
ammonia would react directly with com-

pounds 4a and 4b, and a dissociative path D,

in which ammonia would react with a 14-

electron complex formed after dissociation

of olefin (Scheme 5). The rates of decay of

the pentene complex 4b were measured by
31P NMR spectroscopy with varied amounts

of olefin and ratios of ammonia to olefin

(data and plot are shown in figs. S1 and S2

and table S1). The observable rate constants,

k
obs

, predicted for reaction by associative

path C (Eq. 1) and dissociative path D (Eq.

2), were derived with the steady state

approximation. For path C, the observed rate

constant would be independent of the con-

centration of olefin, but for path D, a plot

of 1/k
obs

versus the ratio of olefin to ammonia

is predicted to be linear with a nonzero

intercept. The reactions were clearly slower

at higher concentrations of olefin, and a plot

of 1/k
obs

versus the ratio of olefin to ammonia

was found to be linear with a positive slope

(0.20 � 10–4 T 0.01 � 10–4 s–1) and a nonzero

y intercept (0.65 � 10–4 T 0.16 � 10–4 s).

These data suggest that olefin dissociation

is the first step in the reaction, and, if so, the

y intercept of this double reciprocal plot

would correspond to the inverse of the rate

constant for dissociation of olefin.

1

k
obs

0
k
j1

k
1
k

2
Eammonia^

þ 1

k
1
Eammonia^

ð1Þ

1

kobs

0
kj1Epentene^

k1k2Eammonia^
þ 1

k1

ð2Þ

Because substitution reaction of square-

planar d8 complexes typically proceed associ-

atively, and because the reactions could occur

by more complex pathways with multiple

equilibria preceding N-H bond cleavage, we

conducted further experiments to test whether

the reaction was initiated by dissociation of

olefin. The pentene in complex 4b is dis-

placed by ethylene to form ethylene complex

4c. If the reactions of 4b occur dissociatively,

then the rate constants for dissociation of

pentene obtained from the reaction of 4b with

ethylene and from the reaction of 4b with

ammonia should be the same.

Consistent with dissociative reactions of

4b, the reaction of 4b with ethylene was

independent of the concentration of ethylene

or 0.03 to 0.3 M added pentene; all reactions

occurred with rate constants within 3% of the

mean value of 1.6 � 10j3. Moreover, this

mean value is well within experimental error

of the value of k
1

(1.5 � 10j3) measured for

the reaction of ammonia with 4b.

The identification of an iridium complex

that undergoes oxidative addition of ammonia

and the elucidation of key thermodynamic

and mechanistic aspects of the reaction

advance our understanding of how to cleave

N-H bonds under mild conditions. We antic-

ipate that this understanding will accelerate

the development of catalytic chemistry that

parallels the existing reactions of hydrogen,

hydrocarbons, silanes, and boranes but begins

with oxidative addition of the N-H bond of

abundant and inexpensive ammonia.
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Efficient Bipedal Robots Based on
Passive-Dynamic Walkers

Steve Collins,1 Andy Ruina,2* Russ Tedrake,3 Martijn Wisse4

Passive-dynamic walkers are simple mechanical devices, composed of solid
parts connected by joints, that walk stably down a slope. They have no
motors or controllers, yet can have remarkably humanlike motions. This
suggests that these machines are useful models of human locomotion;
however, they cannot walk on level ground. Here we present three robots
based on passive-dynamics, with small active power sources substituted for
gravity, which can walk on level ground. These robots use less control and less
energy than other powered robots, yet walk more naturally, further
suggesting the importance of passive-dynamics in human locomotion.

Most researchers study human locomotion

by observing people as they walk, measuring

joint angles and ground reaction forces (1).

Our approach is different: We study human

locomotion by designing and testing walking

machines that we compare to humans in

terms of morphology, gait appearance, ener-

gy use, and control.

Previous bipedal robots with humanlike

forms have demonstrated smooth, versatile

motions (2–5). These impressive robots are

based on the mainstream control paradigm,

namely, precise joint-angle control. For the

study of human walking, this control para-

digm is unsatisfactory, because it requires

actuators with higher precision and frequen-
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cy response than human muscles have (6)

and requires an order of magnitude more

energy. To address these issues, passive-

dynamic walkers (Fig. 1) were proposed as

a new design and control paradigm (7). In

contrast to mainstream robots, which actively

control every joint angle at all times, passive-

dynamic walkers do not control any joint

angle at any time. Although these walkers

have no actuation or control, they can walk

downhill with startlingly humanlike gaits (8).

