniqueness of elastic solutions is lost if higher order singular solutions are allowed.

(iv) The solution for the stress field in the vicinity of an elliptical hole, in the limit as the
aspect ratio goes to infinity, does not have such higher order singular terms.
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These are all flawed reasons. For example, (i) and (ii) above are violated by many singular
solutions in linear elasticity that are used to represent physical phenomena. Such solutions
include: a line load on the surface of a half space, a point load in a full space, and a dislocation.
All of these solutions have unbounded strain energy and the first two also have unbounded
displacement. The displacement and energy singularities are not problematic in these solutions,
however, because the solutions are not assumed to be applicable all the way to the singular
point. Rather, the solution is used only at distances that are large compared to the region
over which the model (a load with no spatial extent and linear elastic behaviour) is invalid.
Likewise with fracture mechanics. Since no real material remains linearly elastic at arbitrarily
large stresses, and no material can bear infinite stress or strains, there must be some region
Q surrounding the crack tip where the material behaviour deviates significantly from that of
linear elasticity. Inside this region, the process zone, the material behaviour is such that the
displacements and strain energy are bounded; outside this region, where linear elasticity is
accurate, there is no singularity. Thus solutions that would have infinite displacement or strain
energy if evaluated at the crack tip are not used at the crack tip. That is, the standard arguments
about bounded diplacement or strain energy do not legitimately rule out the highly singular
terms because these arguments make use of the linear elastic solution in a region where the
solution is a priori known not to be valid.

The uniqueness assumption (iii) is also not well justified. Since the strain energy is bounded
outside the process zone (2, the uniqueness condition (iii) is satisfied in the elastic region D
which consists of the material outside €2, whether or not terms with high order stresses
o~ 3 2 p=5/2 ..., are in the series description of the elastic field. But whether or not an
entire fracture problem has a unique solution then depends on the material behaviour inside
the process zone. Uniqueness, if assumed to be valid for unknown material models in the
process zone, is an additional postulate. Uniqueness of solutions could be added to the list of
pure elastic-fracture assumptions, but it does not follow from the basic elasticity equations.

Although one way of getting a flat crack is as the limit of an infinite aspect ratio elliptical
hole (iv), a real crack is not necessarily well described by this limit. A mathematically sharp
crack, if that is what one chooses to study, may be found as the limit of any number of non-
singular fields. Many such limits lead to high order singularities in the limit of zero nonlinear
zone size. For example, a cohesive zone model with both tensile and compressive stresses
which go appropriately to infinity as the cohesive zone is reduced in size will lead to a traction
free crack solution that does have high order singularities.

Thus, the question remains: do the higher order ‘singular’ terms in (1) exist outside the
process zone {2? In other words, since arguments eliminating singular terms are unsatisfying,
should the entire series (1) be used outside the inelastic region 2? Further, if the entire series is
needed outside {2, what does happen to the highly singular terms of this series as the dimension
of Q goes to zero, as the crack appears increasingly like a mathematically sharp crack?

SMALL SCALE YIELDING

The importance of these questions is that they underlie the concept of Small Scale Yielding
(SSY). Here is a description by Rice [3] of the SSY assumption and its basic role in LEFM.

‘The utility of elastic stress analyses lies in the similarity of near crack tip stress distri-
butions for all configurations. Presuming deviations from linearity to occur only over a
region that is small compared to geometrical dimensions (small scale yielding), the elas-
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tic stress-intensity factor controls the local deformation field. This is in the sense that two
bodies with cracks of different size and with different manners of load application, but
which are otherwise identical, will have identical near crack tip deformation field if the
stress intensity factors are equal. Thus, the stress intensity factor uniquely characterizes
the load sense at the crack tip in situations of small scale yielding, and criteria governing
crack extension for a given local load rate, temperature, environment, sheet thickness
(where plane stress fracture modes are possible), and history of prior deformation may
be expressed in terms of stress intensity factors...’

One naturally assumes that if the stresses are accurately known on the boundary of a
region that enclosed the crack tip, then the full (nonlinear, finite deformation, discontinuous
etc.) force and deformation fields inside the region are determined. That is, one assumes that
some kind of uniqueness assumption does hold for the crack tip material. The small scale
yielding assumption for a given body is that it has an interior surface I', somewhat removed
from the non-elastic crack tip zone, on which the traction is accurately given by that of the K
field. That the K field describes the stress field in some region, to some reasonable degree of
accuracy, is known as K dominance. Whether a given accuracy in the K field description at
some radius is sufficient for reasonably accurately determining the nonlinear behaviour near
the crack tip is a question that we do not address here. In order for two crack tip regions to be
effectively loaded by the same far field boundary conditions, any pair of bodies of identical
material composition for which K is used to characterize fracture should have interior surfaces
at the same distance from the crack tip where the stress field is X dominated. Thus, the small
scale yielding concept depends on the following two conditions:

(*) the K field is dominant over other terms of (1), both non-singular and more singular, in
some annular region surrounding the crack tip outside §2.

(**) Specimens which are compared using the small scale yielding assumption must have
regions of K field dominance which have non-zero intersection. That is, a radius 7
exists so that the K field dominates the stress field on all such specimens at r;. This
situation is illustrated schematically for two specimens in Fig. 1.

The condition (*) requires some explanation. If the higher order singular terms do exist
outside the inelastic zone {2, how can the K field, which is less singular than these terms,
dominate the near tip field? Indeed, this quandary makes the neglect of the higher singular
terms appealing. For example, the expression for the stress field outside the inelastic zone
(which is assumed to be very small compared with typical specimen dimensions) is often
assumed to be of the form:

Oy = (271')_1/21(17‘_1/2fij(0, 0) + alrl/zfij((), 1)
+...+am7-m_(l/2)fij(0,m) _*_ seey (2)

where the f;;(8, m) are functions of @ that do not depend on the geometry of the body so
long as it has a flat crack. Some researchers have attempted to compute the amplitude of these
higher order terms, i.e., a1,...,apn, ... for m > 0 so as to improve on, or to confirm the SSY
description of the near tip stress field (e.g. {4-7]). In fact, however, if the entire series (1) is
valid outside the inelastic zone €2, any attempt to estimate or calculate a., s in (2) is not only
futile but incorrect as infinitely many terms with m < —1 are thus neglected.
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Fig. 1. Two different specimens (I and II) made of the same material are shown. The region in which the K field
dominates is shaded in both cases. In order to assume that the two specimens have the same fracture behaviour
that is characterized by K there must be a radius r that is in the region of K" dominance for both specimens. The
small elliptical regions at the crack tips represent a region where linear elasticity does not apply.

