
Chapter 3

The Simplest 2-D Walker

This chapter is a reproduction of a paper by Mariano Garcia, Anindya Chatterjee,

Andy Ruina, and Michael Coleman entitled \The Simplest Walking Model: Stability,

Complexity, and Scaling. It was published in the ASME Journal of Biomechanical

Engineering Vol. 120, April 1998, pp. 281 { 288. Some additional �gures and text

have been added in Section 3.7.2. Sentences which refer to these �gures, as well as

this paragraph, are shown in italics to denote material which did not appear in the

original text.

My role in this paper was as follows: I concocted the model and its equations,

and did all of the simulation and data collection, including �nding gait cycles and

analyzing them. The stability results suggested the possibility of period-doubling,

and Anindya Chatterjee prodded me to look for it. Anindya and I also observed

the scaling results and he formulated an analytic approach which we then imple-

mented together. While implementing the approach, I realized that the higher-period

solutions of z(�0) (Equation 3.5) represented \multiple swinging" solutions which

had been found previously (but not reported) by Mike Coleman in a slightly more
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complicated numerical model. Andy Ruina added the observations on nonholonomic

issues, the energy-based derivation of the scaling rule, and the dimensional power

scaling law.

3.0.3 Abstract

We demonstrate that an irreducibly simple, uncontrolled, 2D, two-link model, vaguely

resembling human legs, can walk down a shallow slope, powered only by gravity.

This model is the simplest special case of the passive-dynamic models pioneered by

McGeer (1990a). It has two rigid massless legs hinged at the hip, a point-mass at

the hip, and in�nitesimal point-masses at the feet. The feet have plastic (no-slip,

no-bounce) collisions with the slope surface, except during forward swinging, when

geometric interference (foot scu�ng) is ignored. After nondimensionalizing the gov-

erning equations, the model has only one free parameter, the ramp slope 
. This

model shows stable walking modes similar to more elaborate models, but allows

some use of analytic methods to study its dynamics. The analytic calculations �nd

initial conditions and stability estimates for period-one gait limit cycles. The model

exhibits two period-one gait cycles, one of which is stable when 0 < 
 < 0:015

rad. With increasing 
, stable cycles of higher periods appear, and the walking-like

motions apparently become chaotic through a sequence of period doublings. Scaling

laws for the model predict that walking speed is proportional to stance angle, stance

angle is proportional to 
1=3, and that the gravitational power used is proportional

to v4 where v is the velocity along the slope.



96

3.1 Introduction

How much of coordination is purely mechanics? Human motion is controlled by the

neuro-muscular system. But bipedal walking, an example of a basic human motion,

might be largely understood as a passive mechanical process, as shown for part of

a stride by Mochon and McMahon (1980). McGeer (1990a) demonstrated, by both

computer simulation and physical-model construction, that some anthropomorphic

legged mechanisms can exhibit stable, human-like walking on a range of shallow

slopes with no actuation and no control (energy lost in friction and collisions is

recovered from gravity). Unlike control-based models of animal locomotion, where

the controller tries to force a motion on the system, McGeer's models' gait cycles

(sequences of exactly-repeated steps) are inherent products of the models' dynamics

for the given parameters.

McGeer's results with passive dynamic walking machines suggest that the me-

chanical parameters of the human body (e.g. lengths, mass distributions) have a

greater e�ect on the existence and quality of gait than is generally recognized. That

is, one needs to study mechanics, not just activation and control, to fully understand

walking.

To get a better sense of the role of passive dynamics, it is interesting, following

McGeer, to study simple, purely mechanical models. Here, we study what we

believe is the simplest model that is capable of mimicking bipedal gait. This model

is a limiting case of the straight-legged walker of McGeer (1990a), and also of the

double-pendulum (\compass-gait") point-foot models being studied by Goswami

et al. (1997). Our model has a special mass distribution that further simpli�es the

underlying mechanics and mathematics.
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Inverted double pendulum models have previously been proposed as simple

models of bipedal locomotion. Katoh and Mori (1984) used a controlled double-

pendulum model to build a walking robot. Their controller was based on the idea

of �nding and operating at a stable limit cycle. Hurmuzlu and Moskowitz (1986)

found that in a similar, controlled double-pendulum model, ground impacts were a

major contributor to dynamic walking stability, presumably because of the sudden

reduction of volume in phase space they cause.

Alexander (1995) reviews several cases where simple models give greater insight

into human motion than more complicated models. In the spirit of Alexander, we

study the simplest walker with the hope that it adds some insight into bipedal

locomotion.

3.2 The Model

A cartoon of our point-foot model is shown in Figure 3.1. It has two rigid legs

connected by a frictionless hinge at the hip. The only mass is at the hip and the

feet. The hip mass M is much larger than the foot mass m (M � m) so that

the motion of a swinging foot does not a�ect the motion of the hip. This linked

mechanism moves on a rigid ramp of slope 
. When a foot hits the ground (ramp

surface) at heelstrike, it has a plastic (no-slip, no-bounce) collision and its velocity

jumps to zero. We do not consider elastic rebound here. That foot remains on

the ground, acting like a hinge, until the swinging foot reaches heelstrike. During

walking, only one foot is in contact with the ground at any time; double support

occurs instantaneously. Our model is a simpli�ed version of the 2D straight-legged

walker with more general mass distribution of McGeer (1990a), which has round
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feet, and of Goswami et al. (1996a) which, like ours, has point-feet. Our model

is also closely related to Alexander's \minimal biped" Alexander (1995) which has

strictly massless, and thus non-deterministic, swing legs. By adding miniscule feet,

we make the minimal biped deterministic.