To demonstrate that the humanlike prop-

erties of passive-dynamic machines are not

dependent on gravitational power, but rather

extend to level-ground walking, we built

three powered walking robots (Fig. 2) at

three institutions, substituting gravitational

power with simple actuation. The Cornell

biped (Fig. 2A) is based on the passive

device in Fig. 1D and is powered by electric

motors with springs that drive ankle push-

off. It has five internal degrees of freedom

(two ankles, two knees, and a hip), each arm

is mechanically linked to the opposite leg,

and the small body is kinematically con-

strained so that its midline bisects the hip

angle. The Delft biped (Fig. 2B) has a sim-

ilar morphology, but it is powered by pneu-

matic hip actuation and has a passive ankle.

The Massachusetts Institute of Technology

(MIT) learning biped (Fig. 2C) is based on

the simpler ramp-walkers in Fig. 1, A and B.

It has six internal degrees of freedom (two

servo motors in each ankle and two passive

hips), each arm is mechanically linked to the

opposite leg, the body hangs passively, and it

uses reinforcement learning to automatically

acquire a control policy. The supporting

online movies show these robots walking

and the supporting online text describes their

construction details (9).

The Cornell biped is specifically de-

signed for minimal energy use. The primary

energy losses for humans and robots walking

at a constant speed are due to dissipation

when a foot hits the ground and to active

braking by the actuators (negative work).

The Cornell design demonstrates that it is

possible to completely avoid this negative

actuator work. The only work done by the

actuators is positive: The left ankle actively

extends when triggered by the right foot

hitting the ground, and vice versa. The hip

joint is not powered, and the knee joints only

have latches. The average mechanical power

(10) of the two ankle joints is about 3 W,

almost identical to the scaled gravitational

power consumed by the passive-dynamic

machine on which it is based (8). Including

electronics, microcontroller, and actuators,

the Cornell biped consumes 11 W (11).

To compare efficiency between humans

and robots of different sizes, it is convenient to

use the dimensionless specific cost of trans-

port, c
t
0 (energy used)/(weight � distance

traveled). In order to isolate the effectiveness

of the mechanical design and controller from

the actuator efficiency, we distinguish be-

tween the specific energetic cost of transport,

c
et

, and the specific mechanical cost of

transport, c
mt

. Whereas c
et

uses the total

energy consumed by the system (11 W for

the Cornell biped), c
mt

only considers the

positive mechanical work of the actuators

(3 W for the Cornell biped). The 13-kg Cor-

nell biped walking at 0.4 m/s has c
et
, 0.2

and c
mt

, 0.055. Humans are similarly

energy effective, walking with c
et
, 0.2, as

estimated by the volume of oxygen they

consume (V
O2

), and c
mt

, 0.05 (12–14).

Measurement of actuator work on the Delft

biped yields c
mt

, 0.08. Based on the small

slopes that it descends when passive, we

estimate the MIT biped to have c
mt

Q 0.02.

Although the MIT and Delft bipeds were

not specifically designed for low-energy use,

both inherit energetic features from the

passive-dynamic walkers on which they

are based. By contrast, we estimate the

state-of-the-art Honda humanoid Asimo to

have c
et

, 3.2 and c
mt

, 1.6 (15). Thus

Asimo, perhaps representative of joint-angle

controlled robots, uses at least 10 times the

energy (scaled) of a typical human.

Control algorithms for state-of-the-art,

level-ground walking robots are typically

complex, requiring substantial real-time

computation. In contrast, the Delft and Cor-

nell bipeds walk with primitive control al-

gorithms. Their only sensors detect ground

contact, and their only motor commands are

on/off signals issued once per step. In addition

to powering the motion, hip actuation in the

Delft biped also improves fore-aft robustness

against large disturbances by swiftly placing

the swing leg in front of the robot before it

has a chance to fall forward (16, 17).

The MIT biped (Fig. 2C) is designed to

test the utility of motor learning on a passive-

dynamic mechanical design. The goal of the

learning is to find a control policy that

1Mechanical Engineering, University of Michigan, Ann
Arbor, MI 48104, USA. 2Theoretical and Applied
Mechanics, Cornell University, Ithaca, NY 14853,
USA. 3Brain and Cognitive Sciences and Center for Bits
and Atoms, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA. 4Mechanical Engineering,
Delft University of Technology, NL-2628 CD Delft,
Netherlands.
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Fig. 1. ‘‘Ramp-walking,’’
‘‘downhill,’’ ‘‘unpowered,’’
or ‘‘passive-dynamic’’
machines. Our powered
bipeds are based on these
passive designs. (A) The
Wilson ‘‘Walkie’’ (27).
(B) MIT’s improved ver-
sion (28). Both (A) and
(B) walk down a slight
ramp with the ‘‘comical,
awkward, waddling gait
of the penguin’’ (27).
(C) Cornell copy (29)
of McGeer’s capstone
design (7). This four-
legged ‘‘biped’’ has two
pairs of legs, an inner
and outer pair, to pre-
vent falling sideways. (D) The Cornell passive biped with arms [photo: H. Morgan]. This walker has
knees and arms and is perhaps the most humanlike passive-dynamic walker to date (8).

