
The swinging motion seen when brachiators move beneath
their overhead supports naturally brings to mind the
oscillations of a pendulum and the repeated interchange of
gravitational potential energy (Ep) with kinetic energy (Ek). It
is tempting, then, to assume that brachiating apes use natural
pendular motions to reduce the muscular investment necessary
to travel within the forest canopy (Ashton and Oxnard,
1964a,b; Fleagle, 1974; Preuschoft and Demes, 1984).
Previous pendular swinging models are all based explicitly or
implicitly on a half cycle of a freely swinging pendulum. 

Under some circumstances, brachiators do move roughly
according to the predictions of simple oscillatory pendular
motion. Preuschoft and Demes (1984) modeled brachiation
as a distributed-mass simple pendulum. They found good

agreement with observed brachiation in gibbons for relatively
slow brachiation. They predicted a natural pendular period of
0.98 s, while empirically measured periods in similar sized
gibbons ranged from 0.83 to 0.95 s for slow, continuous-
contact brachiation. Some limitations in the pendular swinging
models have been attributed to model oversimplification with
regard to both poor representation of the complex mass
distribution of the animal and potential movements of non-
support limbs during the swing (Fleagle, 1974; Preuschoft and
Demes, 1984). Swartz (1989) pointed to the narrow range in
oscillation frequency that pendular swinging models allow.
Preuschoft and Demes (1984) recognized many of the features
affecting ricochetal brachiation (see their Fig. 12.5), but
the pendular model they presented did not calculate any
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In brachiation, an animal uses alternating bimanual
support to move beneath an overhead support. Past
brachiation models have been based on the oscillations of
a simple pendulum over half of a full cycle of oscillation.
These models have been unsatisfying because the natural
behavior of gibbons and siamangs appears to be far less
restricted than so predicted. Cursorial mammals use an
inverted pendulum-like energy exchange in walking, but
switch to a spring-based energy exchange in running as
velocity increases. Brachiating apes do not possess the
anatomical springs characteristic of the limbs of terrestrial
runners and do not appear to be using a spring-based gait.
How do these animals move so easily within the branches
of the forest canopy? Are there fundamental mechanical
factors responsible for the transition from a continuous-
contact gait where at least one hand is on a hand hold at a
time, to a ricochetal gait where the animal vaults between
hand holds? We present a simple model of ricochetal
locomotion based on a combination of parabolic free flight
and simple circular pendulum motion of a single point mass
on a massless arm. In this simple brachiation model, energy

losses due to inelastic collisions of the animal with the
support are avoided, either because the collisions occur at
zero velocity (continuous-contact brachiation) or by a
smooth matching of the circular and parabolic trajectories
at the point of contact (ricochetal brachiation). This model
predicts that brachiation is possible over a large range
of speeds, handhold spacings and gait frequencies with
(theoretically) no mechanical energy cost. We then add the
further assumption that a brachiator minimizes either its
total energy or, equivalently, its peak arm tension, or a
peak tension-related measure of muscle contraction
metabolic cost. However, near the optimum the model is
still rather unrestrictive. We present some comparisons
with gibbon brachiation showing that the simple dynamic
model presented has predictive value. However, natural
gibbon motion is even smoother than the smoothest
motions predicted by this primitive model. 

Key words: gibbon, ricochetal locomotion, brachiation, point-mass
model.
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predictions for the more athletic ricochetal brachiation
maneuvers of gibbons. 

Gibbons display two brachiation gaits. At slower rates of
forward progression, the gibbon uses a continuous-contact gait
that is characterized by a dual-limbed support phase during a
stride cycle. As in human walking, the duty factor of each limb
is ù0.5 and there is always at least one limb in contact with
the overhead support. At higher forward velocities the animal
uses a ricochetal brachiation gait that is characterized by a non-
contact phase between support phases of each step (the step is
defined here as the period from hand contact to the next
contralateral hand contact). 

Here we describe a simple model which extends the
pendular continuous-contact models in a simple way for
gibbon ricochetal brachiation. With this mechanism, step
periods can be arbitrarily long or short, even with a given
pendulum length. 

