
Chapter 5

Passive Dynamic Walking in 3D

Previously, this work dealt with two-dimensional models that were constrained to

a plane. However, since humans and other bipeds move in three dimensions, the

obvious extension of the two-dimensional work is to model passive walkers in three

dimensions. As it turns out, the modelling and the search for stability become much

more challenging in this case.

5.1 The 3D Model

The 3-D model studied here is similar to the model of McGeer (1991), except that a

torsional spring and damper at the hip and some torsional steering damping at the

contact point of the stance leg are included. The goal is to �nd model parameters

which lead to stability. In particular, the e�ects of the torsional spring and damper

at the hip, which have not been previously investigated, are of interest. McGeer's

model is shown in Figure 5.1

Most details on the simulation of the three-dimensional models can be found

in Chapter 2, and the actual code is reproduced at the end of this chapter. Some

199



200

γ

x

y z

xc

zc yc

c

θ

ψ

stance leg
swing leg

ml ,I l

mT

∆z

∆y φ

R

whip

Figure 5.1: McGeer's 3D passive-dynamic walking model: parameters and con�g-

uration variables. Like McGeer's 2D straight-legged model, it has two identical

straight legs and semi-circular feet. Orientation of the stance leg relative to the

ground frame is determined by the heading(�), bank( ), and pitch(�) sequence of

rotations about the axes indicated. The swing and stance legs have the same head-

ing and roll angles, but can pitch independently. The leg mass isml and has location

�x, �y, and c (with respect to the stance leg frame) and the leg coordinates are

aligned with its principal moments of inertia. The radii of gyration are rgyrx, rgyry ,

and rgyrz . The hip has only a point mass, mT . The radius of curvature of the feet

is R. This �gure is used with permission from Coleman (1998b).
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veri�cation of the three-dimensional simulation code is provided by the following

evidence.

� The simulation matches the predicted behavior of a rolling disk when all of the

mass is lumped at the center of the stance foot and the swing foot is massless.

� The simulation conserves energy to the appropriate numerical tolerance be-

tween foot collisions.

� The simulation results (dynamics and stability calculations) match results

from another simulation constructed independently by Coleman (1998a).

� The simulation code reproduces (to numerical tolerance) the �xed point and

relevant stability characteristics of a two-dimensional model in three dimen-

sions.

5.1.1 Some Comments on Eigenvalues

Other Measures Of Lateral Stability

The simplest measures of stability are the eigenvalues of the linearized Jacobian

matrix of the stride function (as in 2-D models); details for calculating the Jacobian

are given in Section 3.7.1. As shown by Coleman (1998b), however, this measure can

be misleading when considering the lateral stability of the walker. Some parameter

changes which super�cially appear to bene�t stability (since they lower the out-of-

plane eigenvalue) only change the time scale of the sideways falling motions and do

not a�ect the inherent tendency of the model to fall sideways.

To address the abovementioned shortcoming, another measure which compares

the lateral stability of the walking motion to the stability of the same frozen
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model is also included in the discussions for completeness; see Coleman (1998b)

or McGeer (1991) for more details. To brie
y summarize this stability measure, the

eigenvalue of the walking motion �, is compared to ep�
�

where � � is the gait cycle

period and p is the natural lean frequency of the corresponding frozen planar walker

(no hip spacing, all angles except � locked at 0) about the downhill axis (McGeer's

y direction).

p =

s
2mlegc+mT

2mleg(c2 + r2gyry) +mT

(5.1)

For a walker like that of Coleman (1998b), with an out-of-plane center-of-mass

position, Equation 5.1 becomes (in the notation in Section2.3)

p =

s
R + pc3(1)

2Iyy + (R + pc3(1))2 + pc3(3)2
(5.2)

where Iyy is the moment of inertia about the fore-aft axis (McGeer's yc direction)

through the center of mass.

The quantity  ̂ep�
�

approximately represents the angle that a planar walker

would fall through if it were balanced statically, given an initial bank perturbation

 ̂, and allowed to fall for an amount of time equal to one gait cycle period � �. We

would like to know if the same bank perturbation  ̂, applied at the beginning of a

gait cycle, will lead to a higher angular de
ection or less of an angular de
ection

after one step. If the walker falls less during gait than during statically- unstable

standing, then the ratio �=ep�
�

will be less than one, and the walking motions are

presumably bene�cial to the lateral stability. If the ratio �=ep�
�

is less than one,

then the walking motions are not bene�cial to lateral stability. More details on this

derivation are given by Coleman (1998b) and McGeer (1991). Note that this is of

questionable utility for a three-dimensional model with hip spacing, since adding hip

spacing (and foot spacing) produces a non-planar walker. However, it is interesting
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to observe that hip spacing almost always tends to improve the lateral stability of

the planar model. In other words, the stability ratio �=ep�
�

is almost always less

than one in the 3-D simulations presented here.

One drawback to the ratio measure described above is that in the limit as the

walker takes very small steps, � ! 1, and  ̂ep�
�

! 1, since � � ! 0. So, the

ratio as described above is not as useful in the small-step limit. A third measure

of stability which does not have this limitation is the ratio of the characteristic

falling frequency p of the walker (as de�ned above) to the quantity ln�=� �, which

is the e�ective p of the walker during gait. If p=(ln�=� �) > 1, then the walker falls

sideways more slowly during walking than when perturbed from standing upright;

thus, the walking motions are bene�cial to lateral stability. If p=(ln�=� �) < 1, then

the walker falls more quickly during walking than when perturbed from standing

upright; in this case, the walking motions are not bene�cial to lateral stability. So,

one can also try to optimize stability by minimizing the ratio p=(ln�=� �).