It is also interesting to note that the usual ‘asymptotic’ statement of the far field boundary
condition of the SSY problem [3] is:

o5 ~ Kir~12£:(0,0)  asr — oo, 3)
where one has implicitly assumed that appropriate rescaling of the spatial variables has taken

place (e.g. the process zone (2 has a radius of unity under the rescaling). To improve the
accuracy of the description of the inner field in £, it would seem more appropriate to replace

(3) by
oi; ~ Krr~ V2 £,:(8,0) 4+ g_yr32£,5(0,-1)
+g—-27'_5/2fij(9> -2)4--- asT — oo. 4)

Whatever the case may be, it does not make sense to use (2) as a far field boundary
condition since terms like g;7r3/2 fi;(6,m) dominate the K term in the far field as 7 — oo,
thus violating the SSY assumption.
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SMALL SCALE YIELDING, J, AND G

It is a well known result in LEFM, assuming steady state conditions in some annular region
around the crack tip, that the energy release rate G is equal to the path independent integral J
[3]. Under SSY conditions, J is related to the stress intensity factors by

J = (1-v*) (K} + Ki)/E + Kiy/(2G), &)

where E is the Young’s modulus, v the Poisson’s ratio and G the shear modulus. It is well
known that (5) is not valid if the SSY condition is violated. However, if one believes that the
expansion (1) is complete it follows that the exact calculation of J must be determined by all
the coefficients a,,, whether or not small scale yielding is satisfied. However, if one neglects
terms a,,, with m < 0, a short calculation shows that J is calculated exactly by (5). How then
is (5) considered as only approximate when SSY is not applicable? Either (5) is exact whether
or not there is small scale yielding (and it is not), or the exact calculation of J depends on the
inclusion of terms a,,, with m < 0 (it does).

3. Anti-plane shear formulation

Figure 2 shows a crack in a finite specimen loaded under antiplane shear condition. Assume
the nonelastic zone € surrounding the crack tip which is located at z = 0,y = 0 does not
completely engulf the crack length. Let (r,8) be a polar coordinate system attached to the
crack tip. In this paper the term nonelastic zone ) means that zone within which one or more of
the usual assumptions regarding small strain linear elasticity break down. Outside 2 the linear
elastic assumptions are assumed to be exactly satisfied. The problem is shown schematically
in Fig. 2a, where C| and C are circular boundaries enclosing the crack tip region. Between
the circles, C and C», the material is purely linearly elastic. Thus we may consider the purely
elastic problem as shown in Fig. 2b. The radius of C1, p, is chosen to be as small as possible
with © still being contained in C. That is p is the outermost radius of §2. The radius of C; is
R, which is outside C, and is chosen to be as large as possible and still be contained in the
specimen. The traction 7, on these boundaries is assumed to be bounded so that

(R,0) = f(0) = 7, F(8) (outer boundary), (6a)
7+(p,0) = h(8) = T7oH(#) (inner boundary), (6b)

where 7, and 7 are reference stresses defined by the maximum values of f and h in [—7, 7].
We shall assume that each of these prescribed tractions f(6) and h(6) are separately self-
equilibrated. Physically, one may think of 7, as a scalar measure of the level of applied stress
on the boundary of the specimen and 7y as a scalar measure of the inelastic stress at the outer
boundary of the nonelastic zone 2.

For any actual specimen and confined nonlinear zone our replacement problem is exactly
coincident with the solution to the original problem. The original singular and possibly
nonlinear problem is reduced to the solution of a bounded linear problem. This is the central
idea which allows our analysis to proceed.

Our approach is to first obtain the stress field inside the annulus region A = {(r,8)|p <
r < R& — 1 < @ < =}. The governing equation in A, assuming linear isotropic elasticity,
is

Y ré ), + 1 2p e =0, 7
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(a) O

traction free 0
crack surface

C /Tr:TaF(e)

T=ToH (9 )
traction free Q‘Q
crack surface ’\v

(b)

Fig. 2. (a) shows a specimen with two circles drawn. The inner circle C; is the smallest circle that can be drawn
that totally encloses the nonlinear processes near the crack tip. The region of nonlinear processes is denoted §2.
The material behaviour outside C; is homogeneous, and linearly elastic. The radius of the outer circle C; is R
and is chosen so that R > p and as close as possible to the specimen dimensions. (b) shows our replacement
for the speciment of Figure 1a. A new specimen is considered in the region A that has boundaries at C} and C».
The tractions on these circular boundaries are the same as those occurring in the original specimen at the same
locations. The tractions 7 = ToH () and 7 = 7, F(8) are prescribed on the circles C and C2, respectively. A
polar coordinate system (r, 8) is set up so that its origin is at the center of the inner circle, the ‘crack tip’. Since we
are considering only a mode III crack the only traction on these boundaries is 7.

where a comma (,) denotes partial derivative and ¢ is the stress function defined by

T = —7‘_1(]5,9 and 1= ¢>,T. ®

Equation (7) is solved subject to the boundary conditions (6) and the traction free condition
on the crack faces, i.e.