The model's motion is governed by the laws of classical rigid-body mechanics.

Following McGeer, we make the non-physical assumption that the swing foot can

brie
y pass through the ramp surface when the stance leg is near vertical. This con-

cession is made to avoid the inevitable scu�ng problems of straight-legged walkers.

In physical models, one can attempt to avoid foot-scu�ng by adding some combina-

tion of complications such as powered ankles, as done by McGeer (1990a), passive

knees, as done by McGeer (1990b) and Garcia et al. (1997), or side-to-side rock-

ing, as done by various walking toys, for example those of Mahan (US Patent Nos.

RE13696, 1007218), Fallis (US Patent No. 376588), and Coleman and Ruina (1998),

or the hip-cam walker of Lattanzio et al. (1992).

3.3 The Walking Map

3.3.1 Outline of Procedure

The general procedure for the design and study of these models is based on inter-

preting a step as a Poincar�e map, or, as McGeer termed it, a \stride function." Gait

limit cycles are �xed points of this function. In this nonlinear-dynamics approach,

one way to evaluate the stability of a gait cycle is to use the eigenvalues of the

linearized map at the �xed point. Readers not familiar with this approach can refer

to Appendix 3.7.1 for a summary of the necessary dynamics language.
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Figure 3.1: A typical passive walking step. The new stance leg (lighter line) has

just made contact with the ramp in the upper left picture. The swing leg (heavier

line) swings until the next heelstrike (bottom right picture). The top-center picture

gives a description of the variables and parameters that we use. � is the angle of the

stance leg with respect to the slope normal. � is the angle between the stance leg

and the swing leg. M is the hip mass, and m is the foot mass. l is the leg length,


 is the ramp slope, and g is the acceleration due to gravity. Leg lines are drawn

with di�erent weights to match the plot of Figure 3.2.
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3.3.2 Equations of Motion for the Swing Phase

The two coupled second-order di�erential equations of motion are given below for

the swing phase of the motion, where � = m=M and �; � are functions of time t.

These two equations represent angular momentum balance about the foot (for the

whole mechanism) and about the hip (for the swing leg), respectively.
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These are the equations of motion for a simple double pendulum. We will

study the special case where the foot is much smaller than the body, because of

its conceptual simplicity, and because human feet are small compared to the rest

of the body. In reality, of course, the functional contribution of the feet is more

complicated than their role in this model. Setting � = 0 (the limit as hip mass

dominates foot mass) in the �rst equation of motion and dividing through by � in

the second yields the two simpler equations which we use (Equation 3.1 and a trig

identity are used to simplify Equation 3.2 also).

��(t)� sin (�(t)� 
) = 0 (3.1)

��(t)� ��(t) + _�(t)
2

sin�(t)� cos(�(t)� 
) sin�(t) = 0 (3.2)

In Equations 3.1 and 3.2, we have rescaled time by
p
l=g. Equation 3.1 describes an

inverted simple pendulum (the stance leg) which is not a�ected by the motion of the
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swing leg. Equation 3.2 describes the swing leg as a simple pendulum whose support

(at the hip) moves through an arc. Note that there is only one free parameter in

Equations 3.1 and 3.2: the ramp slope 
. (This parameter could also be removed

from Equations 3.1 and 3.2 by replacing � � 
 with �, but only at the expense of

including 
 in the heelstrike equations below.)

3.3.3 Transition Rule at Heelstrike Collision

Simulating the walker's motion consists of integrating equations of motion 3.1 and

3.2 and applying a transition rule when the swing foot hits the ground at heelstrike.

The collision occurs when the geometric collision condition

�(t)� 2�(t) = 0 (3.3)

is met. Equation 3.3 describes the values of � and � for which the swing foot is

coincident with the ramp surface. We also impose the additional condition that

the stance leg be su�ciently past vertical (Equation 3.3 is also true at least once

when the legs are nearly parallel, but we ignore scu�ng and let the swing leg swing

through without collision).

At heelstrike, there is an impulse at the swing foot contact point. We assume,

self-consistently, that the former stance leg (the new swing leg) has no impulsive

reaction with the ground it is leaving. Neglecting non-impulsive forces at heelstrike,

angular momentum is conserved through the collision for, a) the whole mechanism

about the swing foot contact point, and b) the former stance leg (as it becomes

the new swing leg) about the hip. The heelstrike angular momentum conservation

relations give the following \jump" equation (for � = 0), where the \+" super-

script means \just after heelstrike", and the \�" superscript means \just before
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heelstrike".
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Equation 3.4 also re
ects a change of names for the two legs. The swing leg

becomes the stance leg, and vice versa.