In the results below, the former stability ratio is used, since the small-step limit

is not approached.

Quasi-Neutral Stability In Heading

For the case of zero hip spacing, one would expect to be able to (and in fact can)

reproduce two-dimensional gait cycle motion in three-dimensions; in this case, the

motion restricts itself to a plane of progression (i.e. the walker moves in a straight

line as viewed from above). We would expect the two-dimensional eigenvalues to

remain unchanged, and extra eigenvalues to be introduced which governed lateral

(falling out of plane) stability, heading stability, and other three-dimensional e�ects.

In the case of heading, the corresponding eigenvalue is be exactly 1; the reasoning
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is as follows. For all known two-dimensional gait cycles at slope 
, there are also

gait cycles at slopes of 
 + 
̂, where 
̂ << 
. For planar motion down a 
at ramp

in three dimensions, perturbing the heading angle � by �̂ has the e�ect of creating

a new plane of progression with a slightly di�erent slope (imagine the extreme case

of changing the heading from � = 0, or straight downhill with an e�ective (original)

ramp slope of 
, to � = ��=2, which would be sideways across the ramp with an

e�ective slope of 0). The end result is that the walker continues in a planar gait

cycle at the new heading with a new e�ective slope. This a one-parameter family

of gait solutions in heading.

This reasoning breaks down if the walker has out-of-plane elements in its motion

or if it has hip spacing or similar out-of-plane parameters, since all the foot contact

points no longer lie along a straight line. However, since the slope is small and the

walker is mostly governed by planar dynamics, the e�ects of this asymmetry will

generally be weak, and the result is that one heading eigenvalue is close to one in

magnitude.

5.1.2 Parameterization of Icm

Following Coleman (1998b), a parameterization of the moment of inertia matrix

(tensor) Icm is required in order to implement a gradient-search technique, which is

described below. Thus will ensure that the components of Icm will be varied in a

physically realizable way. Like Coleman (1998b), Icm is parameterized with a six-

mass \jack" arrangement, which can be rotated in an arbitrary way with respect

to the stance leg axes x̂3; ŷ3; ẑ3. The rotation is described by a 1-2-3 Euler angle

system with angles �x; �y; �z about the x̂3, new ŷ, and new ẑ axes, respectively (see

Figure 5.2).
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Figure 5.2: Parameterization of the moment of inertia matrix, based on an illus-

tration from Coleman (1998b). The inertia matrix is described by the distances

d1; d2; d3 and angles �x; �y; �z.
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Before the search algorithm is begun, lengths d1; d2; d3 and angles �x; �y; �z

are found which parameterize Icm of the stance leg. Figure 5.2 illustrates this

parameterization. If �x, �y, and �z are restricted to be between ��=2 and �=2,

and none of the di are zero, then each moment of inertia matrix Icm is represented

uniquely a set of parameters d1; d2; d3 and �x; �y; �z.

The steps for �nding d1; d2; d3 and �x; �y; �z are as follows.

1. Diagonalize Icm into W and 3

6
R where Icm = 3

6
R W 3

6
RT . The eigenvalues

of Icm are the diagonal elements of W, which can be sorted from lowest to

highest: call them I1; I2; I3. The notation is abused here a little by the use of

the symbol 3

6
R. Frame 6 is �xed to the jack; this implies that frame 4 is an

intermediate frame between frames 3 and 6, which is not the case; frame 4 is

�xed to the swing leg.

2. The values of d can be found as follows (from Coleman (1998b)):

d1 =

r
3

2
(�I1 + I2 + I3);

d2 =

r
3

2
(I1 � I2 + I3); and

d3 =

r
3

2
(I1 + I2 � I3): (5.3)

Since the Is are constrained by mechanics to follow a triangle inequality, the

d values will always be positive.

3. 3

6
R will be of the form

2
66664

c�yc�z �c�ys�z s�y

c�xs�z + s�xs�yc�z c�xc�z � s�xs�ys�z �s�xc�y

s�xs�z � c�xs�yc�z s�xc�z + c�xs�ys�z c�xc�y

3
77775 (5.4)
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where s(x) and c(x) denote the sine and cosine of x, respectively. To �nd

�x; �y; �z from Equation 5.4, try the following:

�y = arcsin 3

6
R(1; 3) (5.5)

�z = arcsin 3

6
R(1; 1)= cos�y (5.6)

�x = arcsin 3

6
R(3; 3)= cos�y (5.7)

Changing the sign of a column of 3

6
R does not a�ect the product 3

6
RW 3

6
RT ,

so one may need to try di�erent combinations of positive and negative columns

to �nd �x; �y; �z. If �x; �y; and�z are all between ��=2 and �=2, then this is

a unique set of parameters for Icm.

5.2 Numerical Results

Three di�erent numerical searches are presented. The �rst set of searches are simple

one-parameter searches, beginning with the parameters reported by McGeer (1991).

The second search involves a gradient-based search method where only the mo-

ment of inertia parameters are varied, beginning with parameters like those of

McGeer (1991), except that a torional hip spring is added (based on results from

the previous search). This gradient search was successful in the sense that the tech-

nique worked, but unsucessful in the sense that only a local minimum was found

rather than a stable gait. The third set of searches are gradient based with multi-

ple parameters being varied; they were unsucessful in that they lead walkers into

parameter regions where no gaits exist.