(r,d=mor —m)=0forp<r < R. )]

4. Anti-plane shear elastic solution

Closed form solutions of (7) subjected to the boundary conditions (6) and (9), are given by a
sum of four fields labelled Al (antisymmetric, inner surface traction free), AO (antisymmetric,



104 C.Y HuiandA. Ruina

outer surface traction free), SI (symmetric, inner) and SO(symmetric, outer surface traction
free)

Ti=7, - (A4 7AC 4 751 4 750) ) where i=1,0. (10)

The antisymmetric solutions are of greatest interest. They are

A= S B BRI - (p/r) sind(2n + 1872},

n=0

' = ib,{(r/R)(Z”‘”/Z[l+(p/r)2”+1] cos{(2n + 1)8/2}, (11a)

n=0

20 = 3 el 2 Iy R D[ — (R /7)™ sin{(2n + 1)8/2},

n=0
A0 = 37 1Pt () RYPR=D2L 4 (R/r)* | cos{(2n + 1)8/2},  (11b)
n=0

with
e=p/R,pu= Ta/Tos

and

g

bl = By /[l — &) with F, = (1/7) / F(8) sin{(2n + 1)9/2} 6,

and

bl = —H,/[1 - ) with H, = (1/7r)/7r H(8)sin{(2n +1)8/2}ds.  (llc)

The displacement w and the stresses 75!, 750 due to symmetric loading are given in the
Appendix.
By definition (11c), b, , 62!, are order one terms (they are 4/7 or less) since F(8) < 1,

and H(#) < 1. 7Al + 751 is the stress field if traction is applied on the outer boundary (6a),
and no traction is applied on the inner boundary

(p,0) = 0, 12)

whereas 7AC 4 750 is the stress field if traction is applied on the inner boundary (6b), and no
traction is applied on the outer boundary

(R,0) =0. (13)

In the antisymmetric case, the series solution consists of terms that are fractional powers
of 7 and there is displacement discontinuity across the crack faces. In the symmetric case the
series solution consists of terms that are integer powers of r and there is no displacement
discontinuity across the crack face.
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The results above can be written in a more compact form by noting that the function
F(2) = f+iGwis analytic where s = (—1)1/2, 2 = z 4 iy and f is the usual stress function
[3]. If we define 7(z) = 7, + iT; = F’(2), then (11) can be rewritten as

7(2) = 7o(rA 4+ 740 £ 751 4 750y, (14)
where

TAI — Z bTIL(Z/R)(Zn—I)/Z + Z 8(271,—1)/2b£(p/z)(2n+3)/2, (14b)
n=0 n=0

7_AO — io: b£I€(2n+3)/2H—1(Z/R)(Zn—l)/Z
n=0
+ f: 6(2n+3)/2,u—leILI(R/Z)(Zn+3)/2 (14c)

n=0

= S (=i)el(z/R)"D = S (—i)em Vel (p/2) D), (14d)
n=1 n=1

50 = S (=)Dt (z/ R)PN — 3™ (=i)el(p/ ). (14e)
n=1 n=1

The coefficients cf,c.! are defined by (A2) in the Appendix. The b , bI! are the same as
before.

The results (10)—(11) or (14) above establish that all the terms involving higher order
singularities (i.e., terms in the second sum in (14b—d)) are present in the annular region A.
Note that the coefficient of the Oth term in (11a,b) is related to the mode III stress intensity
factor Ky by:

~applied
K I
A

(2m) 27, F, RY{1 — (H, /) F,)u~' /%)
(-0

where K ﬁ‘fphed = (27r)1/ 2r, F, R'/? is the usual stress intensity factor, namely, the strength of
the 7~1/2 stress singularity in a specimen with a perfectly sharp structureless crack. Recall
that, H, and F, are order one terms and p~! is approximately the ratio of the stress in the
nonlinear zone to the applied traction on the outer boundary. From (A2), the symmetric terms
do not contribute to the stress intensity factor.

Since we have not yet explicitly made any assumptions about material behaviour in Q, 7,
and p and thus p and e are as yet unrelated.

If SSY is valid, or approximately valid, the size of the non-elastic zone must be governed
by Ky and 7,. A dimensional argument thus requires that p be proportional to K,zn / 7'3. But
since K1y is approximately proportional to R'/2r, we have

€= Cus, (16)

Ky = (15)

where C' is a positive dimensionless function of ¢ and is of order one. This means that

Ky = KPP{1 - Ce}
(1-¢

an
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where constants of order one were absorbed in C. Only if the non-elastic zone is small
compared with typical specimen dimensions, i.e., € = p/R < 1, is the local stress intensity
factor Ky well approximated by the applied stress intensity factor K{?"’, Thus a necessary

condition for SSY is that
c=p/R<1. (18)

Since it is common in the literature to neglect terms that are even function of 8, we consider
first only the antisymmetric case where all displacements are odd functions of 8 (i.e., we
assume that the applied load and the material response are antisymmetric with respect to the
crack line).

SIZE OF TERMS IN THE WILLIAMS EXPANSION

Let us examine the order of magnitude of each term of the series (14b) for a point in the
annular region ' defined by

Q' ={(r,0) with €?R<r<eMR, -m<0<n} 19)
where A and A, are real numbers such that
O< A<« (20)

Any point z in €’ has the property |z| = r = €*R for some 0 < A < 1. In other words, A is
a logarithmic measure of distance from the crack tip. The solution (11) or (14) can now be
written in terms of ) instead of r. For the stress 74! ((14b), in the case of a traction free hole
with loads on the outer boundary, C» given by (6a)), the solution is

AL _ ibi(ex)(zn—l)/z n i€(2n—1)/2b£(€1—/\)(2n+3)/2

n=0 n=0
= o4 b{(\/Z + bg,g—/\/2 + (,56—1/2+3(1-/\)/2 +een, (1)
R e
r1/2 172 r—3/2

Examination of the terms in (21) reveals that the 7~1/2 term has the smallest power in €.

In other words, for any fixed X in the interval (0,1), the K field, or the rm1/2 term, dominates
over all other terms in ' (singular and non-singular) in the series (14b) in the limit as € — O.
By fixing A we are keeping to a region that is removed both from the outer boundary and from
the crack tip. Likewise, for (14c), the arrangement is

o0 o0
A0 _ Z b£1€(2n+3)/2'u—1(ex)(zn—l)/z + Z €(2n+3)/2'u—1bﬁl(e_)\)(zn”)/z
n=0 n=0
= .t b{I#—1€5/2+>\/21+b(I)I#—1€3/2—/\/21+?£IM—163/2—3,\/21+.__. (22)

~~

W i
r1/2 r—1/2 r=3/2

Note that in the second series (14c), the r=3/2 term is always the dominant term in ' as
¢ — 0. To determine the dominant term of the sum of these two series, i.e., the full solution
T, We must compare

M2 and polS0-V/2, 23)
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Thus, the K field is dominant in Q' if and only if
1N 12 o (SN (7 7))V 5 1, (24)

Although in our formulation 7, and € = p/ R can be considered as independent, for a given
specimen g is actually a function of e. If we assume our specimen satisfies the condition (24),
then, for sufficiently small ¢, the Ky term (n = 0) dominates every term of the series solution
of 7 in £’ since X is in (0,1) ! In other words, the higher order singular terms (e.g. 7~3/2)
are subdominant in ' because the amplitudes of the singularities are small; whereas the
non-singular terms corresponding to & ~ 71/2, ¢ ~ 73/2 etc. are subdominant in Q' because
Q' is sufficiently close to the crack tip. We can use (24) to restate the small scale yielding
condition.