Continuous contact and ricochetal point-mass models 

In the simplest rendition of the pendular swinging model,
brachiation is viewed as a sequence of half-cycle motions of a
simple point-mass pendulum. In this model, the center of mass
moves along a sequence of circular arcs (Fig. 1A). If friction
and elasticity are neglected, the system can continue its motion
without investment of energy above that necessary to place
the next supporting arm into the appropriate position for the
following step. In this system, no energy is lost in the

interactions of the system with its support because collisional
losses are eliminated by the motion coming to a rest at the end
of each arc. Hence the swing period is a half cycle of a simple
pendulum. Higher frequency motions are imaginable but
require energy supply to make up for collisional losses at the
discontinuity as the center of mass changes direction at the
transition from one circular arc to the next. In this paper, the
only continuous-contact solutions we consider are those in
which the center of mass (CM) comes to rest at the top of the
swing when the change of hand holds occurs. 

Like the ricochetal gait of a brachiator, the ricochetal model
we propose utilizes a flight phase between hand contacts. We
take the motion of the ricochetal brachiator to be a circular
motion around the hand hold at full arm extension during
support, combined with a parabolic free-flight arc between
hand holds (Fig. 1B). We assume that the animal can
coordinate its arms to have its hands in the proper place for
each landing into a new circular arc around the next hand hold
(limb mass is neglected in the model). In this model, collisional
losses can again be reduced to zero by assuming that the gibbon
chooses motions that make a smooth transition from the
parabolic flight phase to the circular swing-support phase of
the stride. That is, mechanically work-free motion of this
model is possible if the tangent of the flight path during the
flight portion of the stride is coincident with the arc of the
swing as the animal begins the support portion of the stride
(Fig. 1B, inset). Although this model appears to have a rather
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Fig. 1. Diagram of the model used.
(A) The continuous-contact model in
which there is no flight phase and the
velocity is zero at the instant of double
contact; (B) the two phases of the
ricochetal model. The contact phase of
the ricochetal model is similar to that of
the continuous-contact model but the
velocity is non-zero at the beginning
and end of the swing phase. The flight
phase between contacts is ballistic. The
inset shows details of the transition
from the parabolic arc of the flight
phase to the circular arc of the swing
phase. We assume that the trajectories
are tangential at the transition. D,
horizontal distance; L, length of
massless inextensible link; vb,
maximum speed; vi, speed at initiation
of flight; φi, angle between pendulum
and horizontal at initiation flight.
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smooth motion, it does predict a discontinuity in acceleration
and handhold reaction force when the ballistic flight phase
begins and ends. 

If the handhold spacing is less than twice the arm length,
then both the continuous contact and ricochetal modes of
mechanically cost-free transport are available. These models,
together, are essentially equivalent to the minimal-biped model
of Alexander (1995) turned upside down. These models cannot
quite be classified with the passive-dynamic locomotion
models of the types recently investigated for walking (e.g.
McGeer, 1990; Garcia et al., 1998) because, as for the
swinging leg in Alexander’s minimal-biped model, the non-
contacting arm in this minimal-bimanual model is assumed to
be appropriately coordinated by a conscious (non-passive)
controller. This two-dimensional point-mass model is probably
the simplest model that could feasibly provide useful
information about the dynamics of gibbon brachiation. 

Governing equations 

The brachiator is modeled as a massless inextensible link
with length L connected to a point mass m. As a guess for
comparison with data, L represents the distance from the
animal’s CM to the hand grip when hanging (this definition
might slightly contradict another possibly useful definition of
L as half the distance between the most distant objects the
animal can simultaneously hold). We want to track the position
of the center of mass (x, y) in time t as the animal moves from
one hand hold to the next, a horizontal distance D away. While
swinging, the pendulum makes an angle φ with the horizontal
until the initiation of flight at φi. The speed v has a maximum
speed vb at the bottom of pendular swing arc when the tension
in the pendulum is also at its maximum Tb. The speed at the
initiation of flight is vi, and the average horizontal speed is
vav=D/ttot where ttot=tc+tf and tc and tf are the pendular contact
time and the flight time, respectively. The total, potential and
kinetic energies are E, Ep and Ek, respectively. We denote
differentiation with respect to time by superposed dots. 

In the pendular contact phase, motion is governed by the
simple pendulum equation. During flight we have the standard
ballistics equations: 

for the pendular (contact) phase and 

ÿ = − g and ẍ = 0 , (2)

for the flight phase, where g is the acceleration due to gravity.
Assuming no velocity discontinuities and hence no

collisional losses, the trajectory is left-right symmetric about
both the bottom of the pendulum swing and the top of the
flight parabola. Note, again, that acceleration and force are
necessarily discontinuous at the transition from swing to flight
and from flight to swing. 