Our Poincar�e section is at the start of a step, just after heelstrike. The Poincar�e

map f is from one section to the next section. That is, given the state of the system

just after a heelstrike, the map f determines the state just after the next heelstrike,

as de�ned by the solutions of governing ODEs (3.1) and (3.2) followed by the jump

condition (3.4), denoted by h. Note that the rank of h in Equation 3.4 is only 2,

so the transition rule reduces this problem in 4D state space to a 2D map f. The

swing leg angle and rate after heelstrike, �+ and _�+, are determined by �+ and _�+.

The physical reasons for this dimension-reduction are twofold: 1) The section is

lower in dimension than the phase space; in this case � and � are coupled by the

de�nition of the section (Equation 3.3). 2) Since the swing leg has only a point

mass at the foot, it makes no contribution to the angular momentum of the system

about the new contact point just before heelstrike; thus, the angular velocity of the

swing leg before heelstrike does not a�ect the state just after heelstrike. Also, at the

instant after heelstrike, the velocity of the newly swinging foot must point straight

towards the hip (as a consequence of the transition rule). This dimension reduction
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only depends on mass being concentrated at the hip and foot, not on the limit as

m=M ! 0.

So, while the system can have four independent initial conditions, we need only

to specify f�; _�g
+

at the start of walking step i to fully determine the subsequent

motion at steps i + 1; i + 2; ::: so that f�; _�g
+

i+1 = f(f�; _�g
+

i). This reduction of

order was a primary motivation for concentrating mass at the hip and feet.

3.4 Analysis of the Model

3.4.1 Numerical and Analytic Tools

Our primary investigation tool is numerical simulation. We have checked the ac-

curacy of our numerical results by verifying that calculated quantities (especially

eigenvalues) do not change substantially when numerical tolerances are halved or

doubled. Retaining numerical accuracy takes some care at very small slopes. Using

a modi�ed version of ODE45 in MATLAB, we specify a tolerance of 1e-12 in our

numerical simulations. Collision con�guration converges to machine accuracy. The

Jacobian J of the linearized map (see Appendix 3.7.1) is calculated with perturba-

tions of size 1e-6. So, we expect our numeric eigenvalues to be accurate to at least

three decimal places (this is a worst-case estimate). Whether or not our numerical

root-�nding method locates all gait cycles (i.e. �xed points of f) is an issue; see

Appendix 3.7.1.

We also develop an asymptotic solution for the model's behavior at small slopes

to understand how the dynamic variables and the step period scale with the slope.

Asymptotic methods, which use the smallness of one or more parameters or vari-

ables, are useful in the regions where numerical methods are troublesome. Although
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in practice, the analytic approach involves complicated symbolic manipulation at

higher orders, the lowest-order approximation to the map gives an equation which

governs the existence of gait cycles, as explained below and in Appendix 3.7.1. This

equation from Appendix 3.7.1, and similar results from McGeer (1990a), give us

some con�dence that we have not missed any period-one gait cycles. Our analytic

results also provide reasonably accurate initial guesses for our numerical gait-cycle

searches (described below) which can then be extended to virtually any slope using

path-following techniques. Agreement between the asymptotic-expansion approach

and the numerical integration at small slopes gives some evidence of the validity of

both techniques.

3.4.2 Finding Period-One Gait Cycles and Step Periods

To simulate the motion of the walker, we need to specify initial conditions f�; _�; �; _�g
+

at the start of the step. As mentioned previously, only f�; _�g
+

are independent, so

to locate period-n gait cycles (�xed points of the map), we need to �nd initial condi-

tions f�; _�g
�

such that after n steps, the system returns to the same initial conditions

at the start of the nth step. We look for a step period that corresponds to a motion

where the two legs pivot and swing, change angular velocities at heelstrike, and

return to the same state after one or more heel strikes.

In the analytic search for period-one gait cycles we only deal with approximations

of the �rst and second order. The main analytical result, derived as Equation 3.22

in Appendix 3.7.1, is that a period-one gait cycle is represented by zeros of the

following function z(�0), where �0 is a �rst order approximation of the swing period

� . A similar function was derived by McGeer (1990a) in his analysis of a \synthetic

wheel." (See Appendix 3.7.2 for a plot of Equation 3.5.)
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z(�0) = (1 + exp �0) sin �0 + 3(exp �0 � 1)(1 + cos �0) = 0 (3.5)

Following McGeer, we refer to the �rst two non-zero solutions to this equation

as \short period" (�0 = �) and \long period" (�0 � 3:8121) gait cycles, respectively;

these values are consistent with the numerical observations of McGeer (1990a) (our

values are the limiting cases of the step period as 
 ! 0). Since we can only solve

for the long-period roots of Equation 3.5 numerically, we will express our analytic

solutions in decimal form. More complicated models may have parameters in their

version of Equation 3.5, and thus even the existence of gait cycles for other models

may depend on parameter values. Note that to lowest order (in 
), the step period

is constant, for small 
. That is, the step period � does not change substantially

with 
.