Namely, ) in (0, 1) must exist so that (24) is satisfied.

If one includes terms that are even functions of 8 , the arrangement is

1 Z( z)CI(GA)(n 1) _ Z(——i)e(n_l)ci(Gl_/\)(n-I-l)

n=1
o+ c + ¢ T20-3) 4 .. 25)
\\/ ‘—Nf—"

0

T 1'_2

Likewise, for (14¢), the arrangement is

S0 _ Z(_z)e(n+1)'u—-l '{LI )\)n 1) _ Z( z)cl(el /\)(n+1)

n=1
:___+C{H1€2+CH”—1 2(1- ,\)_}__.__ (26)
N N————
r0 r—2

Clearly, the addition of the symmetric terms does not change our previous conclusion i.e.,
(25) since 6—/\/2 > C and #—1 3(1- )\)/2 > cIIu—l 2(1- )\)

If (24) is satisfied, a stronger statement can be made from dimensional considerations. If
the K term (o ~ r‘l/ 2) is dominant, then dimensional consideration would imply that

p = Ol(Kiu/mo)?)
Using K = (27)"/?7,F, R'/2, the statement of SSY in dimensionless form is therefore
p? = C e, (27a)

where C' is a constant of order one defined by (16). Equation (27a), together with the condi-
tion

e=p/R< 1, (27b)

is the usual statement of SSY. Thus, we conclude that if (27a,b) are satisfied, then the K IAiI
term is indeed dominant in . We now address the second condition (**) in the Introduction,
that the specimen have overlapping regions where the r~1/2 field is dominant. This condition
is satisfied since ' includes all A in (0, 1) so that as long as (27a,b) is satisfied, there is still
K dominance. However, it should be noted that, the smaller the ¢, the more accurate is the
K field and it is dominant over a larger region. In other words, the region of dominance €2,
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for specimens with a larger value of € = ¢ is included in the region of dominance of 2., of
the specimen with the smaller value of € = ¢,. Finally, it should be noted that the series given
by (14b) and (14c) is absolutely and uniformly convergent in A, so that the K field in €' is
dominant over the sum of all the other terms!

5. An estimate of the error of the SSY assumption

The error made by the SSY assumption can be obtained using (14). Let us first ignore those
terms in the series expansion that are even functions of 6. Let z = ¢* be an arbitrary point in
. Then

|7_ _ bI —)\/Zl/lbl —)\/ZI < Z n/\ _l_ Z 6 6('fL-v}—l)(l—/\) (28)
n=1 n=0
where el = |b/bl| . Note that el is an order one quantity and is in general a monotonic

decreasmg function of n for most F(0) Let the maximum of el be denoted by e; for all n.
We anticipate e; =~ 1 in practical situations. Equation (28) can be written as

[TAL = ple=2/2] [ N n(nb1)(1-7)
W < eg X:l(e ) + ZOG € ]
o Ln—=— n=

= ey [[@/(1 - e/\)] + 6(1-A)/[1 _ €(2—,\)]]
~er[¢h ] 29)

Similarly, using (14c), we have

)
ITAO/[bge—)\/ZH < ,u‘lel/z[eA + €(1—)\)] Z 67{16”(1_)‘)
n=0
~ errpu e 2[4 17N (30)

where el = |b17/b| = O(1) and e; = max(e”) Combining (29) and (30) and using the
SSY assumption (27a), an upper bound for the error E made by the SSY assymption is

E ~ bie + byell™) (31)

where the b;’s are constants of order 1. Note that the minimum error is of order ¢'/2 and occurs
at A\ & 1/2 or r = p!/2R'/2 _ the geometric mean of the plastic zone size and the specimen
dimension! Furthermore at this distance, i.e., 7 & p'/2R1/2, the error made by ignoring the
71/2 term and the =3/ terms are of the same order of €l/?,
If we include the even terms in the series expansion, i.e., from (14d), we have

|TSI/[bg€_>‘/2]| < mI€/\/2 I:io:(e(n—l))\) + i €(n—l)e(n+1)(1—/\):|

n=1 n=1

= me? [[1/(1 - )]+ 20V/[1 - V)]
~ mIe’\/2 [1 + 62(1_/\)} , (32)
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where m is the maximum of |¢Z /b]| for all n . Note that m; is an order one quantity. Similarly,
using (14e), we have

|7_so/[b£€-,\/2]| < ,u‘le’\/zmn [€2+€2(1—,\)]
N mHM—IG,\/2€2(1—,\)’ (33)

where my is the maximum of |cZ! /61| for all n . Combining (29-33), an upper bound for the
error F2 made by the small scale yielding assumption is

E~ ble’\/z -+ b2€(1_)\), (34)

where the b;’s are constant of order 1. Note that the minimum error is of order ¢!/3 and occurs
at A = 2/3 orr ~ p*3R'/3. The error in the case of general loading can therefore be much
greater than the case where all the even terms vanish.

6. Two examples

Before we attend to the question of the energy release rate, we consider the following two
special cases of a mode III crack under antisymmetric loading:

(@7 =0
(b) w(r=p,0)=0

The first case (a) corresponds to a traction free hole (e.g. the material in ) behaves
like soft jello). The second case (b) corresponds to the other limit where the material in
is rigid (e.g. the nonlinear zone behaves like a much stiffer material). The actual be-
haviour of real material in {2 might lie roughly somewhere in between these two limiting
cases.