For most calculations, we assume a value for the handhold
spacing D and takeoff angle φi and calculate other quantities
of interest as follows. Since the flight time is tf=2[(visinφi)/g]

and the horizontal component of flight velocity is vicosφi,
Fig. 1B shows that 

D/2 = Lsinφi + [(visinφi)/g]vicosφi , (3)

in which we can solve for vi in terms of D, L and φi. Energy
conservation 

E = mvb
2/2 = (mv2/2) + mgy c vi

2 = vb
2 + 2gL(cosφi − 1) (4)

then tells us the value of the maximum speed vb and hence the
maximum tension Tb=m(g+vb

2/L). That is, for a given m, g and
L, the same motion that minimizes total energy also minimizes
the peak arm tension. Energy balance also yields the angular
velocity as a function of angle, from which we can calculate
exactly the pendular contact time as 

or approximately as 

where

Although the exact integral (equation 5) can be expressed in
terms of elliptic integrals, we chose to use a simple numerical
quadrature (quad8.m in MATLAB®) for evaluation. The
approximation in equation 6 is based on modeling the
pendulum as a linear torsional oscillator with effective torsional
stiffness (mg/L2)/c2 and thus the same energy as a gravitational
pendulum at φi. This approximation turns out to be accurate
within 1 % or less for angles up to 90 ° and all energies except
when D is close to 2L and the flight initiation angle is more than
about 60 °. In the worst exceptional case, the error in tc is
approximately 5 %. Thus, with a loss of accuracy that is far less
than our other modeling approximations, it is possible to use
the approximate formula equation 6 for the contact time,
making our model fully closed form. None of our general
predictions depend on which of equations 5 or 6 are used. We
can now calculate a variety of simple kinematic quantities. As
a check, and in order to prepare for more elaborate models, we
have also calculated these quantities by numerically integrating
the equations of motion, equations 1 and 2. 

The first of equations 4 applied at flight initiation φ=φi

determines the total energy as: 

Note that the continuous-contact pendular swinging
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brachiation model is a subset of the ricochetal brachiation
model described above but with vi=0 and tf=0. 

For a given handhold spacing there are a number of different
solutions of the center of mass trajectories, as shown to scale
in Fig. 2, in this case with D=4L. In Figs 3A–D, 4A, various
motion quantities are shown for families of solutions. The
extremes of these solutions are obviously beyond the
capabilities of an animal for a variety of reasons. From these
solutions we can make the following observations. (1) For a
given handhold spacing greater than 2L, there are high energy
ricochetal solutions for both low and high flight initiation
angles (Figs 2, 3C). (2) At 2Lsinφi=D, the ricochetal solution
matches the continuous-contact swinging solution. (See
Fig. 3A, for example.) (3) For handhold spacings of less than
2L, there are ricochetal solutions only so long as 2Lsinφi<D.
In Fig. 3A, for example, the solutions at a given D<2L have a
maximum φi where they meet the continuous-contact solution.
(4) For D<2L contact time tc is an increasing function of flight
initiation angle, but is always less than the period of a simple
pendulum with the same amplitude motion (i.e. the continuous-
contact solution). (5) For all but the nearly continuous-contact
motions, the contact time in ricochetal motion is less than the

period of a linearized simple pendulum (π in the dimensionless
plot of Fig. 3A). But the flight phase is arbitrarily long, so there
are no fundamental restrictions on stride period for a given
hand spacing greater than 2L (see Fig. 3B). (6) The average
forward speed is seen to be highest at small flight initiation
angles where the flights are more flat (Fig. 3D). 