In two-dimensions, one-parameter searches were relatively successful; thus, this

same initial strategy was adopted in 3-D. As a �rst attempt to discover stability,

one parameter is varied until one of the following things occurs:
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� The maximum eigenvalue begins to increase.

� An eigenvalue that was previously less than one becomes signi�cantly greater

than one in magnitude.

� The gait solution disappears.

� The walker parameters become signi�cantly less anthropomorphic or unap-

pealing for aesthetic reasons.

5.2.1 One-Parameter Searches Near McGeer' Parameters

The results described here are similar to those of Kuo (1998), who did similar in-

dependent work about the same time as this work. We �rst reproduce the solution

reported by McGeer (1991) and use this as a starting point for various one-parameter

searches. One of McGeer's passive gaits (shown in McGeer (1991)) and the param-

eters that particular walker are shown in Figure 5.3.

As McGeer observed, the amount of steering motion (yaw) in this model is

larger than would be expected in a human biped; perhaps a model with more

degrees of freedom and/or counter-swinging arms might mimic human motions more

accurately.

A gait cycle for the version of McGeer's model presented here is shown in Figure

5.4. This gait is the starting point for some of the parameter-varying numerical

experiments described below.

Tables 5.1 and 5.2 compare eigenvalues and eigenvectors for this walker, as cal-

culated by McGeer (1991) and myself, respectively. The dominant eigenvalue is

the one which governs the lateral stability or \out-of-plane" falling motion. The

goal of the searches here is to minimize this eigenvalue. Curiously, these eigenvalue
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Figure 5.3: Three-dimensional passive cycle, as calculated for a straight-legged biped

having legs separated by 15% of leg length. The slope is 0.032; Other parameters

are shown on the right side of the plots. (Used with permission from McGeer (1991);

also in Coleman (1998b))
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results do not completely match those of McGeer (1991) (since the state variables

used are di�erent, the eigenvectors do not match), but do match those found in-

dependently by Coleman (1998a). Some of this discrepancy may be attributed to

di�erences in numerical tolerance (in this work, numerical integration tolerances of

1e� 8 or 1e� 10 are used throughout, while McGeer (1993a) uses �xed time steps

of 0:05, giving numerical tolerances of about 1e� 4 or 1e� 5 with his Runge-Kutta

2nd/3rd order method). Although the largest eigenvalues agree to within about

10 %, McGeer still has two other eigenvalues which are signi�cantly greater than

one in magnitude, while here there are no others (ignoring the steering instability).

This discrepancy calls for further investigation.

The method used here to calculate eigenvalues involves perturbing all eight state

variables (allowing the con�guration to stray o� the section), and then expecting

to see an extra zero eigenvalue. In reality, of course, this (expected zero) eigenvalue

is not quite zero; this gives an estimate of the numerical accuracy of our eigenvalue

computation. Typically, this eigenvalue is zero to four or �ve decimal places when

numerical tolerances of 1e� 8 or 1e� 10 are used.

McGeer (1991) varied hip spacing and ramp slope simultaneously while keeping

the stance angle �xed at 0:3. A plot of his results is shown in Figure 5.5. Unlike

McGeer, in the searches presented here, one parameter is varied at a time, regardless

of stance angle, and the ramp slope is �xed. Turning points (points of in�nite slope

on ramp slope vs. parameter plots) are dealt with separately.

Figure 5.6 shows how the eigenvalue moduli and stability ratio vary as the slope,

hip spacing, and foot radius are varied. The slope does not appear to have a strong

e�ect on the eigenvalue.

We vary hip spacing from the beginning value of 0.15 to 0.33 (nondimensional
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Table 5.1: Some eigenvalues and corresponding eigenvectors from McGeer (1991).

This data is for the gait of Figure 5.3. �C , �, and  are the stance pitch, lean, and

yaw (steering) angles respectively (� and  have their order and meaning switched

as compared with our variables in Table 5.2). Although it is unclear in the text,

!x, !y, and 
F appear to be the angular rates of the walker about Mcgeer's global

x, y, and z axes, while 
C appears to be the angular rate of the swing leg relative

to the the stance leg (about the hip axis zc). These eigenvalues do not fully agree

with our calculations.

McGeer e-value -10.34 4.341 2.224 -1.066

�C -0.319 0.547 0.471 -0.009

� 0.592 0.166 -0.056 0.032

 -0.074 -0.688 -0.364 -0.999

!x 0.380 0.145 -0.176 -0.010

!y 0.608 0.223 -0.179 0.002


C 0.061 0.136 0.675 0.008


F -0.157 0.333 0.351 0.010
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Table 5.2: Eigenvalues and corresponding eigenvectors for our simulation of the

walker of McGeer (1991). The eigenvalues do not completely agree with McGeer's

values (see above text), but are in agreement with independent simulations by Cole-

man (1998a). The eigenvalue near one indicates quasi-neutral stability in heading.