The exact solution corresponding to case (a) has already been found and is given by 7A!
(14b). The exact solution of case (b) is found to be

780 = 13" b, (r/ RV 4 (p/r)?"H ] sin{(2n + 1)8/2}, (35a)
n=0

e =1, i ba(r/R)C~ D21~ (p/r)*" ] cos{(2n + 1)6/2}, (35b)
n=0

where b,, is given by:
by = F,/[1+ &+ (35¢)
in which F,, is given by (11c). In terms of 2, 7(z) = 1, + 47, is found to be
o0 oo
rrigid _ Ta Z bn(z/R)(Z“‘l)ﬂ _ Z bn€(2n—l)/2(p/z)(2n+3)/2 . (35d)
n=0 n=0

The amplitude of the 7~1/2 term for case (a) and case (b) is 7, FoR™/2/[1 — €] and
7o FoR™1/2/[1 + €, tespectively. In the case of the hole, the local stress intensity factor
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Fig. 3. The shear stress 7 directly ahead of the crack tip is plotted for the case of the traction free hole from
7/R = etor/R = 1 in Fig. 3a for € = 0.01 from the exact solution from (14b) (solid). The applied outer traction

is a step function of §. Also shown are the K field, i.e., the o ~ (r~'/?) term (dashed), the (r~%/2) term (dot

dash), and the (rll 2) term (dot dot dash) in the Williams expansion. Figure 3b plots the ratio of the K field to the
exact solution given by (14b). This figure shows that the solution for this particular problem is consistent with the
general results that the K field is most accurate at 1 == 1/€R = 0.1 where the fractional error of the K field
compared to the exact solution is of order 1/¢ = 0.1.

increases by the amount e, FoR~'/2/[1 — €] = eK{}/[1 — €] whereas for the case of the rigid
plug, the local stress intensity factor decreases by the amount eK{j;/[1 + €]. In both cases,
the change in stress intensity factor is O(¢). Indeed, the two series solutions are practically
identical except for a sign change and following the previous argument, we again can easily
verify the dominance of K in Q' for small e.

Equations (14b) and (14c) imply that, for any fixed z in ', the solution approaches to
the linear elastic solution with all higher order singular terms vanishing as ¢ approaches 0
However, the convergence to (2) is not uniform, since all terms of these series are of equal
order when r = p.

To illustrate the ideas expounded above, we plot 7,(r,8 = 0) for the traction free hole
where the traction on the outer boundary is 7, sign(8) or F(6) = sgn(#) from r/R = € to
r/R = 1 for the case of € = 0.01 (Fig. 3a). The K field, i.e., the (r~'/2) term, the (r~3/2)
term and the (rl/ 2) term in the Williams expansion are also shown in Fig. 3a. It is clear that
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the contribution from the (7~3/2) term is as important as the (r'/2) term in the region where
the K field is dominant (e.g., 7/R ~ €!/2). In particular, as one approaches the nonelastic
region, the (r=3/2) term is of the same order as the (r~'/2) term. In Figure 3b, we plot the
ratio of the (r~!/2) to the exact solution (11a). As predicted by our analysis, the minimum
error is of order /€ and occurs at r/ R ~ /e = 0.1.

7. J-Integral

The J-integral can be evaluated using (14) or (11). Since J is path independent outside £2, a
circular path is used. Note that if all the higher order singular terms are excluded, the value of
the J-integral is always equal to

J = K%/(2G). (36)

This is because the remaining nonsingular terms cannot contribute to the J-integral since
these terms and their products with any other terms in the series (including the K terms) are
bounded as r — 0. Using the path independence of J and shrinking the radius of the circular
path to zero gives (36). Equation (36) can also be verified by direct computation. On the other
hand, if the entire series is used; terms like »~3/2 and r!/2 can cross multiply giving rise to
terms with »~! which lead to nontrivial contributions to J. After some computation using (11)
and the definition of J, we obtained

J = (nR72[/G)(do)* + 2 dnyien, 37

n=0

where the coefficients d,, and e,, are defined by (A4). If we recall K f‘il = 77,F, RY2, then
J = K%/(2G) if and only if ¢ = 0. Note that the even terms do not contribute to the
J-integral.

Equation (37) shows that there are two additional contributions to the energy release rate
due to the existence of the non-elastic zone. The first one is due to the change in the local
stress intensity factor which is of order O(e). The second one, also of order O(¢), is due to
the interaction of the nonsingular terms and the higher order singular terms.

8. Weight function

The weight function method was introduced by Bueckner [9] to determine the stress intensity
factors in cracked bodies that are linearly elastic. The weight functions are universal functions
for a given crack configuration and body geometry. Once found, the stress intensity factors
induced at the crack tip by any surface tractions can be computed using the weight functions
and quadratures. Recently, higher order weight functions have been developed to evaluate the
coefficients of the non-singular terms of the series expansion with the implicit assumption
that terms in the series expansion of the stresses in actual crack bodies that are more singular
than 7~'/2 do not exist near the crack tip [10]. For example, it is commonly believed that
the inclusion of the non-singular terms permits a more accurate interpretation of stress data
obtained at finite distances from the crack tip [5, 6, 7, 10]. However, the analysis we have
presented indicates that the sole inclusion of the non-singular terms does not necessarily
improve the accuracy of the stress field near the crack tip in real materials. Is it possible,
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Fig. 4. A cracked body containing a non-elastic zone denoted by €. The material outside 2 is assumed to be
linearly elastic, homogeneous, isotropic and is denoted by X.;. The traction-free crack faces are denoted by C'*
and C~ respectively. The curve pcimen coincides with the specimen boundary. X4 is a smooth curve in Z;
with end points a and b. It will eventually be identified with the circular path C; enclosing the non-elastic zone
from Fig. 1. The end points a and b for this special case correspond to points on the lower and upper crack face,
respectively. Together the curves Sgpecimen + Gt + G~ + C) make up a closed curve ¥ outside the non-elastic
zone that is used in (38).

therefore, to develop ‘weight functions’ to determine the coefficients of the singular and non-
singular terms of the series representation of the stresses near the crack tip in a real material?
It turns out that such a development is possible but the universality of the weight function
method is lost in the process. Our derivation below follows the same approach as the work of
Bueckner [9] and Sham [10]. As before, we restrict our analysis to that of a mode III crack.
Consider the loading system in Fig. 4. For any closed curve ¥ whose interior lies outside the
non-elastic zone 2, the reciprocal theorem, in the absence of body force, is