B

C DA

Fig. 2. Three level-
ground powered walk-
ing robots based on the
ramp-walking designs
of Fig. 1. (A) The Cor-
nell biped. (B) The Delft
biped. (C) The MIT
learning biped. These
powered robots have
motions close to those
of their ramp-walking
counterparts as seen
in the supporting on-
line movies (movies S1
to S3). Information on
their construction is in
the supporting online
text (9).

A B C
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stabilizes the robot_s trajectory on level terrain

using the passive ramp-walking trajectory as

the target. The robot acquires a feedback

control policy that maps sensors to actions

using a function approximator with 35 param-

eters. With every step that the robot takes, it

makes small, random changes to the parame-

ters and measures the change in walking

performance. This measurement yields a

noisy sample of the relation between the

parameters and the performance, called the

performance gradient, on each step. By means

of an actor-critic reinforcement learning al-

gorithm (18), measurements from previous

steps are combined with the measurement

from the current step to efficiently estimate

the performance gradient on the real robot

despite sensor noise, imperfect actuators, and

uncertainty in the environment. The algorithm

uses this estimate in a real-time gradient de-

scent optimization to improve the stability of

the step-to-step dynamics (Fig. 3). The robot_s
actuators are mounted so that when they are

commanded to their zero position, the robot

imitates its passive counterpart. Starting from

this zero policy, the learning system quickly

and reliably acquires an effective control

policy for walking, using only data taken from

the actual robot (no simulations), typically

converging in 10 min or È600 steps. Figure 3

illustrates that the learned control policy not

only achieves the desired trajectory but is also

robust to disturbances. The robot can start,

stop, steer, and walk forward and backward at

a small range of speeds. This learning system

works quickly enough that the robot is able to

continually adapt to the terrain (e.g., bricks,

wooden tiles, and carpet) as it walks.

Each of the robots here has some design

features that are intended to mimic humans.

The Cornell and Delft bipeds use anthropo-

morphic geometry and mass distributions in

their legs and demonstrate ankle push-off and

powered leg swinging, both present in human

walking (14, 19). They do not use high-power

or high-frequency actuation, which are also

unavailable to humans. These robots walk

with humanlike efficiency and humanlike

motions (Fig. 4 and movies S1 to S3). The

motor learning system on the MIT biped uses

a learning rule that is biologically plausible at

the neural level (20). The learning problem is

formulated as a stochastic optimal feedback

control problem; there is emerging evidence

that this formulation can also describe bio-

logical motor learning (21).

The Cornell and Delft bipeds demonstrate

that walking can be accomplished with ex-

tremely simple control. These robots do not

rely on sophisticated real-time calculations or

on substantial sensory feedback such as from

continuous sensing of torques, angles, or atti-

tudes. This implies that steady-state human

walking might require only simple control as

well; the sequencing of human joint-angles in

time might be determined as much by mor-

phology as by motor control. We note that no

other robots have done particularly better at

generating humanlike gaits even when using

high-performance motors, a plethora of sen-

sors, and sophisticated control.

In theory, pushing off just before heel-

strike requires about one-fourth the energy of

pushing off just after heel-strike (22, 23), so

the Cornell robot was initially designed with

this preemptive push-off strategy. Initial

push-off resulted in both higher torque de-

mands on the motor and a high sensitivity to

push-off timing that our primitive control

system could not reliably stabilize. Humans

seem to solve both of these problems without

a severe energy penalty by using a double

support phase that overlaps push-off and heel-

strike. These issues must also be addressed

in the design of advanced foot prostheses.

The success of the Delft robot at bal-

ancing using ankles that kinematically couple

Fig. 3. Step-to-step
dynamics of the MIT
biped walking in place
on a level surface,
before (q) and after
(x) learning. Shown is
the roll angular veloc-
ity when the right
foot collides with the
ground (q 0 0, q̇ 9 0)
at step n þ 1 versus
step n. Intersections
of the plots with the
solid identity line are
fixed points. The hor-
izontal dashed line is
the theoretical ideal;
the robot would reach
q̇ 0 0.75 sj1 in one
step. This ideal cannot
be achieved due to
limitations in the con-
trollability of the ac-
tuation system. On a level surface, before learning, the robot loses energy on every step (q̇nþ1 G qn),
eventually coming to rest at q̇ 0 0. After learning, the robot quickly converges near q̇ 0 0.75 sj1 for
0 e q̇0 e 1.7 sj1.
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Fig. 4. Two sets of
video stills of the Cor-
nell ankle-powered bi-
ped walking on a level
surface next to a per-
son. A little less than
one step is shown at
7.5 frames/s. Both the
robot and the person
are walking at about
1 step/s. The stick fig-
ure indicates the leg
angles for the corre-
sponding video stills;
the right arm and leg
are darker than the left.
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leaning to steering hints that humans could

similarly use a simple coupling between lean

and lateral foot placement to aid balance.