There are, in fact, in�nitely many solution pairs to Equation 3.5 at 2n� +

�0; n = 1; 2 : : : . These larger-period roots of Equation 3.5 are probably not of much

practical interest in studies of sober walking, since they correspond to multiple

oscillations of the swing leg between heelstrikes (see Appendix 3.7.2). Because we

are only interested in reasonably anthropomorphic gaits (within the limitations of

our model), we will restrict our attention to solutions which have �0 < 2�.

3.4.3 Gait Cycle Stability

Once we �nd a gait cycle (speci�cally, a period-one gait cycle), we would like to

characterize it as stable or unstable. The eigenvalues of the Jacobian J of the step-

to-step map f govern the stability of the cycle. If all eigenvalues are within the unit

circle, then the gait cycle is (asymptotically) stable. If one or more eigenvalues are
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outside the unit circle, then the gait is unstable.

In the numerical approach, we �nd the Jacobian by perturbing the initial con-

ditions in a small neighborhood of the �xed point. We then numerically calculate

the eigenvalues for that Jacobian. We also used an analytic procedure to �nd an

asymptotic approximation to period-one gait cycle eigenvalues, retaining terms up

to O(
2=3). This procedure is described by Coleman et al. (1997) in their analysis

of a rimless spoked wheel; a brief summary is given in Appendix 3.7.1.

3.5 Results and Discussion

3.5.1 Typical Period-One Gait Cycles

We can �nd stable period-one gait cycles for slopes of 0 < 
 < 0:0151. A typical

plot of � and � over one step is shown in Figure 3.2 for 
 = 0:009.

Figure 3.3 shows a comparison between analytically-approximated (toO(
)) and

numerically-found stance angles at the short and long period-one gaits, plotted as

a function of 
. We expect, and �nd, that for this model, the �xed point must

approach the inverted static solution as 
 ! 0. The key scaling result, veri�ed by

numerical and analytical approaches, is that (to �rst order in 
1=3) at a �xed point,

the stance angle � is proportional to the one-third power of the slope 
, and that

the step period is approximately constant.

�� / 
1=3 (3.6)

� � � �0 (3.7)
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Figure 3.2: Leg angles versus time over one step at a long-period gait cycle. At

a gait cycle, heelstrike returns the system to its initial conditions. A perturbation

analysis (Appendix 3.7.1) predicts �� � C1

1=3 + C2
, where �

� is the stance angle

at a �xed point. The �rst term of the perturbation solution also predicts that _� = 0

just before and after heelstrike, and that the graph should have the time reversal

symmetry (the graph looks the same when rotated 180 degrees).
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This scaling result can also be argued as follows. The period of motion � is ap-

proximately independent of 
, for small 
. Speeds thus scale with the stance angle

��. The angle by which the hip mass is de
ected at heelstrike is 2��. Angular mo-

mentum balance results in a heelstrike energy loss proportional to ��2(1� cos2(��)).

Expanding cos(��) gives an energy loss per step proportional to ��4. The available

gravitational potential energy per step is proportional to 
 ��. Equating available

potential energy with lost kinetic energy yields 
 / ��3, or �� / 
1=3. Similar

arguments are made by Alexander (1991, 1995).
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Figure 3.3: Numerical vs. analytic predictions for point-foot stance angle at

�xed point as a function of slope. The short-period analytic solution is �� �

0:943976
1=3� 0:264561
. The long-period analytic solution is �� � 0:970956
1=3�

0:270837
, where ��is the stance angle at a �xed point. The inset box is shown

expanded in Figure 3.6.
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A careful numerical analysis predicts a region of stable period-one gait for slopes

less than about 
 = 0:0151. The analytic approach is inaccurate in estimating the

critical slope as about 0:024. In contrast, the agreement between numerical and

perturbation-analysis approaches is much better for the short-period gait. Analytic

and numerical eigenvalue estimates are shown in Figure 3.4.

Presumably, a higher-order perturbation analysis would yield results that matched

the numerics for both gaits more closely at higher slopes. Note that the eigenval-

ues of the long-period gait merge and split within the range of slopes studied; this

appears to adversely a�ect the accuracy of the analytic eigenvalue estimates.
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Figure 3.4: Comparison of analytic and numerical stability predictions for long

and short period-one gait. The inset shows an expanded view of the numerical

veri�cation of the analytically-predicted split at 
 � 0:00014 (upper left corner) for

the long-period gait.

See Appendix 3.7.2 for a comparison of analytic predictions and numeric results

of step periods at varying slopes.
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3.5.2 Passive Dynamic Limping

Note the region of stable period-one gait in Figure 3.3; this motion bifurcates into

a stable period-two gait as the period-one eigenvalue passes through -1 (the other

eigenvalue is small and seems to have little e�ect on the walking motions). This

\limping" bifurcation was also found independently by Goswami et al. (1996a) for

a similar model.

A plot of one of these limping (period-two) solutions is shown in Figure 3.5.

Note that limping gaits arise here from symmetric legs. This suggests, perhaps,

that limping is a readily available natural mode of motion in human legs, even

when they have symmetric mass distribution. Pain in one leg could be alleviated

by a switch in control strategy, from operating at a period-one cycle to operating

at a period-two cycle, to minimize loading of the a�icted leg. Also, even slight

asymmetry in otherwise symmetric legs would result in the loss of normal (period-

1) gait and might introduce unexpectedly severe limping (period-2) gait.