The eigenvalue of zero is expected because the Poincar�e section reduces the dimen-

sion of the phase space by one at the section.

our e-value 11.145 1.088 0.642 -0.259�0.428i 0.064�0.067i 0.000

� -0.205 0.996 0.994 0.777�0.164i -0.391�0.648i 0.0638

 0.550 -0.020 -0.020 0.038�0.017i -0.011�0.116i 0.0357

�st -0.329 -0.022 0.024 -0.196�0.146i 0.110�0.052i -0.396

�sw 0.257 0.060 -0.035 0.374�0.313i -0.217�0.195i 0.138

_� -0.316 0.023 -0.090 -0.118�0.085i 0.239�0.075i 0.350

_ 0.599 -0.007 0.023 -0.074�0.052i -0.054�0.125i -0.176

_�st -0.153 0.045 -0.017 0.157�0.052i -0.056�0.021i 0.3977

_�sw -0.025 -0.036 0.025 0.036�0.112i 0.473�0.077i 0.7119
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Figure 5.5: McGeer's data: step period, slope, and eigenvalue moduli at each �xed

point, shown as a function of hip spacing for his walker parameters. z1 and z2 are

the largest and second-largest eigenvalue moduli, respectively. Along the curves,

the stance angle is constant. (Reprinted with permission from McGeer (1991). Also

reproduced by Coleman (1998b)).
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plot, except for the parameter varied, the parameter values are the same as those

in Figure 5.3.
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units of leg length). As hip spacing increases, the maximum eigenvalue drops some-

what until the solutions cease to exist. Figure 5.6 also shows maximum eigenvalue

modulus and stability ratio as functions of foot radius, with the center of mass

position and total leg length held constant.

Figure 5.7 shows maximum eigenvalue modulus and stability ratio as a function

of the leg center-of-mass position. In the x case, the maximum eigenvalue decreases

until solutions disappear. In the z case, the maximum eigenvalue asymptotes to one

from above due to a balance-bar e�ect as shown by Coleman (1998b)). In the y

case, there is a transition to a short-period gait and other eigenvalues which were

previously less than one in magnitude grow larger than one.

We postpone calculations involving the moment of inertia matrix until later in

the chapter.

A torsional hip spring and damper and a steering damper are our new additions

to the model. The hip damper is proportional to the relative angular velocity

between the stance and swing legs, while the steering damper is proportional to the

heading rate. Figure 5.8 shows maximum eigenvalue modulus and stability ratio as

functions of the hip spring sti�ness and torsional and steering damper coe�cients.

As might be expected, the spring reduces the step period and so improves lateral

stability by the eigenvalue measure, but not much by the stability ratio measure.

At the end of all three curves, the solutions disappear.

5.2.2 A Gradient Search Algorithm

Since stable walking appears to be more elusive in 3-D than in 2-D, a more auto-

mated method of searching for stable gaits is developed: namely, a gradient search

algorithm. This idea has never before been used to �nd stable gaits in passive
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varied, the parameter values are the same as those shown in Figure 5.3.
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models. The idea behind the gradient search algorithm is to follow a path in pa-

rameter space whose direction is along the (in our case, negative of the) gradient

of the objective function (in our case, maximum eigenvalue modulus) with respect

to parameters in order to minimize the objective function. This technique is also

called the method of steepest descent ; it gets its name from the oft-quoted analogy

of descending a hill where the height of the hill h is a function of location on the

surface (see Marsden and Tromba (1976), for example).

Some Details Of The Algorithm

In general, gradient-search algorithms are well known. However, several complica-

tions arise when adapting a generic gradient-search to the task of minimizing the

maximum eigenvalue for a straight-legged walker in 3-D.

The most obvious complication is that not all parameter combinations will result

in a gait. If the solution path is nearing a region in parameter space where solutions

are about to terminate, the condition number of the di�erence function Jacobian

@g

@�
gets very large and/or the lowest non-zero eigenvalue begins to approach zero.

To avoid losing solutions, the condition number of @g

@�
should be kept below some

ceiling. At times, this may provide an extra constraint. A condition number which

is too large indicates that the walker is close to a parameter region where solutions

are about to be lost. If the condition number becomes too large, then parameter

adjustments which cause the condition number to increase are not allowed. Instead,

the parameter adjustment is calculated by

�Pused = �P� �̂(�̂ ��P) (5.8)

where �P is the parameter adjustment suggested by the steepest descent and �̂ is
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a unit vector in the direction of the gradient of the condition number (this gradient

must be calculated). Equation 5.8 is illustrated in Figure 5.9.

p1

p2

high C region

lower C region

C= const

∆Pusedλc

∆Psuggested

∆Pused  =  ∆Psuggested   -  λc   (λc .  ∆Psuggested )

λc 

Figure 5.9: Graphical description of constraining the search algorithm to avoid areas

of high condition number.

Another complication is the possibility that the algorithm will call for parameter

adjustments which wander around near a local objective function minimum but do

not get close enough to the minimum. This is one drawback to this approach, namely

that there are no good step size adjustment criteria. To avoid this somewhat, the

following damping criteria is applied to the parameter adjustment for each step in

parameter space as follows:

� If the maximum eigenvalue at the current �xed point is higher than the max-
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imum eigenvalue at the previous �xed point, then the parameter step size

decreases by about 30%. This would occur, for example, if the old parameters

were on one side of a valley and the new parameter adjustment resulted in

crossing to the other side of the valley and raising the elevation.

� If the dot product of the unit parameter adjustment with the previous unit

parameter adjustment is less than -0.25, the parameter step size is decreased

by another 30%. This would occur if the new parameter adjustment doubled

back too much along the previous path, for instance if the local parameter

surface was like a bowl.