Furthermore, simulations used in the devel-

opment of the Delft robot showed that the

swift swing-leg motion not only increased

fore-aft stability but also increased lateral

stability. Indeed, the physical robot was not

able to balance laterally without sufficient

fore-aft swing-leg actuation. This highlights

the possible coupling between lateral and

sagittal balance in human walking.

The MIT biped shows that the efficiency

of motor learning can be strongly influenced

by the mechanical design of the walking

system, both in robots and possibly in

humans. Previous attempts at learning control

for bipedal robots have required a prohibi-

tively large number of learning trials in

simulation (24) or a control policy with

predefined motion primitives on the robot

(25). By exploiting the natural stability of

walking trajectories on the passive-dynamic

walker, our robot was able to learn in just a

few minutes without requiring any initial

control knowledge. We also found that it

was possible to estimate the walking perform-

ance gradient by making surprisingly small

changes to the control parameters, allowing

the robot to continue walking naturally as it

learns. This result supports the use of actor-

critic reinforcement learning algorithms as

models for biological motor learning.

The conclusion that natural dynamics may

largely govern locomotion patterns was al-

ready suggested by passive-dynamic machines.

A common misconception has been that

gravity power is essential to passive-dynamic

walking, making it irrelevant to understanding

human walking. The machines presented here

demonstrate that there is nothing special about

gravity as a power source; we achieve success-

ful walking using small amounts of power

added by ankle or hip actuation.

We expect that humanoid robots will be

improved by further developing control of

passive-dynamics–based robots and by

paying closer attention to energy efficiency

and natural dynamics in joint-controlled

robots (26). Whatever the future of human-

oid robots, the success of human mimicry

demonstrated here suggests the importance

of passive-dynamic concepts in understand-

ing human walking.
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Terrestrial Gamma-Ray Flashes
Observed up to 20 MeV
David M. Smith,1* Liliana I. Lopez,2 R. P. Lin,3

Christopher P. Barrington-Leigh4

Terrestrial gamma-ray flashes (TGFs) from Earth’s upper atmosphere have
been detected with the Reuven Ramaty High Energy Solar Spectroscopic
Imager (RHESSI) satellite. The gamma-ray spectra typically extend up to 10
to 20 megaelectron volts (MeV); a simple bremsstrahlung model suggests
that most of the electrons that produce the gamma rays have energies on
the order of 20 to 40 MeV. RHESSI detects 10 to 20 TGFs per month, corre-
sponding to È50 per day globally, perhaps many more if they are beamed.
Both the frequency of occurrence and maximum photon energy are more than
an order of magnitude higher than previously known for these events.

Terrestrial gamma-ray flashes (TGFs) were un-

expectedly detected from Earth_s atmosphere

by the Burst and Transient Source Experiment

(BATSE) on the Compton Gamma-Ray Observ-

atory (CGRO), a NASA satellite in low-Earth

orbit between 1991 and 2000. Each BATSE

TGF (1) lasted between a fraction of a milli-

second and several milliseconds, shorter than

all other transient gamma-ray phenomena ob-

served from space. Since they were first

detected, it has also been noticed that TGFs

had a harder energy spectrum (higher average

energy per photon) than any of these other

phenomena (1).

Fishman et al. (1) immediately interpreted

the TGFs as high-altitude electrical discharges

and found a correlation with thunderstorms.
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This supporting material includes

1. Materials and Methods. Details about the
robots’ construction and control.

2. An analogy. A description of the parallels
(in content, not in significance) between first
powered flight and these robots.

In addition we hope readers will look at the videos:

S1 Cornell powered biped. This movie shows
videos of the robot walking on flat ground. A
slow-motion segment shows the ankle push-
off actuation.

S2 Delft pneumatic biped. This movie shows the
robot walking down a hall with views from the
front, side, and back.

S3 MIT learning biped. This movie begins with
the powered robot imitating passive walking
down a 0.9 degree slope, from three camera
angles. Then it shows the robot learning to
walk on flat terrain with foam protective pads.

The controller kicks the robot into random ini-
tial conditions between learning trials. After
a few minutes, the robot is walking well in
place, so we command it to walk in a circle.
Finally, we show the robot walking down the
hall, on tiles and outside; this footage is taken
from a single trial where the robot adapted to
each change in the terrain as it walked.

More material and other videos are available
through
http://tam.cornell.edu/˜ruina/powerwalk.html .