3.5.3 Period Doubling and Passive Dynamic Staggering

As 
 is varied from 0.017 to 0.019, the stable 2-cycle bifurcates into a stable 4-

cycle, and so on until the stable attractor appears chaotic. Some period doublings

were also discovered independently in a slightly more complicated model by Thuilot

et al. (1997) and Goswami et al. (1996b). This \period doubling route to chaos"

is shown expanded in Figure 3.6. We did not perform any formal checks of this

\chaos", except to observe that ratio of the distances between successive bifur-

cation values on the slope axis decreased roughly as follows: 5:9; 5:2; 4:6; : : : . (As

discovered by Feigenbaum, the sequence of ratios is expected to converge to 4:669 : : :
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Figure 3.5: Several walker steps during a limping (period-two) gait. The walker's

legs are symmetric, but the gait is not.
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(Strogatz, 1995).) At slopes higher than 
 = 0:019, the walker falls down; we could

no longer �nd persistent walking motions. The box on Figure 3.3 shows the region

where stable gaits of higher order appear. Recently, Howell and Baillieul (1998)

discovered a stable period-three gait for this model at a slope of 
 � 0:0125.
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Figure 3.6: Period doubling of stable walking motions, inset from Figure 3.3. Un-

stable period-one cycles are shown for reference. Note that the line weights are

opposite to the usual convention; dotted lines represent stable cycles while solid

lines represent unstable ones. No persistent walking was found at slopes much

steeper than 0.019 radians.

A plot of the chaotic attractor is shown in Figure 3.7 for 
 = 0:0189. In this

Poincar�e section, each point represents the state of the system at the start of a step.

The attractor evolves from gait cycles of increasingly higher period. (Following

Goswami et al. (1996b) and Thuilot et al. (1997), and using 30,000 points, we
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estimated the attractor's box-counting dimension (see e.g., Strogatz, 1995) to be

about 1.25.)

The chaotic attractor of the walking mechanism brings up some interesting ideas.

One usually thinks of periodic motions as being somehow more desirable and ben-

e�cial, but in fact the primary objectives in walking are usually to move quickly,

e�ciently, and not to fall down. Simple numerical experiments seem to imply that

the basin of attraction for stable chaotic walking is, in some ways, bigger than the

basins of the periodic �xed points, and therefore the chaotic walking motion might

be more robust. It also may prove useful, if control is added, to keep the system in

a chaotic region where many di�erent step length combinations are readily available

for the mechanism.

See Appendix 3.7.2 for �gures of the return map and the evolution of the attrac-

tor, along with an inset of the attractor.

3.5.4 Energetic Cost of Locomotion

The simplest measure of passive walking e�ciency is the minimum walking slope.

If the walker could walk on level ground, it would be perfectly e�cient, since it

would require no energy for locomotion (energy loss per step = 2Mgl sin 
 sin �st).

For the point-foot walker, the stable gait cycles persist as the slope approaches

level, although the gait velocity for these solutions also vanishes. In some sense, the

dynamic solution approaches the static, parallel-leg solution as the ramp becomes


at. If the hip-mass were o�set fore-aft from the legs, the gait cycles would ap-

proach a static solution at some non-zero slope which depended on this o�set, and

\near-perfectly e�cient" walking would not be possible. So, for this model, and

presumably for more complicated models, the existence of near-perfectly e�cient
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Figure 3.7: Poincar�e section during chaotic walking motions, 
 = 0:0189. Using

30,000 points, we calculate the box-counting dimension of the attractor to be about

1.25.
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gait depends on the details of the mass distribution.

If we use the �rst-order scaling laws (Equations 3.6 and 3.7), expanding and

retaining appropriate terms to re-dimensionalize the result, we �nd that the power

used in locomotion for this model is approximately

P = Mgv sin 
 �
� 3
0
Mv4

8�0(0)
3
l3=2g1=2

= C
Mv4

l3=2g1=2
(3.8)

where M is the mass of the walker, g is the acceleration due to gravity, v is the

velocity down the slope, l is the leg length, �0 is the approximate non-dimensional

step period, and �0(0), which is about 1, is the �rst-order constant in the series

expansion for � (see Appendix 3.7.1). For the short period gait, C � �3=8 � 3:8758,

and for the long-period gait, C � 3:81213=8 � 6:9247.

For a 50 kg, 1m legged person walking at one meter per second this predicts a

somewhat high 60 watts and 110 watts for the short and long period gaits, respec-

tively. The power required for this model to walk is a strong function of velocity and

decreases with increasing g. This scaling rule (3.8) follows from the scaling rules

in Alexander (1995) and Alexander (1991) if we further assume that his minimal

biped has a period independent of amplitude.

The short-period gait, although unstable, is signi�cantly more e�cient than

the long-period gait, for a given velocity (this would not necessarily be true if the

model was changed to have non-negligible foot masses, since there would also be a

contribution to energy losses from foot collisions).
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3.5.5 Energy Dissipation and Stability

As is well known in dynamical systems theory, conservative holonomic (i.e. Hamil-

tonian) systems cannot have asymptotic stability, since volume is conserved in their

phase spaces. This walker is not conservative, since energy is lost at every heelstrike.