� If the gradient of the objective function with respect to parameters is less

than one in magnitude (indicating proximity to a local minimum) then the

gradient instead of the unit gradient is used in any calculations of parameter

adjustments, since it decreases as the minimum is approached. Normally, the

gradient is greater than one in modulus.

� If none of the above two conditions are met, we assume that the step size can

be increased a little, so the parameter step size is incremented by about 30%.

Gradient Search Results For McGeer's Parameters

The second search begins with parameters approximating those of McGeer's walker,

as before, and the six parameters which make up the moment of inertia matrix (see

Section 5.1.2) are varied. A torsional hip spring is also added to the model before

the search is begun.

Using the results from our single-parameter search with a torsional hip spring,

a search is begun with a hip spring in place, varying only the moment of inertia
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Figure 5.10: A local minimum of maximum eigenvalue with respect to six param-

eters. This was found by application of a gradient search routine beginning with

McGeer's original parameters plus a torsional hip spring. Parameters for this case

are as follows: R = 0:3, 
 = 0:032, h = 0:15, 3pc
3
= [0:38; �0:004 � 0:015],

d1 = 0:562244, d2 = 0:072705, d3 = 0:070994, �x = �1:521920, �y = �0:044393,

�z = 0:159859, and the torsional hip spring coe�cient is 0:54.
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parameters. This leads eventually to a maximum eigenvalue modulus of about

1:095, which is the lowest eigenvalue found in simulations thus far for any walker

which �ts the form of the model above. Parameters for this case are as follows:

R = 0:3, 
 = 0:032, h = 0:15, 3pc
3
= [0:38; �0:004 � 0:015], d1 = 0:562244,

d2 = 0:072705, d3 = 0:070994, �x = �1:521920, �y = �0:044393, �z = 0:159859,

and the torsional hip spring coe�cient is 0:54. This eigenvalue appears to be a local

minimum with regard to parameterizations of Icm, as shown in �gure 5.10. This is

the �rst multi-parameter local minimum discovered for a 3-D passive walker.

A second search was begun where all possible parameters were varied. However,

the algorithm called for parameter adjustments which led to regions in parameter

space where no �xed points existed, despite our condition-number correction tech-

nique (described above). This work is being continued by Eric Phipps in the Cornell

Center For Applied Math.

5.3 Conclusions And Future Work

To date, no stable walking motions for any parameters have been found by any

researchers, using the 3-D models described above. Previously, the most stable case

was that of Coleman (1998b), with a maximum eigenvalue modulus of 1:145. By

adding a hip spring and using our gradient search with six parameters, a parameter

set was found with a maximum eigenvalue modulus of about 1:095.

Some suggestions for further searches are:

� Change the objective function from the maximum eigenvalue modulus to some

function of all the eigenvalues that are greater than one. This would balance

the preference between long-period gaits and short-period gaits, and help to
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eliminate discontinuties in the objective function.

� Use more sophisticated path-following techniques, such as parameterization by

arclength, to track solutions. This avoids some numerical problems associated

with turning points.

� Include models with ellipsoid or toroid feet. Physical models that are known

to be stable (including the Tinkertoyr walker) all have some kind of toroidal

geometry (or limiting cases) at their contact patches.

� As suggested by McGeer (1991), include ball-and-socket hips with torsional

springs for stability. This might minimize the excessive steering motions of

the models above.

� Include freely swinging arms in the models.
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5.4 Appendix Of Straight-Legged 3-D Equations

5.4.1 Initialization File

The parameters used below are those reported by by McGeer (1991). This �le is

run �rst, to initialize parameters and state. The notation follows from Figures 5.1

and 2.3.

clear

global g gam m R p01 p23 p34 pc3 pc4 p4f

global Icm3 Icm4 h hspr hdamp sdamp sspr

format long

g=1; % gravitational constant

h=0.15; % hip width

R=0.3; % foot radius

ml=0.4; mt=0.2; % mass of each leg; mass of point mass on hip

yoff=-0.005; c=0.6; z=0; % McGeer's cm location parameters

rgx=0.1; rgy=0.3; rgz=0.3; % radii of gyration about cm

gam=0.032; % ramp slope

m=[0 0 ml+mt/2 ml+mt/2]'; % put half of hip mass on each leg

p23=[R 0 0]'; % from contact point to center of foot

p34=[1-R 0 -h]'; % from center of foot to swing leg-hip xing

% (this is origin of frame 4)

pc3nohm=[c-R yoff -z]'; % cm of leg with no hip mass

% Icm of leg with no extra mass

Icm3nohm=ml.*[rgx^2 0 0;0 rgy^2 0;0 0 rgz^2];

% compute new leg cm with hip mass

pc3= (ml.*pc3nohm + (mt/2).*[p34(1) p34(2) p34(3)/2]')./m(3);

% compute new Icm3 with hip mass

diffl=-(pc3-pc3nohm);

difft=-(pc3-[p34(1) p34(2) p34(3)/2]');

Icm3 = [ml*(diffl(2)^2+diffl(3)^2)+ ...

mt/2*(difft(2)^2+difft(3)^2)+Icm3nohm(1,1) ...

-ml*diffl(1)*diffl(2)-mt/2*difft(1)*difft(2)+ ...

Icm3nohm(1,2) ...
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-ml*diffl(1)*diffl(3)-mt/2*difft(1)*difft(3)+ ...

Icm3nohm(1,3);

-ml*diffl(2)*diffl(1)-mt/2*difft(2)*difft(1)+ ...