Optimization criteria 

In order to reduce the range of possible solutions that satisfy
our general criteria (i.e. tangency of the swing arc and flight
parabola), one would like to define an optimization criterion.
The most obvious optimization criterion is the specific
energetic cost of transport (energy used per unit weight per unit
distance). However, this measure is already optimal (at 0) for
all the solutions shown. None of the motions considered
require any energy input, at least theoretically. Another
candidate for optimization is speed; however, the model allows
arbitrarily high speeds (the low trajectories in Fig. 2,
corresponding to small φi in Fig. 3D, are the fast ones). Thus,
we need to seek a more subtle candidate for the optimization.
For an animal that does not want to waste energy starting,
stopping or changing gaits, we might seek minimum total
energy solutions. Note that, in Fig. 2, the low, fast solutions
(small φi) have high total energy as do the high, looping (large
φi) solutions (see Fig. 3C) for D>2L. Also, it is likely to be
advantagous for an animal to reduce the force demands on its
muscles or bones or to reduce stress. As noted, the solution that
minimizes the total energy of the system is also the one that
minimizes the maximum tensile force in the supporting arm.
Thus, we can tentatively make more definitive predictions
about the model by picking an ‘optimal’ motion from amongst
the range of possible motions. Fig. 3C shows the total energy
of some solutions at various values of D, as a function of the
take-off angle φi. As can be seen in Fig. 3C and can be shown
by differentiation of the equations above, the optimal solution
involves a flight initiation angle of φi=45 ° (so long as D>√2L).
This choice of φi agrees with the classical ballistics intuition
that the greatest range is achieved when a frictionless
cannonball is launched at 45 °. [The set of parabolic trajectories
of a fixed energy whose apex is on the y axis have an envelope
made of two sloping 45 ° sloping angles. Finding the lowest
energy trajectory is equivalent to sliding the apex of this wedge
up to the lowest point where the envelope matches the
boundary conditions, i.e. either the launch and land points
(from classical ballistics) or the launch and land circles (from
the ricochetal oscillation model).]

Even though the mechanical energy is minimized by a flight
initiation angle of 45 °, the total mechanical energy of the
model is within 20 % of this optimum for flight initiation angles
from 32 ° to 62 °. Thus, we cannot treat the optimization
criterion as one that would tightly constrain behavior, given
that other quantities we have neglected likely need to be
controlled and optimized by an animal as well. 

The primary metabolic cost of locomotion may be for
turning on and off muscle force and not for doing work, as
proposed for running by Kram and Taylor (1990). If the
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initiation angle φi
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L

Fig. 2. Various trajectories that satisfy the requirement that the swing
and flight trajectories be coincident at the transition between the two.
Each of the flight paths shown is no-collision and no-loss. The
family of trajectories depicted is for a single handhold spacing. For
high flight initiation angles, e.g. φi=80 °, the energy of the motion is
high, the average forward speed is low, and the peak tension in the
arms is high. For low flight initiation angles, e.g. φi=10 °, the energy
is again high, as are average forward speed and peak arm tension. A
portion of the circular arc of the swing trajectory is shown by the
heavy line at each end of the parabolic flight trajectory. The
relationship between various motion quantities, handhold spacing D
and flight initiation angle φi is shown in Fig. 3. L, length of massless
inextensible link.
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metabolic cost of gaining a momentary isometric tension is
proportional to the magnitude of tension in the support limb
and roughly independent of time, the metabolic cost per unit
distance of transport would be proportional to peak tension
divided by the distance between contractions D. This measure
of ‘cost’ (see Fig. 4A) also has a minimum at φi=45 °. This

minimum is also broad so the cost function is nearly optimized
for a large range of flight initiation angles. Surprisingly, this
cost is almost independent of handhold spacing (the curves in
Fig. 4A nearly fall on top of each other). 