As discussed indirectly in Hurmuzlu and Moskowitz (1986), these dissipative colli-

sions allow the possibility of asymptotic stability, since at collisions, some regions in

the model's phase space not only drop in volume, but also in dimension (the rank

of h is 2, not 3). But, there are also slopes for which dissipation exists and yet the

walking motions are unstable, so dissipation by itself does not guarantee stability.

Also, as we noted, the motions retain some slight stability, in that one eigenvalue

approaches 1 from below, as the collision losses vanish (when the slope 
 and the

stance angle �� go to zero).

Also, some smooth, conservative, nonholonomic systems can have asymptotically-

stable, steady motions, as discussed by Bloch et al. (1996) and Zenkov et al. (1997).

Bicycles (Hand, 1988), and skateboards (Hubbard, 1979) are two examples. A di-

rect comparison between our walking mechanism and these other systems cannot

be made, since walking is piecewise holonomic and dissipative. However, bicycles,

skateboards, and other nonholonomic gadgets share the following feature with walk-

ers: the dimension of the accessible con�guration space (for the walker, one transla-

tion plus two angles) is larger than the dimension of the instantaneously accessible

velocity space (for the walker, two angular velocities). For smooth systems, this

trait is equivalent to the usual de�nition of non-holonomicity in Goldstein (1980).

Coleman et al. (1997) have shown another piecewise holonomic, but globally non-

holonomic system (similar to ours) that may depend on its nonholonomicity for

stability. The role of this type of nonholonomic behavior in the asymptotic stability
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of dissipative, piecewise holonomic systems with intermittent contact, is not well-

understood at present. See Ruina (1998) for another example and more discussion.

3.6 Discussion and Conclusion

Most good controllers take advantage of the natural dynamics of their respective

systems, and the human nervous system is probably no exception to this rule.

Human locomotion is a controlled and complicated process, but to learn more about

human locomotion, it is interesting to observe how the simplest, uncontrolled models

can exhibit an array of complex and chaotic motions, both stable and unstable. The

dynamics of these uncontrolled systems are based on mass distribution and length

characteristics rather than on control strategy. Their stability mechanisms may also

depend to some extent on their nonholonomic nature.

We have shown that the simplest uncontrolled walking model can walk stably. It

can also limp and stagger. Its power consumption is proportional to the fourth power

of its velocity. These results buttress the claim that passive-dynamic models might

be a natural starting point for understanding some aspects of animal (including

human) motion. It may be that many animal motions are largely natural or quasi-

passive and not heavily controlled. In the context of walking, such results might

be useful to those studying the active control aspects of walking, to those trying to

design anthropomorphic robots, and to those trying to improve prosthetic devices

and rehabilitation procedures.
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3.7 Simplest Walker Appendices

3.7.1 Appendices Appearing In The Original Paper

Mathematical Tools and Dynamics Language

A step can be thought of as an operator f(q), the \stride function," which takes as

input the list of values of the various angles and rates (the state variable vector q)

at a de�nite point in the motion (just after ground-collision for our purposes), and

returns the values of q after the next ground-collision. In the language of dynamical

systems, McGeer's stride function is a Poincar�e map. Many questions about the

dynamics of a given walking model are then reduced to questions about the function

f(q) (also called a \map" or \mapping").

The function f(q) is found by �rst constructing governing di�erential equations

and jump conditions for the model. The equations must then be solved, analytically

if possible, but most often numerically. The solution of the equations for a period

of time corresponding to one step, for a given set of initial conditions, yields one

evaluation of f(q).

A simple (period-one) gait cycle, if it exists, corresponds to a set of initial values

for the angles and rates which lead back to the same angles and rates after one step.

This q� is a \�xed point" of the function f(q), i.e., f(q�) = q�. This corresponds to

a zero, or root, of the function g(q) � f(q)�q. A period-two gait cycle returns the

same variable values after two steps: f(f(q�)) = q�, and so on. (Of course, a period-

one cycle is also a period-two cycle, since f(q�) = q� implies that f(f(q�)) = q�.)

The term \gait cycle" by itself usually implies a period-one gait cycle.

All of these gait cycles are periodic walking solutions, although other non-

periodic walking solutions exist. Longer-term numerical simulations are used to
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analyze these cases: to see how the walker approaches a gait cycle, to map regions

in state-space which approach gait cycles (\basins of attraction"), or to see how the

walker falls down.

Periodic gait cycles are found numerically by searching, using analytic estimates

as guesses for initial conditions, with a multidimensional Newton-Raphson method,

for q� such that g(q�) = 0 (the function g is constructed numerically). Once found,

the linearized stability of these cycles can be determined by �nding the eigenvalues

of the Jacobian J of the map f . Here J is the matrix @f=@q with components

@fi=@qj . J is constructed by numerically evaluating f a number of times in a small

neighborhood of q� (i.e. numerically perturbing each component of q).