Icm3nohm(2,1) ...

ml*(diffl(1)^2+diffl(3)^2)+mt/2*(difft(1)^2+ ...

difft(3)^2)+Icm3nohm(2,2) ...

-ml*diffl(2)*diffl(3)-mt/2*difft(2)*difft(3)+ ...

Icm3nohm(2,3);

-ml*diffl(3)*diffl(1)-mt/2*difft(3)*difft(1)+ ...

Icm3nohm(3,1) ...

-ml*diffl(3)*diffl(2)-mt/2*difft(3)*difft(2)+ ...

Icm3nohm(3,2) ...

ml*(diffl(1)^2+diffl(2)^2)+mt/2*(difft(1)^2+ ...

difft(2)^2)+Icm3nohm(3,3)];

Icm4 = Icm3; % x and y dirs are reversed by geometry. z dir is

% reversed by leg symmetry. Off diag terms are

% same sign.

% from frame 4 to cm of swing leg

pc4=[1-R-pc3(1) -pc3(2) -pc3(3) ]';

%from frame 4 to center of swing foot

p4f=[p34(1) 0 0]';

hspr = 0; % torsional hip spring stiffness

hdamp = 0.0000; % torsional hip damper

sspr=0; % steering spring (I never use this)

sdamp=0; % steering damping

% fixed point for McGeer's params to 1e-10

% see chapter 2 of thesis for angle definitions

% [theta1(steer) theta2(lean) theta3(pitch) theta4(pitch) ...

% theta1dot theta2dot theta3dot theta4dot];

y0=[0.5298614882 1.54919263047 -0.30129411451 3.7281651863 ...

-0.0558477940 -0.0311301295 0.3458136041 -0.1201100774 ];

t0=0; % initial time

tfinal=10; % final time

tol=1e-10; % numerical tolerance
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5.4.2 Cross-Product Function

The functions here is for taking cross products in 3-D. When placed in the same

directory as the integration code, it is faster than the cross function in MATLABr.

function s=scross(v,b)

% cross product a x b is scross(a)*b

S=zeros(3);

S(1,2)=-v(3);S(1,3)=v(2);S(2,3)=-v(1);

S=S-S';

s=S*b;

5.4.3 On-Line ODEs

The integration code calls the derivative �le below. This more or less follows the

development of equations 2.2 through 2.13 in Section 2.3.

function ydot = yderivs_3D(t,y);

global g gam m R p23 p34 pc3 pc4 p4f Icm3 Icm4 h ...

hspr hdamp sspr sdamp

% 3D file for derivatives of 2-link walker,

% general mass distribution

% and with point-feet.

% Modified for disc feet 3/18/98 and

% checked against Greenwood

% using init_params.m

% Disk feet do not destroy symmetry of M!

% hfoot1 and hdotfoot1 are the z1-height and z1-speed

% of the [bottom of the] swing foot in frame 1.

% define sines and cosines

cO1 = cos(y(1));

sO1 = sin(y(1));

cO2 = cos(y(2));

sO2 = sin(y(2));
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cO3 = cos(y(3));

sO3 = sin(y(3));

sO4 = sin(y(4));

cO4 = cos(y(4));

% define rotation matrices

R01=[cO1 -sO1 0 ;sO1 cO1 0; 0 0 1];

R12=[cO2 -sO2 0 ;0 0 -1;sO2 cO2 0];

R23=[cO3 -sO3 0 ;0 0 -1;sO3 cO3 0];

R34=[cO4 -sO4 0 ;sO4 cO4 0; 0 0 1];

R10=R01';

R21=R12';

R32=R23';

R43=R34';

% first construct [V+G] and tau with only thetadots

% and g terms

vg=zeros(4,1);

% accel of base with only gam and thetadot terms

vdot0 = [0 g*sin(gam) g*cos(gam)]';

vdot1 = R10*vdot0;

% angular velocities and accels of frames 1, 2, and 3

omega1=[0 0 y(5)]';

omega2=R21*omega1+[0 0 y(6)]';

omega2dot=scross(R21*omega1,[0 0 y(6)]');

omega3=R32*omega2+[0 0 y(7)]';

omega3dot=R32*omega2dot+scross(R32*omega2,[0 0 y(7)]');

p233=R32*p23; % from frame 2 to frame 3 in frame 3 coord

v3 = scross(omega3,p233); %vel of stance foot center

% kludge to make rolling work

vdot3an= [sO2*y(6)*y(5)*sO3*R+(-cO2*y(5)+y(7))*cO3*y(7)*R

sO2*y(6)*y(5)*cO3*R-(-cO2*y(5)+y(7))*sO3*y(7)*R 0 ];

% from omegadot x r but with thetaddots =0

% accel of frame 3

vdot3 = vdot3an + scross(omega3,v3)+ R32*R21*vdot1;
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% accel of cm of stance leg

vcdot3 = scross(omega3dot,pc3)+ ...

scross(omega3,scross(omega3,pc3))+vdot3;

% m a and Hdot of stance leg

F3 = m(3)*vcdot3;

N3 = Icm3*omega3dot+scross(omega3,Icm3*omega3);

% angular velocity and accel of swing leg

omega4=R43*omega3+[0 0 y(8)]';

omega4dot=R43*omega3dot+scross(R43*omega3,[0 0 y(8)]');

% accel of frame 4

vdot4 = R43*(scross(omega3dot,p34)+ ...

scross(omega3,scross(omega3,p34))+vdot3);

% accel of cm of swing leg

vcdot4 = scross(omega4dot,pc4)+ ...

scross(omega4,scross(omega4,pc4))+vdot4;

% velocity of bottom of swing foot in frame 3

vf3 =v3+scross(omega3,p34)+ ...