1 Materials and Methods

Details about the three robots are presented here.

1.1 Cornell powered biped.

This robot is autonomous; it has no power lines
and no communication links to the outside. It con-
sists of two 0.8 m long legs, each having knees, at-
tached at a hip joint. The robot has curved-bottom
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Figure 1: The Cornell powered biped

feet, arms, and a small torso which is kept upright
by connection to the legs with an angle-bisecting
mechanism. Each arm carries a battery. The right
arm is rigidly attached to the left leg andvice versa,
reducing yaw oscillations (Fallis, 1888, Collins,
Wisse and Ruina 2001). The machine weighs 12.7
kg and has 5 internal degrees of freedom (one hip,
two knees, and two ankles). The thigh-to-shank
length and mass ratios are 0.91 to 1 and 3.3 to
1, respectively, which mimics human architecture
and seems important to the passive dynamics of the
system. The hip joint is fully passive. A latch at
each knee passively locks the shank to be paral-
lel with its proximal thigh throughout stance. This

latch is released by a solenoid at the completion of
ankle push-off, at which point the knee is passive
until knee-strike. Ankle push-off restores energy
lost, mostly to heel-strike collisions. To minimize
the needed motor size, energy for ankle push-off is
stored in a spring between steps.

The control circuitry is located in the
hip/torso/head visible in the figure. A finite-
state machine with eight binary inputs and outputs
is implemented in 68 lines of code on an Atmel
AT90S8515 chip running on an ATSTK500
standard development board. A second board
with relays and passive conditioning components
connects the board to the electromechanical and
sensory parts. During the first state, Left Leg
Swing, all actuators are unpowered and the left
knee latch passively locks at knee strike. When
ground-detection contact switches below the
left foot detect impending heel strike, the state
changes to Right Ankle Push-Off. This begins
a timed activation of the solenoids that release
the plantar-flexor spring of the right foot. When
switches detect full foot extension, the state
changes to Right Toe Return. During this state, a
9.5 Watt, 6.4 oz gear-reduced MicroMo©R motor is
activated, slowly retracting the foot and restoring
spring energy. Also, a short time after detection of
impending left-foot heel-strike, a solenoid unlocks
the right knee. When a switch on the motor
indicates full foot retraction, the state changes to
Right Leg Swing, and the foot-retraction motor
is deactivated. The state machine then swaps
roles for the left and right legs and goes to the
initial state. Taking all sensing, including the
sensing of internal degrees of freedom (which
could in principle be made open loop), about 20
bits of information per step flows to the processor.
Environmental sensing, i.e., the instant of foot
contact, is about seven bits per step.

This machine has only one capability, walking
forward. It is designed to walk with minimal en-
ergy use. Its speed, path and joint motions are not
shaped or controlled but follow from its mechanical
design and primitive ankle push-off actuation. An-
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kle extension occurs mostly after the opposite leg
has completed heel-strike collision, so in principle
the machine could be made to consume about four
times less energy by having ankle push-off before,
rather than after, the opposing leg’s foot-to-ground
collision (Kuo, 2002). However, push-off before
heel-strike seems to require more precise timing
and also requires greater ankle torques. We sur-
rendered this possible gain in energy effectiveness
in trade for greater simplicity of control.

Low energy use was a primary goal in the design
of the Cornell robot. We measured its power con-
sumption during walking trials using an off-board
digital oscilloscope connected with fine wires. At
500 samples per second, the scope measured bat-
tery voltage on one channel, and the voltage drop
across a 1 ohm power resistor in series with the
batteries on another. The product of the voltage
and current was, on average, 11 watts (yielding
cet = 0.2). Mechanical energy use was measured
in experimentally simulated push-off trials. The
force at each foot contact point was measured as
the ankle was slowly moved through its extension
range, and this force was integrated to estimate me-
chanical work per step, yielding an average over a
cycle of about 3 watts (cmt = 0.055). This is a
slight over-estimate of the mechanical energy used
for propulsion because some energy is lost at the
collision between the ankle and shank at full ankle
extension.