Small perturbations q̂ to the limit cycle state vector q� at the start of a step will

grow or decay from the kth step to the (k + 1)th step approximately according to

q̂k+1 � Jq̂k. If the map Jacobian J has all of its eigenvalues inside the unit circle,

all su�ciently small perturbations will decay to 0, the system will return to its limit

cycle, and the cycle is asymptotically stable. If the Jacobian has any eigenvalues

outside the unit circle, any perturbation along the corresponding eigenvector will

grow in time, steadily driving the system o� the limit cycle, so the cycle is unstable.

If an eigenvalue has magnitude of one, then the cycle is neutrally stable for in�nites-

imal perturbations along the corresponding eigenvector and such perturbations will

neither shrink nor grow (to �rst order).

A given mechanism can have di�erent solutions, with di�erent stability, depend-

ing on its initial state vector and the slope of the ramp that it is on. Design of

a successful physical passive-dynamic walker depends on both �nding �xed points

of f and having the eigenvalues of the Jacobian J all inside the unit circle on the

complex plane.
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Asymptotic Solution

For this and more complex models walking motions of interest are at relatively

small slopes, so explicitly assuming small slopes seems to be a reasonable approach.

We employ a perturbation method in order study walking cycles as 
 ! 0. With

numerical results as a guide, we de�ne the scaling parameter � and scaled variables

� and � by


 = �3; �(t) = ��(t); _�(t) = � _�(t); �(t) = ��(t); _�(t) = � _�(t) (3.9)

Substituting these into Equations 3.1 and 3.2 and expanding in a power series

gives two governing equations with no order zero coe�cient in �, so we can divide

both equations by �. Since we are left with only even powers of �, we can de�ne �

as � = �2 = 
2=3 and after substituting, we are left, to O(�2), with

����+ �(1 +
1

6
�3)� �2(

1

2
�2 +

1

120
�5) � 0 (3.10)

��� �� �� + �( _�2� +
1

2
�2� +

1

6
�3)� �2(

1

6
�3 _�2 +

��+
1

24
�4� +

1

12
�2�3 +

1

120
�5) � 0: (3.11)

where � � �(t);� � �(t).

We assume power series solutions of the form

�(t) = �0(t) + ��1(t) + �2�2(t) + : : : (3.12)

�(t) = �0(t) + ��1(t) + �2�2(t) + : : : (3.13)
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and initial conditions of the form

�(0) = �0(0) + ��1(0) + �2�2(0) + : : : (3.14)

_�(0) = _�0(0) + � _�1(0) + �2 _�2 + : : : (3.15)

�(0) = �0(0) + ��1(0) + �2�2(0) + : : : (3.16)

_�(0) = _�0(0) + � _�1(0) + �2 _�2(0) + : : : (3.17)

which are to be made consistent with the transition and collision conditions (3.4)

to the appropriate order(s).

To zero-order in �, the system motions (solutions to Equations 3.10, 3.11 and

3.4 with � = 0) are:

�0(t) =
1

2
[�0(0) + _�0(0)] exp t+

1

2
[�0(0)� _�0(0)] exp(�t) (3.18)

�0(t) =
1

2
�0(t)�

1

2
_�0(0) sin t+

3

2
�0(0) cos t (3.19)

�0, �0, and �0 are the �rst terms in the expansions of the state variables �, �,

and the step period � as functions of the slope 
.

�(t) � �0(t)

1=3; �(t) � �0(t)


1=3; � � �0 (3.20)

A �xed point (gait limit cycle) of the walking map requires that once the collision

condition is met, heelstrike is about to occur, and the transition formula (eqn. 3.4)

must produce the original initial conditions. Thus, we have three conditions for

our zero-order (\linearized") solution: the double contact condition and the jump

conditions for � and _�. To �rst order, we can write these as follows, where �0 is the

step period of the linearized system.
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�0(0) = ��0(�0); _�0(0) = _�0(�0); �0(�0) = 2�0(�0): (3.21)

Substituting from the linearized system motions (Equations 3.18 and 3.19), we

rearrange terms to get the following equations for �0 and _�0

z(�0) = cos(�0=2) � f(1 + exp �0) sin(�0=2) + 3(exp �0 � 1) cos(�0=2)g = 0 (3.22)

with _�0(0) =
1 + exp �0

1� exp �0| {z }
�

�0(0) (3.23)

Equation 3.22 is equivalent to Equation 3.5 in the text. Equation 3.22 has roots

�0 = �; 3�; : : : (2n + 1)� associated with the cosine term and another set of roots

associated with the fg term that are �0 = 0; 3:812092; : : : that can be found numer-

ically. Each root of z(�0) corresponds to a unique solution for the period of a unique

period-one gait cycle in the linearized (�rst order) model. The roots associated with

the fg term satisfy the symmetry conditions that �(�0=2) = 0 and �(�0=2) = 0,

have _�(�0) = 0, and have no scu�ng at heel-strike (to �rst order).

Note that �0(0) and _�0(0) cannot be found at this order, but only at the next

order. In general, at order k in �, we are able to �nd the step period coe�cient �k,

and one condition on the coe�cients �k and _�k. At the same time, we are able to

solve for �k�1 and _�k�1. So, although the O(�) equations are more complicated,

the analysis is similar to the previous one. Because the equations become longer,

however, we will omit some of the details. Using known solutions to the order zero

equations, we �rst solve the O(�) di�erential equations for �1(t) and �1(t), subject

to initial conditions consistent with the jump conditions for � and _� (obtained



123

again by series expansion). �1(0) and _�1(0) are unknowns now. Together with the

collision condition, this gives us three more equations in O(�).