R34*(scross(omega4,(p4f-R43*p233)));

% this is for collision detection

% hfoot1 and hdotfoot1 are the z1-height and z1-speed

% of the [bottom of the] swing foot in frame 1.

hfdot1=R12*(R23*vf3);

hfdot1=hfdot1(3);

hf1=R12*(R23*(p233+p34+R34*(p4f-R43*p233)));

hf1=hf1(3);

% m a and Hdot of swing leg

F4 = m(4)*vcdot4;

N4 = Icm4*omega4dot+scross(omega4,Icm4*omega4);

% Sum(F) = m a and Sum(T) = Hdot for swing (about hip

% axis) and stance

f4 = F4;

n4 = N4+scross(pc4,F4);

vg(4) = n4(3);
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f3 = R34*f4+F3;

n3 = N3+R34*n4+scross(pc3,F3)+ ...

scross(p34,R34*f4)-scross(-p233,f3);

vg(3) = n3(3);

n2 = R23*n3;%+scross(p23,R23*f3);

vg(2) = n2(3);

n1 = R12*n2;

vg(1) = n1(3);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Now get mass matrix column by column %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% construct column 1 by taking O1dotdot=1, all others =0

M=zeros(4);

% angular accels of frames 1-3

omega1dot = [0 0 1]';

omega2dot=R21*omega1dot;

omega3dot=R32*omega2dot;

% accels of frame 3 and cm of stance leg

vdot3 = scross(omega3dot,p233);

vcdot3 = scross(omega3dot,pc3)+vdot3;

% m a and I w of stance leg

F3 = m(3)*vcdot3;

N3 = Icm3*omega3dot;

% angular accel frame 4

omega4dot=R43*omega3dot;

% accel of frame 4 and cm of swing leg

vdot4 = R43*(scross(omega3dot,p34)+vdot3);

vcdot4 = scross(omega4dot,pc4)+vdot4;

% m a and I w of swing leg

F4 = m(4)*vcdot4;
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N4 = Icm4*omega4dot;

% Sum(F) = m a and Sum(T) = Hdot for swing and stance

f4 = F4;

n4 = N4+scross(pc4,F4);

M(4,1) = n4(3);

f3 = R34*f4+F3;

n3 = N3+R34*n4+scross(pc3,F3)+ ...

scross(p34,R34*f4)-scross(-p233,f3);

M(3,1) = n3(3);

f2 = R23*f3;

n2 = R23*n3;%+scross(p23,R23*f3);

M(2,1) = n2(3);

n1 = R12*n2;

M(1,1) = n1(3);

% Repeat Procedure for Column 2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% construct column 2

% theta2dot = 1 all other thetadots = 0

%angular accel of frame 2 and 3

omega2dot=[0 0 1]';

omega3dot=R32*omega2dot;

% accels of frame 3 and cm of stance leg

vdot3 = scross(omega3dot, p233);

vcdot3 = scross(omega3dot,pc3)+vdot3;

% m a and I w of stance leg

F3 = m(3)*vcdot3;

N3 = Icm3*omega3dot;

% angular accel frame 4

omega4dot=R43*omega3dot;

% accel of frame 4 and cm of swing leg

vdot4 = R43*(scross(omega3dot,p34)+vdot3);

vcdot4 = scross(omega4dot,pc4)+vdot4;
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% m a and I w of swing leg

F4 = m(4)*vcdot4;

N4 = Icm4*omega4dot;

% Sum(F) = m a and Sum(T) = Hdot for swing and stance

f4 = F4;

n4 = N4+scross(pc4,F4);

M(4,2) = n4(3);

f3 = R34*f4+F3;

n3 = N3+R34*n4+scross(pc3,F3)+ ...

scross(p34,R34*f4)-scross(-p233,f3);

M(3,2) = n3(3);

n2 = R23*n3;%+scross(p23,R23*f3);

M(2,2) = n2(3);

M(1,2) = M(2,1); % get this for free from symmetry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% construct column 3

% theta3dot = 1 all other thetadots = 0

% angular accel of frame 3

omega3dot=[0 0 1]';

% accels of frame 3 and cm of stance leg

vdot3 = scross(omega3dot,p233);

vcdot3 = scross(omega3dot,pc3)+vdot3;

% m a and I w of stance leg

F3 = m(3)*vcdot3;

N3 = Icm3*omega3dot;

% angular accel frame 4

omega4dot=R43*omega3dot;

% accel of frame 4 and cm of swing leg

vdot4 = R43*(scross(omega3dot,p34)+vdot3);

vcdot4 = scross(omega4dot,pc4)+vdot4;

% m a and I w of swing leg
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F4 = m(4)*vcdot4;

N4 = Icm4*omega4dot;

% Sum(F) = m a and Sum(T) = Hdot for swing and stance

f4 = F4;

n4 = N4+scross(pc4,F4);

M(4,3) = n4(3);

f3 = R34*f4+F3;

n3 = N3+R34*n4+scross(pc3,F3)+ ...

scross(p34,R34*f4)-scross(-p233,f3);

M(3,3) = n3(3);

M(2,3) = M(3,2); % symmetry gets these for free

M(1,3) = M(3,1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% construct column 4