The theoretical lower limit for the cost of trans-
port in walking models iscmt = 0. This can be
achieved by swaying the upper body with springs
in such a manner as to totally eliminate the colli-
sional losses (Gomes and Ruina, 2005). Without
swaying the upper body, a motion that would have
significant energetic cost in humans, a rough lower
bound on energetic cost can be estimated from the
point-mass small-angle model of Ruina, Srinivasan
and Bertram (2005) as

cet ≥ cmt ≥ J
(d − df )2

ℓ2

v2

2gd
≈ 0.0003

whereJ is the collision reduction factor, which

is 1/4 for push-off before heel-strike,d ≈ 0.4m
is the step length,df ≈ 0.2m is the foot length,
ℓ ≈ 0.8m is the leg length,v = 0.4m/s is the
average velocity, andg ≈ 10 m/s2 is the grav-
ity constant. In a dynamic 3-D model (adapted
from Kuo 1999) with geometry, mass distribution,
speed, and step length similar to this robot, with-
out a hip spring or pre-emptive push-off, we found
the mechanical cost of transport to be 0.013. Using
the liberal collision reduction factor of 1/4 above,
this yields a theoretical minimum of 0.003. Spring
actuated leg swing, used by humans, could also
significantly reduce the mechanical work require-
ments for walking at this speed by reducing step
length. Thus, by a variety of estimates, the me-
chanical work of this robot walking at this speed,
small as it is, seems to have room for an order of
magnitude reduction.

The Cornell powered biped walked successfully
during a period of a few weeks starting in July
2003. This robot is a proof-of-concept prototype,
not a production-run machine. It was developed as
a one-shot attempt using a small ($10K) budget. As
is not unusual for experimental robots, the device
did not stand up well to long periods of testing; on
average about one mechanical component would
break per day of testing. For instance, the cables
connecting the motor to the primary ankle exten-
sion spring ran over a small radius pulley at the
knee and broke frequently. When the Cornell robot
was best tuned it would walk successfully at about
30% of attempts. Failed launches were due to inad-
equate matching of proper initial conditions, most
often ending with foot scuff of the swing leg. The
robot seems mildly unstable in heading, so once it
was launched, the primary failure mode was walk-
ing off of the (narrow) walking table or walking
into a wall. Uneven ground also lead to falls. Be-
cause it walked 10 or more steps many times, with
the end only coming from hitting a wall or cliff, the
gait is clearly stable (although not very) for both
lateral and sagital balance. However, the reader can
make his/her own judgments based on the videos
which are the basic documentation of success.
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A key aspect of the success, and also the touchi-
ness, of this robot is the shape and construction of
the feet. The general issues related to feet for this
class of robots is discussed in Collins, Wisse and
Ruina (2001). We tried various support-rail curve
shapes and overall foot stiffnesses, and only one of
these led to successful walking.

The Cornell machine, which uses wide support-
ing feet for lateral stability, is not being maintained.
Rather, present efforts are aimed at developing a
machine which uses simple active control for lat-
eral balance using foot placement. This is used
by humans during walking (Bauby and Kuo 2000)
and the idea is related to the kinematic lean-to-steer
mechanism of the Delft Biped and the steering used
by a bicycle rider for balance.

1.2 Delft pneumatic biped

This robot is also autonomous; all power sources
and computation are onboard. The robot weighs
8 kg, has 5 internal degrees of freedom (one hip,
two knees, two skateboard-truck-like ankles), has
an upper body, and stands 1.5 m tall. The swinging
arms do not add degrees of freedom; they are me-
chanically linked to the opposing thighs with belts.
The knees have mechanical stops to avoid hyper-
extension, and are locked with a controllable latch.
Two antagonist pairs of air-actuated artificial mus-
cles (McKibben muscles) provide a torque across
the hip joint to power the walking motion.

The muscles are fed with CO2 from a 58
atm cannister, pressure-reduced in two steps to
6 atm through locally developed miniature pneu-
matics. Low-power, two-state valves from SMC
Pneumatics©R connect the artificial muscles either
to the 6 atm supply pressure or to 0 atm. The calcu-
lation ofcmt = 0.08 for the Delft biped, used in the
main paper, is based on actuator work (measuring
the force-length relation of the muscles at the op-
erating pressure). It does not take into account the
huge (but inessential) losses from stepping down
the gas pressure. To find a value forcet, we calcu-
lated the decrease ofavailable energy(or exergy)

A latch at the knee 

joint is locked through 

stance  and unlocked in 

the swing phase

The right arm is 

slaved  to the left 

thigh via this 

drive belt

The chains  making up

the  bisecting

mechanism that 

keeps the

upper body upright

CO2 canister

The electronics, 

provides on/off 

signals for the 

muscles

One foot

switch 

underneath

each foot

One of the four 

artificial muscles

Empty bucket 

Skateboard-truck-

like ankle joints 

add to lateral stability

Figure 2: Delft pneumatic biped.

for a pressure drop from the 58 atm saturated liq-
uid state to atmospheric pressure. Available energy
represents the amount of work that could be done
with the pressurized gas if the both the gas expan-
sion process and the simultaneous heat transfer pro-
cess are reversible (i.e. lossless). In that hypothet-
ical setting, one can use the enthalpy and entropy
values for the gas at the beginning and the end of
the expansion process. At a constant temperature
of 290 K, this amounts to a loss of available en-
ergy of 664 kJ per kg CO2. A 0.45 kg canister
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can power the 8 kg robot for 30 min of walking
at 0.4 m/s yieldingcet = 5.3. This value has lit-
tle meaning, however. First, even the best real-
world gas-expansion systems can only use about
30% of the theoretically available energy, due to
irreversibility issues. More importantly, most of
the expansion loss would be eliminated if the CO2

had been stored at 6 atm. Unfortunately this would
require an impractically large storage tank. Thus
the discrepancy betweencet = 5.3 andcmt = 0.08
is due to practical problems associated with using
compressed-gas energy storage.