Finally, if we accept φi=45 ° as the preferred ricochetal
mode, since it minimizes energy, peak arm tension and ‘cost’,
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Fig. 3. Various point-mass model predictions for both continuous-contact (dotted lines; D=2Lsinφi) and ricochetal (solid lines) motions as a
function of flight initiation angle φi. In A–D, the solid curve represents predictions for one handhold spacing D. Ten values of D are shown
varying by the ratio of √2. The dotted lines show the solutions for continuous contact in which D determines φi. The maximum D for
continuous contact is 2L. For Dø2L, where L is the length of the massless inextensible link, the ricochetal model terminates where it meets the
continuous-contact model (continuous contact is then the same as ricochetal with no flight phase). (A) Contact time (tc), the time from hand
contact to release. Note that the continuous-contact model predicts a contact time that is always close to that predicted by the period of small
oscillations of a simple pendulum, tc=π√(L/g). An analytical approximation (dashed line; described in the text) is almost indistinguishable from
the (exact) numerical solution except when L is approximately 2 and for flight initiation angles over approximately 70 °. (B) The time of one
‘step’, including contact and ballistic phases (ttot). In the ricochetal model, all periods are possible, from zero to infinity. In the continuous-
contact model, the periods are the same as those in A and range only from approximately 3.14 to 3.9. (C) The total mechanical energy E of the
motion, which is also the kinetic energy at the bottom of the swing phase. For Dø√2L, the energy is minimal for a launch angle of φi=45 °. A
minimum in energy also corresponds to a minimum in the peak tension in the arms. Note, however, that this minimum is broad so it is
approximately reached for a range of φi. (D) Average horizontal speed (vave) of the centre of mass. For continuous-contact motion, the forward
speed tends to zero as the swing angle tends to zero. For ricochetal motion, the forward speed becomes arbitrarily large as the flight initiation
angle φi tends to zero. As the flight initiation angle tends to 90 °, the ballistic time becomes large (the difference between B and A is the
ballistic time) and average forward motion is slow.
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we can look at various measures of performance for
continuous-contact motion and for ‘optimal’ ricochetal motion,
as shown in Fig. 4B. Shown are peak tension (the total energy
curve would be similar), average speed and the ‘cost’ function
described above. Tension and energy are minimized by
arbitrarily small handhold spacings but average speed and
‘cost’ both favor arbitrarily large handhold spacings. 

Limited reach alone, as determined by extended arm length,
demands a transition to ricochetal motion for handhold
spacings D>2L. But ricochetal motions are possible for
arbitrarily small handhold spacings. The three optimal
conditions discussed all predict that the (barely) ricochetal
motion corresponding to continuous-contact motion is best for
handhold spacings less than √2L and that ricochetal solutions
are preferred for larger spacings. In Fig. 4B, the continuous-
contact solutions are shown within the band that corresponds
to √2L<D<2L, even though they are not optimal there. The
figure makes evident that a gibbon would suffer little penalty
for any of the three optimal criteria for delaying that transition
until at least about 1.7L. Such a gait-transition delay would
postpone the obvious decrease in security and maneuverability
caused by losing hand contact. 

The dynamics of gibbon brachiation 

In order to determine how well the model described above,
either restricted by the optimization criterion or not,
corresponds to the brachiation behavior of a gibbon, we
compared some of the predictions of the model with
measurements of the brachiation in a 7.95 kg female White-
handed gibbon (Hylobates lar). The techniques utilized to make

these measurements are fully described in Chang et al. (1997).
Briefly, a universal force transducer of our own design was
mounted to the ceiling of a reinforced chain-link exercise cage
of dimensions 3.71 m wide, 6.10 m long and 3.56 m high.
Uninstrumented hand holds identical to that of the transducer
were also mounted to the ceiling of the exercise cage in series
with the transducer hand hold. The distance between hand holds
for different analysis sessions was adjusted to be at equal
intervals of either 0.8, 1.2, 1.6, 1.72, 1.95 or 2.25 m. The
number of hand holds was maximum at seven (the instrumented
transducer in the center of six non-instrumented hand holds) and
minimum at three (the transducer flanked by two non-
instrumented hand holds). The cage restricted the number of
hand holds for longer spacings; at these longer distances the
animal always used ricochetal brachiation. Only those runs in
which the change in horizontal velocity was small were used in
this analysis, as determined by integration of the horizontal
load. A lateral video image was taken (60 Hz, 1/500 s shutter
speed) as the animal brachiated freely across the hand holds. 

Time of contact with the hand hold for a given run was
determined from the force transducer output. Contact with the
transducer was easily determined and was accurate to 5 ms,
which was the channel sampling rate. Maximum and initial
velocities were determined by integration of the force record
after conversion to acceleration. Average forward velocity was
determined from the calibrated video image. The video images
of each run were digitized and the time and distance interval
of a complete brachiation cycle was determined (NIH Image).
This velocity value was used to determine the constant of
integration for the horizontal motion from load cell data. The
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constant was assumed zero in the vertical direction because the
hand holds were all at the same height. 