/wszds:/ w2T1 d.S, (38)
b >

where (w;, T;),¢ = 1,2 are the displacement and traction for two elastic states and s is the
arc length of the curve X. The traction T is related to the ’stress vector’ T = (7, 7,) by
T = 7 - n where n is the unit normal of X. Let F;(z) be the analytic functions defined by
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Fi(z) = fi + iGw;. It can be shown that, for any open curve X,; in §; (see Fig. 4), where
Q¢ is the material outside €2, the functional H (%) defined by

H(Za) = /

can be expressed in terms of F; as
H(Sw) = (1/G) (@ [ /E Fy(2)Fi(2) dz]
ab

- [SROIR(BG) - In{A(@)R{E@)] ), “0)

where R() and () are the real and imaginary parts of (), respectively. Let (wq,T1) be the
elastic state in €2, caused by the traction T’ acting on the boundary of the cracked body
Yspecimen. INote that the traction free boundary condition on the crack faces is satisfied by this
elastic state and that F7(z) has the form

wszds—/ wyT ds 39)
b Eab

a

(2)=n(z)=my+ine= Y, a2 V2 (41)

m=—o0

where we have assumed that the stress state is antisymmetric with respect to the z-axis so that
the coefficients a,, are real. The subscript 1 in 71, indicates that 7, is the y component of the
stress vector of elastic state 1. Let F, be given by

Fy(z) =m(2) = oy + iTe = Akz(Zk_l)/z, (42)

where Ay is areal constant and & is an integer. Note that F;, satisfies the traction free boundary
condition on the crack faces. Let X in (38) be identified with Ygpecimen + C t+C 4+ Crin
Fig. 4 and 3,; be identified with C, then (38) becomes

H(C) = (/G)S( [ F(z)Fi(2)d2)

= / wyT ds —/ wiT> ds, (43)
Z:specimen z:specimen

where we have used the condition that #(F3) = 0 on the crack faces and (40). However,
H(Cy1) = (1/G)S(Jg, F2(#) Fi(#) dz) can be easily computed using contour integration and
is equal to 21 Axa_k /G so that (43) becomes

2rAga_t/G :/ wyT ds —-/ w11 ds. (44)
)

specimen specimen

Equation (44) shows that the coefficients a; can be found by quadrature in terms of the
‘weight function’ F = A;z(%¥=1)/2 once the displacement and traction on the boundary of
the specimen of the elastic state 1 is known. It is interesting to note that the coefficients of
the singular terms are identified with positive integers k£ whereas the coefficients of the non-
singular terms are identified with negative integers k. Note that the elastic fields corresponding
to I3 for negative k’s have unbounded energy (if the crack tip region is included). It should be
noted that our definition above of ‘weight function’ is not the same as that given by Bueckner
[9] and Sham [10]. Their weight function is constructed using an F»(z) (Bueckner defined
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F5(z) as the Fundamental field) that also satisfies the traction free boundary condition on
the specimen boundary Xpecimen. Specifically, for the problem above, Bueckner’s Fy(z) =
Apz(¥-D/2 L F*(2) where F*(z) is a regular field without body forces and traction on the
crack faces and k is negative. Furthermore, it is chosen so that F5(z) satisfies the traction
free boundary condition on the specimen boundary Ypecimen. A field is regular if the series
representation of F’ does not contain any terms that give rise to unbounded energy as r
approaches zero. The difference between our derivation and theirs is that they are dealing with
an idealized material that is linearly elastic all the way to the crack tip. This, together with the
assumption of bounded energy, justifies their assumption that Fj(z) is a regular field. To be
more specific, let us consider a special case where the specimen boundary Ypecimen is circular
s0 that Xpecimen = C?2 in Fig. 2. In this case the fundamental field of Bueckner F3 is

Fy = Agz@F-/2 _ g, Rp2k=1) = (2k=1)/2 45)

which satisfies the traction free boundary condition on r = R. Note that, if F] is a regular
field so that & in (41) is a non-positive integer, then

27rAka_k = G/ w2T1 ds. (46)

Y specimen
The second integral in (44) vanishes since the traction due to the fundamental field F5 (45)
on the specimen boundary is zero. However, F| in our case is not regular, in the sense that
terms more singular then the square root singularity exist due to the presence of the nonelastic
region ). If we use > defined by (45) instead of that defined by (42), we will have

2rAg(a—g — ak—1) = G . wy T ds, @n
specimen

so that there are two unknowns a_; and ax—; and one equation. By excluding the term
F*(z) in the definition of our fundamental field, we have been able to solve for aj, with
the disadvantage that the boundary term fzspccimn w117 ds in (44) no longer vanishes. In other
words, the displacement of state 1 must be computed on the external boundary if traction
boundary condition is prescribed for this state. Thus the universality of the weight function
method is lost.

The traditional weight functions allow the calculation of the K field and of the non-singular
terms in the Williams expansion from the tractions on the boundary of the specimen with the
assumption that the singular terms and the crack-tip part of the K field are negligible. The
weight functions we have presented require that both the traction and the displacement on
the boundary of the specimen be known. From this argument, the weight functions allow the
determination of the complete Williams expansion and thus the complete elastic field up to
the nonlinear zone.

9. Connection with asymptotic matching

Edmunds and Willis have provided a systematic refinement of the SSY approximation of
a finite mode HI crack in an elastic perfectly plastic material using the method of matched
asymptotics [11]. Their goal was to provide explicit, highly accurate approximate solutions for
crack problems, not to justify the dominance of a single (/) term in the asymptotic expansion.
The important point is that Edmunds and Willis did include both the singular and non-singular
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terms in their inner and outer expansions. Here we shall give an elementary description of their
matched asymptotic approach [11] in the context of the exact solution of the rigid plug (i.e.,
(35)) given above. It should be noted that the small parameter € used by Edmund and Willis
[11] is equivalent to €!/2 used in this work. Let us introduce the following dimensionless
variables:

5=2/R=(c+iy)/R, (48a)
W = (raR/G)w(r/R, 8), (48b)
— (48
#=r/R. (48d)