McKibben muscles have a low stiffness when
unactuated, leaving the joints to behave almost pas-
sively at zero pressure. At higher pressures, the
McKibben muscles behave as progressively stiffer
springs. By activating opposing muscles in differ-
ent proportions, the relaxed angle of a joint can be
controlled. This is applied at the hip where the ar-
tificial muscles alternate in action. At the start of
each step, determined by a foot switch, one mus-
cle is set to 6 atm and the other to 0 atm. The
swing leg is thus accelerated forward until the re-
laxed angle of the hip is reached, where it (approxi-
mately) stays due to damping in the muscles and in
the joint. If sufficient hip joint stiffness is obtained
from the hip muscles, stable walking similar to that
of McGeer’s four-legged machine can be obtained.
The upper body is kept upright via a kinematic re-
striction, a chain mechanism at the hip which con-
fines the upper body to the bisection angle of the
two legs (Wisse, Hobbelen and Schwab, 2005).

Lateral stability in two-legged robots can be ob-
tained in a number of ways (Kuo, 1999), and one
solution was tested in the Delft robot. The feet are
attached to the lower leg via special ankle joints
(Wisse and Schwab, 2005) which have a joint axis
that runs from above the heel down through the
middle of the foot, quite unlike the human ankle
but much like skateboard trucks. The mechanism
creates a nonholonomic constraint, which can en-
able stability without dissipation, as found in skate-
boards (Hubbard, 1979). If the robot starts to lean

sideways as a result of a disturbance, the ankle al-
lows the foot to remain flat on the floor. Due to
the tilted joint orientation, the leaning is accompa-
nied by steering. If the walker has sufficient for-
ward velocity, this steering helps prevent it from
falling sideways, much like the turning of a bike
wheel into a fall helps prevent a bike from falling
down.

A Universal Processor Board from Multi
Motions©R (based on the Microchip©R PIC16F877
micro-controller) uses foot-contact switch signals
to open or close the pneumatic valves. The control
program is a state machine with two states: either
the left or the right leg is in swing phase. At the
beginning of the swing phase, the swing knee is
bent. Four hundred milliseconds after the start of
the swing phase, the knee latch is closed, waiting
for the lower leg to reach full extension through its
passive swing motion. Programmed in assembly,
this amounts to about 30 lines of code. The only
sensing is the time of foot contact, used once per
step. Taking account of the implicit rounding from
the processor loop time, we estimate the sensor in-
formation flow rate is about six bits per second.

The Delft powered biped first walked success-
fully in July 2004. When mechanically sound, most
of the manual launches (by an experienced person)
result in a steady walk. Falls can often be attributed
to disturbances from within the machine (a contact
switch that performs unreliably, or a cable that gets
stuck between parts), and occasionally to floor ir-
regularities. Another problem is that the pneumatic
and mechanical systems (which were developed at
Delft for a proof-of-principle prototype rather than
an industrial-strength product) have frequent me-
chanical failures that often need a day or more to
fix. At present the machine is being kept working
so it can repeat the behavior shown in movie S2.

1.3 MIT learning biped.

First we duplicated the Wilson design (Fig. 1a of
the main paper) using two rigid bodies connected
by a simple hinge. The kneeless morphology was
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Figure 3: The MIT learning biped

chosen to reduce the number of joints and actuators
on the robot, minimizing the combinatorial explo-
sion of states and control strategies that the learning
algorithm needed to consider. The gait was itera-
tively improved in simulation by changing the foot
shape for a given leg length, hip width, and mass
distribution. The resulting ramp-walker (Fig. 1b
of main paper) walks smoothly down a variety of
slopes. The powered version uses tilt sensors, rate
gyros, and potentiometers at each joint to estimate
the robot’s state, and servo motors to actuate the
ankles. The completed robot weighs 2.75 kg, is
43cm tall, and has 6 internal degrees of freedom
(each leg has one at the hip and two at the ankle).

Before adding power or control, we verified that
this robot could walk stably downhill with the an-
kle joints locked.

The robot’s control code runs at 200Hz on an
embedded PC-104 Linux computer. The robot runs
autonomously; the computer and motors are pow-
ered by lithium-polymer battery packs, and com-
munication is provided by wireless ethernet. This
communication allows us to start and stop the robot
remotely; all of the control algorithms are run on
the onboard computer.