Results
Model predictions 

Fig. 5 shows the relationship between average forward
velocity and handhold spacing, comparing a brachiating
gibbon with the model predictions. The model predicts two
‘gaits’: continuous-contact and ricochetal. At slower forward
velocities and closer handhold spacing, the optimization
criterion selects continuous-contact gait, in which at least one
hand is in contact with the hand hold at all times. The model
is then just a sequence of simple pendulum motions placed side
by side. At higher forward velocities and for handhold spacings
with D>√2L, the optimization criterion selects the ricochetal
solution with a flight initiation angle of 45 ° (the theoretical
portions of Fig. 5 duplicate the vave curve in Fig. 4B). 

The time course of the vertical and horizontal forces
predicted by the model and measured in a brachiating gibbon
is illustrated in Fig. 6. The fluctuations of force are much
smoother in the gibbon compared with the model. The model
underestimates the peak vertical force, although the net
impulse is similar.

Evaluating brachiation 

There is substantial overlap between the prediction of the
relationship between vave and handhold spacing of the model
and the behavior observed in the brachiating gibbon (Fig. 5).
The changeover from continuous-contact to ricochetal
brachiation corresponds well between the model and
observations. The model tended to overestimate vave except at
the longest spacing of the continuous-contact gait (which
corresponds to the changeover point of the two gaits) and the
longer spacings of the ricochetal gait (1.9 and 2.25 m).
Although the observed velocities do not differ significantly
from the model’s predictions (i.e. the model prediction lies
within the 95 % confidence interval of velocities measured at
each of the spacings), they are not adequate to fully evaluate
the predictive capability of this model. 

Although the theoretical prediction is as smooth as the model
allows, the gibbon chooses an even smoother force profile
(Fig. 6). This observation reinforces the notion that the avoidance
of energy-dissipating inelastic collisions may be a key behavioral
feature of brachiation. Smoothness of force transition is a way of
further avoiding collision losses. The origin of the word ‘jerk’ for
the time derivative of acceleration is probably due to the fact that,
in systems with play or flexibility, a large rate of acceleration
leads to internal collisions or internal motions. The gibbon, being
actually more than a point mass, may well be avoiding such ‘jerk’
losses by maintaining a smooth force profile. 

The simple pendulum and the ricochetal model motions we
describe have some basic differences. This is the case even
though they both swing below their support and the simple
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pendulum represents a subset of the ricochetal solutions. One
demonstration of this difference is indicated by the relationship
between initial velocity of the body when it contacts the support
and the maximum velocity it achieves during the swing. The
simple pendulum model begins at an initial velocity of zero.
The greater the arc of a pendulum (i.e. the larger the angle it
swings through), the higher the velocity it will achieve at the
bottom of the swing. Thus, for continuous contact, as support
spacing or vave increases, the greater the difference between the
vi and vb. This is in contrast to the ricochetal case. The ricochetal
model makes contact with the support with a substantial vi. The
farther the handhold spacing or the faster the animal travels, the
smaller the difference between vi and vb. In Fig. 7, the
difference between vb and vi is plotted against vave for the
pendulum and ricochetal models and for the gibbon brachiating
in a continuous contact and ricochetal manner. Compared to the
data, the simple point-mass model generally underestimates the
velocity difference. However, continuous-contact brachiation
shows a distinctive increasing trend that parallels the pendular
prediction while ricochetal brachiation shows a decreasing
trend that parallels the ricochetal prediction. 

Time of hand contact (tc) is a critical determinant of the
interaction between the animal and its support. The time of
contact is a measure of the time available for the limb’s support
musculature to be active and has been shown to correlate well
with metabolic cost in terrestrial runners (Kram and Taylor,
1990). A plot of tc against vb has two distinctive predictions for
the pendulum versus ricochetal motions (Fig. 7B). The
maximum velocities vb of the two models overlap substantially.
The continuous-contact brachiation runs are scattered generally
around the pendular model prediction, but the fit is not good.
The behavior of the animal does not appear to be strongly
influenced by the optimal pendular dynamics in continuous
contact. However, the ricochetal runs are tightly grouped
around the ricochetal prediction for these variables (Fig. 7B). 