In terms of these normalizations, the rigid plug (the ‘inelastic zone’) is of radius € < 1.
The outer region is 7 > . The outer solution in this region is obtained by choosing a fixed
% outside the boundary layer, that is, ¢ < # < 1. The difference between the exact solution
and the outer solution is small as long as 7 >> €. Since the material is linearly elastic outside
7 > €, we have, for any fixed £ outside the inelastic zone

o0

'f'out — Z cn(g)(Zn—l)/Z, (49)

m=—00

where 7oy denotes the stress field in the outer region. Note that all the singular terms are
included as # is a fixed point outside the inelastic zone. In this approach one first finds an outer
solution required to satisfy the outer boundary condition on 7 = 1, i.e., (7 = 1,8) = F(6).
A simple calculation shows 7 = 1 is satisfied if and only if

cn_c——(n+1):F‘n’ n=0,1,23,..., (50)

where F,, is defined by (11c). When carrying out this procedure one anticipates, assuming
no unusual behaviour in the plastic zone, that the coefficients ¢,,, » = —1, —2,..., vanish as
¢ — 0. In other words, for any fixed Z in the outer region, the outer solution converges to the
usual elastic solution with bounded energy as ¢ — 0. Although many of the terms are expected
to be small, at this point in the calculation none of the c,, are known. Only the combinations
(€n — €—(n41)) are known.

The inner solution is obtained by considering the inner limit in which 2 = ez with 7 fixed
and finite as ¢ — 0. Here 7 is the inner variable and is of order one near the inelastic zone.
The inner solution is required to satisfy the displacement boundary condition on 7 = ¢, i.e.,
W(# = ¢,0) = 0. Since the material is linearly elastic outside # > ¢, the stress 7;, is exactly

Fn= . dyn@®V2, (51)

n=-—oo

where 7;,, denotes the inner solution. A simple calculation shows that the rigid plug boundary
condition is satisfied if and only if

dnz—d_(n+1),n=0,1,2,3,.... (52)

Physically, we anticipate that the coefficients d,,n = 0, 1,2, ... vanish as € — 0. That is, the
coefficients of the positive power terms are small if € is small. The vanishing of the negative
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power terms in the outer solution and of the positive power terms in the inner solution are not
incompatible because the variables have been scaled.

To determine the coefficients ¢,, and d,,, one matches the outer and the inner solution in
an overlap region which is defined by the intermediate limit 2 — 0,7 = 2/¢ — oc0,e — 0.
For example, 2 = e’\, 0 < A < 1 satisfies this criterion. Matching 74, and 7, in this overlap
region implies that ¢, and d,, n = ---, -2, -1,0,1,2,3. .., satisfy

d, = ¢ 2n-D/2 (532)

which gives

en — Fy = —d @32 5 =0,1,2,3,..., (53b)
so that

en=F /14D n=0,1,2,3,..., (53c)

dy = F @021 4+ 2741 n=0,1,2,3,.... (53d)

The matching in this case is performed for all orders and the overlap region is the entire
elastic region € < # < 1 since the geometry we used is highly idealized (e.g. the boundary of
the nonelastic zone is a circle of known radius) so that the matched solution is exact and is
the same as that given by (35).

In general, the inner and outer solutions are expanded in terms of asymptotic series as
in [11]. The inner expansion in many fracture mechanics problems is almost impossible to
determine due to material or geometric nonlinearities in the nonlinear zone. Also, the boundary
of the nonlinear zone is not known a priori. The matching procedure is much more complicated
than what we have presented above. Furthermore, the extent of the overlap region may vary
with the order of the perturbation theory. This simple analysis also points to an important fact,
a series expansion without the more singular terms is not complete as the boundary condition
outside the nonelastic zone can not be exactly satisfied.

What we have shown previously in this paper is that for small ¢, there is an overlap region
suitable for asymptotic matching where the K field dominates all other terms. This motivates
the usual SSY assumption in which the K field is used as the far field boundary condition. In
the language of matched asymptotics this is equivalent to setting all the coefficients c,, in (50)
to zero, except ¢g, when matching with the inner solution.

Besides the difference in the focus of the work of Edmunds and Willis [11] and ours, it
should be noted that although the method of matched asymptotics is a powerful technique,
mathematical justification of its applicablity is possible only in the limit of ¢ — 0, though very
often asymptotic solutions provide a good approximation even when ¢ is relatively large, as
demonstrated by [11]. Furthermore, asymptotic series are usually divergent and mathematical
justification of the matching procedure is still in its infancy (although it works almost all the
time). In this work, our description of the solution outside the nonelastic zone is exact for all
0 < € < 1 and is valid for a wide range of material behaviour inside the nonelastic zone.
However, we have not attempted, as others [11, 13, 14] have done, to relate the behaviour of
the material inside the nonlinear zone to that of the elastic solution outside this zone since we
will then have to specify the material behaviour in the nonelastic zone.
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10. Discussion

It should be mentioned that existence of the higher order singular terms of the form r3/2,

p=5/2 ..., had been pointed out by the earlier work of Edmunds and Willis [11] and is
implicit in a few of the exact solutions of any fracture mechanics problem with a nonelastic
zone near the crack tip (e.g. the Dugdale model [12] and the problem of a mode III crack in
an elastic-plastic material [13, 14]).

The above analysis indicates that the regular terms and the higher order ‘singular’ terms
are of equal importance. For example, (31) implies that at A = %, that is, r ~ €!/2R, where
the K field is most accurate, the errors introduced by ignoring the 773/2 and r'/2 terms are
of the same order. If a different choice of A is selected (e.g. A = %), then the K field is no
longer the best approximation. Under such circumstances, one may attempt to include the next
non-singular term (i.e. the term r1/2y to the K field to improve the description of the stress
field. However, the analysis we have presented shows that there is no guarantee that such an
approximation is an improvement over the choice of A = % Also, if one attempts to further
improve the near tip stress description by including the next nonsingular term (i.e. 32 ) to
the K field, the approximation will be inconsistent since it is likely that the next dominant
term in the actual series representation of the stress field is not the term /2 but rather the
term r~3/2,

Equation (22) points to an important fact, i.e., in problems involving residual crack-tip
stresses with no applied external loads, the dominant term outside the nonlinear zone is the
7=3/2 term and not the r~!/2 term. This is the term which coincides with the dominant term
of the weight-function for the elastic body.