The learning controller, represented using a lin-
ear combination of local nonlinear basis functions,
takes the body angle and angular velocity as inputs
and generates target angles for the ankle servo mo-
tors as outputs. The learning cost function quadrat-
ically penalizes deviation from the dead-beat con-
troller on the return map, evaluated at the point
where the robot transfers support from the left
foot to the right foot. Eligibility was accumu-
lated evenly over each step, and discounted heavily
(γ ≤ 0.2) between steps. The learning algorithm
also constructs a coarse estimate of the value func-
tion, using a function approximator with only an-
gular velocity as input and the expected reward as
output. This function was evaluated and updated at
each crossing of the return map.

Before learning, outputs of both the control pol-
icy and the value estimate were zero everywhere
regardless of the inputs, and the robot was able to
walk stably down a ramp; because it is simulating
passive-dynamic walking, this controller runs out
of energy when walking on a level surface. The
robot kicks itself into a random starting position
using a hand-designed control script to initialize
the learning trials. The learning algorithm quickly
and reliably finds a controller to stabilize the de-
sired gait on level terrain. Without the value esti-
mate, learning was extremely slow. After a learning
trial, if we reset the policy parameters and leave the
value estimate parameters intact, then on the next
trial the learning system obtains good performance
in just a few steps, and converges in about two min-
utes.
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The resulting controller outputs ankle com-
mands that are a simple, time-independent function
of the state of the robot, and does not require any
dynamic models. All learning trials were carried
out on the physical biped with no offline simula-
tions. The learned controller is quantifiably (using
the eigenvalues of the return map) more stable than
any controller we were able to design by hand, and
recovers from most perturbations in as little as one
step. The robot continually learns and adapts to the
terrain as it walks.

The MIT biped, which was not optimized for en-
ergy efficiency, hascet = 10.5, as calculated by the
energy put back into the batteries by the recharger
after 30 minutes of walking. Thecet for this robot
is especially high because the robot has a powerful
computer (700 MHz Pentium) on a light robot that
walks slowly.

The version of the MIT powered biped shown
here first walked successfully in January 2004. The
earliest powered prototype of this type at MIT first
walked successfully in June 2003.

The MIT biped is still working well, and is the
subject of active development and study. New
learning algorithms and new design elements (such
as different curvatures in the feet) are being tested
with the same hardware. A new version with knees
is mostly developed. The robot has walked for
a few one-hour on-the-treadmill energy-use trials
(the batteries would have lasted for about 90-100
minutes).

2 Analogy with first powered
flight*

On December 17, 1903 the Wright brothers first
flew a heavier-than-air man-carrying powered ma-
chine. There are various parallels between their
machine and the simply-powered low-energy-use
walking robots described here.

Starting from before the work began, the
Wright’s were inspired by flying toys. The walk-
ing machines here were also inspired by, and even

partially based on, walking toys.
The Wright’s ideas about control of steer in air-

craft were based on the relation between steer and
lean in bicycles. Our research in the passive bal-
ance of robots was inspired by the self-stability of
bicycles.

The Wrights worked for years developing glid-
ers, planes powered by the release of gravitational
potential energy as they flew down a glide slope.
This was in contradiction to a common paradigm
of the time, which was to try to get a powered plane
to work, motor and all, all at once. Once they had
mastered gliding they were confident they could
master powered flight. On the second day they tried
the idea, adding a primitive engine to a glider de-
sign, they made their famous flight. Our develop-
ment of passive-dynamic walkers, robots that walk
down gentle slopes powered only by gravity, was
by far the bulk of our efforts. Once we had those
working well we were confident that the machines
could walk on the level with a small addition of
power. The result that adding power to a downhill
machine works is one of the subjects of this paper.

The analogy above is not accidental. Tad
McGeer, the pioneer of passive-dynamic robotics,
was trained as an aeronautical engineer. McGeer’s
foray into robotics was directly and explicitly an
imitation of the Wright Brothers paradigm. It
worked for the Wrights after others failed at mas-
tering power and flight all at once. Perhaps,
McGeer thought, it could work for the more pedes-
trian task of making an efficient walking robot.
McGeer put aside the project after making signifi-
cant progress with passive machines (walking robot
gliders), returning to the world of airplane design.
Our research has been, more or less, to pick up
where McGeer left off, improve the ‘gliders’, and
then add simple power.

* The analogy has its limits. Heavier-than-air
powered flight was a well-defined major goal over a
long period of time with huge consequences. That
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accomplishment swamps anything that might hap-
pen with robotics, including this research. The
Wright analogy does not extend to the significance
of our work, which is hugely less.
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