% careful w/ copy/pasting non-zero F3 and N3 here

% theta4dot = 1 all other thetadots = 0

% angular accel frame 4

omega4dot=[0 0 1]';

% angular accel of cm of swing leg

vcdot4 = scross(omega4dot,pc4);

% m a and I w of swing leg

F4 = m(4)*vcdot4;

N4 = Icm4*omega4dot;

% Sum(F) = m a and Sum(T) = Hdot for swing

f4 = F4;

n4 = N4+scross(pc4,F4);

M(4,4) = n4(3);

M(3,4) = M(4,3); % symmetry gets these for free

M(2,4) = M(4,2);

M(1,4) =M(4,1);

tau=[-sspr*y(1)-sdamp*y(5) 0 0 ...
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-hspr*(y(4)-pi)-hdamp*y(8)]';%torques from springs/dampers

X=chol(M); % solve for thetadotdot with M symmetric

z = X'n(tau-vg);

Oddot=X n z;

% feed back extra things in the state vector

% depending on its length

vp = R01*[0 -y(7)*R 0]'; % velocity of contact point

if length(y) == 8

ydot=[y(5) y(6) y(7) y(8) ...

Oddot(1) Oddot(2) Oddot(3) Oddot(4) hf1 hfdot1]';

end;

if length(y) == 10

ydot=[y(5) y(6) y(7) y(8) ...

Oddot(1) Oddot(2) Oddot(3) Oddot(4) ...

vp(1) vp(2) hf1 hfdot1 ]'; % longer one for graphics

end;

5.4.4 On-Line Heelstrike Equations

At the instant that the swing leg touches the ground, the following algorithm solves

for new angles and angular velocities. The procedure is explained in Section 2.5.

function ynew = heelstrike_try(y);

global g gam m R p23 p34 pc3 pc4 p4f Icm3 Icm4 p4f

% define sines and cosines

cO1 = cos(y(1));

sO1 = sin(y(1));

cO2 = cos(y(2));

sO2 = sin(y(2));

cO3 = cos(y(3));

sO3 = sin(y(3));



235

sO4 = sin(y(4));

cO4 = cos(y(4));

% define rotation matrices

R01=[cO1 -sO1 0 ;sO1 cO1 0; 0 0 1];

R12=[cO2 -sO2 0 ;0 0 -1;sO2 cO2 0];

R23=[cO3 -sO3 0 ;0 0 -1;sO3 cO3 0];

R34=[cO4 -sO4 0 ;sO4 cO4 0; 0 0 1];

R10=R01';

R21=R12';

R32=R23';

R43=R34';

% first get angular momentum of whole walker

% about new contact point (cp)

% angular velocities of frames 1-4

omega1=[0 0 y(5)]';

omega2=R21*omega1+[0 0 y(6)]';

omega3=R32*omega2+[0 0 y(7)]';

omega4=R43*omega3+[0 0 y(8)]';

% from contact point to center of foot

p233 = R32*p23;

% velocity of frame 3 and cm of stance leg

v3 = scross(omega3,p233);

vc3=scross(omega3,pc3)+v3;

% velocity of frame 4 and cm of swing leg

v4 = R43*(scross(omega3,p34)+v3);

vc4 = scross(omega4,pc4)+v4;

% from swing foot contact to cm 4 in frame 4

rcpc4 = R43*p233-p4f+pc4;

% from swing foot contact to cm 3 in frame 3

rcpc3 = p233+R34*(-p4f)-p34+pc3;

% H of whole walker about new contact pt

Hcp3 = R34*(cross(rcpc4,m(4)*vc4)+Icm4*omega4)...
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+cross(rcpc3,m(3)*vc3)+Icm3*omega3;

% get components in different frames

Hcp2 = R23*Hcp3;

Hcp1 = R12*Hcp2;

% now get angular momentum of old stance leg

% about hip in z4-dir

% from hip to cm of stance leg

rhc3=-p34+pc3;

Hh3 = cross(rhc3,m(3)*vc3)+Icm3*omega3;

% swap angles and legs

% swing becomes stance, stance becomes swing

% heading and bank angles stay constant

theta3minus=y(3);

y(3)=-pi+y(4)+theta3minus;

y(4)=pi-y(3)+theta3minus;

% some parameters change sign since z3 and z4 change sign

pc3(3)=-pc3(3);

p34(3)=-p34(3);

pc4(3)=-pc4(3);

Icm3(1,3)=-Icm3(1,3);

Icm3(2,3)=-Icm3(2,3);

Icm3(3,1)=-Icm3(3,1);

Icm3(3,2)=-Icm3(3,2);

Icm4=Icm3;

Hpost=getmassmtrx(y);

% this creates a mass matrix identical to the one

% created in the deriv file

% It is a nice shortcut for heelstrike

% (see section 2.5.5 in thesis)

% solve for new angular velocities

ydot=Hpostn [Hcp1(3) Hcp2(3) Hcp3(3) Hh3(3)]';

% make ynew different things depending on the

% original length of state vector.
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% if graphics are involved, add [0 0] onto the state

% which is the new x,y position of the contact point

if length(y) == 10

ynew=[y(1) y(2) y(3) y(4) ...

ydot(1) ydot(2) ydot(3) ydot(4) 0 0];

end;

if length(y) == 8

ynew=[y(1) y(2) y(3) y(4) ...

ydot(1) ydot(2) ydot(3) ydot(4)];

end;