About ten years ago when we did the bulk of this research we discussed these issues with
many people. The reactions we got were generally of three types. One set of people, experts
in the field, were well acquainted with our issues and seemed to feel that the questions were
near trivial. They felt that since small scale yielding is in fact often an accurate approximation,
ignorance about subtleties in its rationale does not harm its usefulness. A second set of people
seemed closer to ourselves in sentiment. They either doubted the reasoning behind or the
correctness of SSY and felt in need of more rigorous justification of the type we hope our
paper supplies, at least in part.

Finally, some people needed more convincing. They felt that the higher order singular
terms do not exist. So they could not accept our central question: given that the more singular
terms do exist, why can they ever be neglected and why does the K'7~1/2 term dominate?

11. Conclusions

We have been critical of the classical physical reasons for neglecting the terms in crack
solutions with stresses more singular than r=1/2 in the stress field. We have found that,
although these terms do exist, we expect them to be dominated by the K field in a region
that is far from the inner nonlinear zone if the nonlinear zone is small in spatial extent. The
K term dominates the non-singular terms in a region far (inwards) from the outer boundary.
Fortunately for the happy continued use of linear elastic fracture mechanics, these two regions
are often expected to have some overlap where the K field dominates all other terms.
Somewhat disatisfying to us is that our success in justifying the dominance of the K term is
based entirely on mathematical reasoning. We have not been able to find a simple physical-like
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argument to replace the unsatisfying ‘physical’ arguments about finite displacement, strain

ene

rgy and so on.

Here are the main results.

1.

3.

4.

The stress ﬁeld outside the plastic zone under SSY is of the form:
g5 = Z Ay, rm/2 (m) 9)
m==-~-00
-t a_3r-3/2fi(]¢3)(0) +a_pr-! (72)(9)
K

(-1) m
+—*—*‘§7r—r—fz‘j () + ao+a1r1/2f @)+ 1)

so that the higher order singular terms cannot be neglected. Any attempt to improve on
the K field should include the possible effects of the higher order singular terms as well
as the non-singular terms.
. One precise quantitative statement of SSY is:
e = 0(p/(Kin/7)*) < 1,
where p is the characteristic dimension of the plastic zone. All specimens satisfying this
condition are guaranteed to have a region €2’ inside which the K field computed using
the outer boundary conditions is dominant. The region of dominance 2’ for specimens
with a larger value of ¢ is included in the region of dominance of ' of the specimen with
the smaller value of e.
The SSY approximation is most accurate at r ~ p'/2R!/2, the geometric mean of the
plastic zone size and the specimen dimension.
The path independent J-integral can be determined exactly in terms of the coefficients
of the singular and the non-singular terms.

We expect that the results presented here for mode III fracture can be extended to the case
of plane strain, though the calculations would be more complicated.

Appendix: symmetric solutions

o0

= 3 en(r/R)IL = (p/r)*" cos{né},

n=0

S = 3 c(r/R)™ V[ + (p/r)"] sinfnd}, (116)

n=0

S50 io:u~1€(n+1)CTIlI(T/R)(n—1)[1 _ (,,,/R)Zn] cos{nf}

n=0

0 = 3 p D el /R)P=V1 4 (r/R)*" sin{n6}, (A1)
n=0

where

e=p/R
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ol = —FE/[1—& with FF=(1/) / : F(8) cos{nf} db,
= HE/[1— & with HE = (1/7) / 7; H(6) cos{n} do. (A2)
The displacement field w is found to be

(G/R7,)w(r,0) = i Do(r/R)®* D 2in{(2n + 1)6/2}

n=0

£30 Balr/R)CH 25in{ (20 + 1)8/2)

n=0

- fj DE(7/R)™ cos{nb}
n=1

0
~ 5" EE(r/R)™ cos{nb}, (A3)
n=1
where
D, = 2d,/(2n+1) with d,, = b + e@+3)/2,=1p11,
Df = dg/n with dff = ¢l +ertDp=tell, (A%)
E, = 2e,/(2n+1) with e, = bLe?n+1) 4 ((2n+3)/2)~1pI1
EF = eE/n with eZ = cLe) 4 (nt1)y=1cll,
Acknowledgements

C.Y. Hui is supported by the Cornell Materials Science Center which is funded by the NSF-
DMR-MRL program. He would like to thank P. Stief and G. Sinclair for encouraging pursuit of
this problem as well as for stimulating and informative discussions. A. Ruina was supported
by an NSF PYI award during the initial period of this research and would like to thank
J.R. Rice for discussions related to this research several years ago. The authors also thank
P. Rosakis, L. Kogan, A. Jogota, G. Paulino, A. Chatterjeee, A. Jagota, Sha Yan, and an
anonymous reviewer for helpful comments.

References
1. G.R. Irwin, Journal of Applied Mechanics 24 (1957) 361-364.
2. (a) M.L. Williams, Journal of Applied Mechanics 19 (1952) 526-528. (b) Ibid. 24 (1957) 109-114.
3. J.R.Rice, in Fracture, H. Liebowitz (ed.), Vol. 2, Academic Press, New York (1968) 191.
4. S.G. Larsson, and A. J. Carlsson, Journal of the Mechanics and Physics of Solids 21 (1973) 263-277.
5. J.W. Philips and R. J. Sanford, in Fracture Mechanics: Thirteenth Conference, ASTM STP 743 (1981)

387-402.
J.M. Etheridge and J. W. Dally, Journal of Strain Analysis 13 (1978) 91-94.
J.W. Dally and R. J. Sanford, Experimental Mechanics 27 (1987) 381-388.
G.B. Sinclair and P. S. Steif, Department of Mechanical Engineering, Camegie- Mellon University, Private
Communication.
9. H.F. Bueckner, Z. Agnew. Math. Mech. 50 (1970) 529-546.
10. TL. Sham, International Journal of Solids and Structures 25 (1989) 357-380.

o~ o



120 C. Y Huiand A. Ruina

11.
12.
13.
14.

TM. Edmunds and J. R. Willis, Journal of the Mechanics and Physics of Solids 24 (1976) 205-223.

D.S. Dugdale, Journal of the Mechanics and Physics of Solids 8 (1960) 100-104.

J.R. Rice, Journal of Applied Mechanics 34 (1967) 287-298.

J.AH. HultandF. A. McClintock, in Proceedings of the Ninth International Congress for Applied Mechanics
Vol. 8, Free University of Bussels (1956) 51-58.