Discussion 
The mechanics of brachiation have been conceptualized in

the past exclusively as a simple pendulum (Andrews and
Groves, 1976; Ashton and Oxnard, 1964a,b; Avis, 1962;
Carpenter and Durham, 1969; Chivers, 1974; Fleagle, 1974;
Jenkins et al., 1978; Jungers and Stern, 1984; Mittermeier,
1978; Parsons and Taylor, 1977; Preuschoft and Demes, 1984).
When the pendulum model did not fulfill expectations, it was
assumed that the details of the model did not adequately
describe the complexities of the animal and its limbs, rather than
questioning whether the pendular mechanism was an
appropriate or adequate model of the behavior of these animals
(Swartz, 1989). Our gibbon data indicate that only under limited
circumstances is the movement of the gibbon determined by
continuous-contact pendular mechanics. Even for continuous
contact, the gibbon does not appear to be strongly restricted to
the simple pendulum-like motions (Fig. 7). 

Many aspects of our basic model match the model described
by Preuschoft and Demes (1984), and it is interesting that many

of their observations correspond with the quantitative results
of our model. Preuschoft and Demes described the condition
at the transition from the flight phase to the contact phase of
the ricochetal stride that corresponds to the non-collision
criterion we define. However, they did not define this condition
as a critical criterion of ricochetal brachiation. They also did
not identify optimization criteria or extend their model to
quantify predicted ricochetal behavior. 

Gibbons use ricochetal oscillations as a mechanism of
bouncing between overhead hand holds in their higher velocity
brachiation movements. Our simple model offers a solution to
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the frequency restrictions associated with continuous-contact
pendulum-based mechanisms. At the same time, the model
offers a mechanism for minimizing energetic cost in
brachiation. Theoretically, the ricochetal model is 100 %
efficient, just as the continuous-contact pendular exchange and
some models of running with springs. 

In order to interpret the specialized morphological
adaptations that characterize the brachiators, it is first
necessary to determine the mechanical function(s) that their
specific morphology allows. One major confusion that has
obscured the interpretation of the anatomical specializations
found in brachiators (limb and body proportions, joint
anatomy, muscular activity and coordination, etc.) has been the
misinterpretation of brachiation as primarily a pendulum-like
movement. The data provided in this study show some
evidence that, for ricochetal brachiation, the point-mass
ricochetal model approximates both the scaling and trends in
dynamic changes in locomotion. This is in spite of the model’s
gross oversimplification of the animal’s complex morphology. 

It must be recognized, however, that in the ricochetal gait
the gibbon will not behave as a simple point-mass pendulum.
Instead, the animal acts more like a jointed complex pendulum
(J. E. A. Bertram and Y. H. Chang, submitted for publication).
This difference likely accounts for some of the differences in
the model’s predictions and our direct measurements of gibbon
brachiation (Figs 6, 7). Nevertheless, the trends described by
our simple model clearly indicate that the gibbon is moving
very much as we predict. 

A feature of this model is the wide range of motions that
it allows at near ‘optimal’ speeds. Gibbons appear to have
developed a very simple, yet sophisticated strategy that allows
them to maneuver at high velocity and change the distance
between ‘steps’ with minimal energy loss. It is remarkably
difficult for most terrestrial animals to arbitrarily alter the
length of successive steps when running at high velocities, yet
this is what is routinely demanded of the brachiator in its
natural environment. Our model allows for a wide range of
step lengths. Strategies based on this required functional
flexibility may account for why brachiation is not such an
economical mode of locomotion as our simplistic theory
indicates it could be. For instance, based on analysis of oxygen
consumption rates, it has been found in the neotropical spider
monkeys Ateles geoffroyi and A. belzebuth that the cost of
locomotion was always greater in brachiation versus
quadrupedal walking (Parsons and Taylor, 1977). 

Further analysis of the mechanics underlying brachiation
will provide better understanding of the morphological
specializations that have allowed brachiators to fully exploit
their three-dimensionally complex environment. Brachiation
may prove to be a fruitful area to investigate the quantitative
relationship between functional morphospace and the adaptation
of an integrated system to a complex locomotory task. 

The animals and facilities necessary to quantify gibbon
brachiation were provided by the Department of Anatomical
Sciences, SUNY-Stony Brook. We are particularly indebted to

Susan Larson, Jack Stern, Brigitta Demes and Marianne Crisci
for assistance with this project. We also wish to thank Mariano
Garcia for assistance with modeling concepts. Some of the work
reported here was supported by the NASA Space Grant College
and Fellowship Program, NASA/NY Space Grant Consortium
(NASA NGT 40012). The brachiation analyses described in this
paper were supported by a grant from NSF-Division of Physical
Anthropology (NSF-SBR-9422118 and 9706225). 
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