_�0(�0)�1 + �1(�0)� 2��0(0)�1 � 2�1(�0) = 0 (3.24)

�1(0) + ��0(0)�1 +�1(�0) = 0 (3.25)

_�1(0) + �0(0)�1 � _�1(�0) + 2��0
3(0) = 0 (3.26)

Numerically evaluating this set of equations and solving for the unknowns f�1(0),

_�1(0), �1g results in a set of equations of the form

A

2
66664

�1(0)

_�1(0)

�1

3
77775 = b1 +�3

0
(0)b2 (3.27)

where the left-hand matrixA is singular. So, if a solution exists it must be true that

vTb1 + vTb2�
3

0
(0) = 0 where v is the zero-eigenvalue eigenvector of AT (Fredholm

alternative). Solution is straightforward; we now have a value for �0(0) at the

gait cycle in terms of 
. In other words, we have a linear approximation to the

values of the �xed point for small slopes. We can also solve for �1, since the null

eigenvector of A has a zero in the �1 place. Lastly, we can derive the relationship

_�1(0) = ��1(0) + c1, but, as expected, we need to go to the next-higher order to

solve for �1(0).

So, at small 
, we expect �xed point initial conditions to be, to O(
),

2
666666664

�

_�

�

_�

3
777777775

+

�

2
666666664

�0(0)

1=3 +�1(0)


��0(0)

1=3 + (��1(0) + c1)


2�+

_�+(1� cos 2�+)

3
777777775

(3.28)
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and the swing period to be

� = �0 + �1

2=3 + �2


4=3 +O(
2) (3.29)

Table 3.1 summarizes our analytic results for the �rst two period-one �xed points

of the walking map.

Table 3.1: Summary of analytic results for the �rst two period-one �xed points of

the walking map for the simplest walker.

gait �0 �1 �2 �0(0) �1(0) � c1

short � -0.90750 -4.56225 0.94398 -0.26456 -1.09033 0.86661

long 3.81209 1.57913 0.93202 0.97096 -0.27084 -1.04520 1.06290

Analytic Stability Approximation

Using our O(�2) approximation to the �xed point, we can also �nd an approxi-

mation to J in order to predict the stability of the system to O(�) by expanding

perturbations to the limit cycle in a similar way. We followed the procedure in

Coleman et al. (1997) for an analysis of a 3D rimless wheel.

A brief summary of the procedure followed in Coleman et al. (1997) is as follows.

Just after one collision, let's say we have a small perturbation to the limit cycle �q̂.

This perturbation evolves in time until, at the limit cycle period � �, it is �q̂�.

However, heelstrike occurs at a slightly di�erent time and at a slightly di�erent

con�guration than the limit cycle value q�. These three e�ects (evolution of initial

perturbation, change in step period, and change in collision con�guration) can be

described, for the purposes of linearized stability analysis, by the product of three

matrices. The product of these is exactly equal to the Jacobian. Each matrix can
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in turn be approximated by an asymptotic expansion in the small parameter �. The

product of these three matrices is exactly equal to the Jacobian J.

Using this procedure, we found approximate Jacobians for the long and short

period gaits to be (to �rst order in �):

�0 = � : J �

2
64 7:29598 5:77437

�5:77437 �4:29598

3
75 +

2
64 17:22975 17:86638

21:06968 12:08449

3
75 
2=3

�0 � 3:8121 : J �

2
64 �5:07075 �5:80820

5:80820 6:55701

3
75�

2
64 20:37417 22:19418

13:21436 15:71506

3
75 
2=3

For comparison, eigenvalues of these matrices and eigenvalues found by numer-

ical integration of the full non-linear equations are shown in Figure 3.4. Results to

O(�) were in qualitative agreement with the numerics, but the quantitative agree-

ment is only good at very small slopes (
 < 0:005, or � < 0:03).

3.7.2 Additional Figures And Text Not Contained In The

Paper

Plot of z(�0)

A plot of Equation 3.5 is shown in Figure 3.8.

Plot Of A Multiple-Swinging Solution

Coleman (1998b) discovered these multiple-swinging motions while adjusting pa-

rameters in a slightly more complicated model. Angles over one step for one of

these gait cycles are shown in Figure 3.9.
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Figure 3.8: A plot of the function z(�0) showing locations of the zero-crossings.

There are in�nitely many more zero crossings for �0 > 4 representing multiple-

swinging solutions.
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Step Period Comparison

In Figure 3.10 we compare analytically-predicted step periods and numerical results.
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Figure 3.10: Analytically-predicted and numerically-evaluated step periods for short

and long period gaits.

Return Map And Attractor

A 2D projection of the return map is shown in Figure 3.11 for 
 = 0:0189. In the

Poincar�e section, each point represents the state of the system at the start of a

step. The attractor evolves from gait cycles of increasingly higher period, as shown

in Figure 3.12.

An inset of the lower portion of the attractor is shown in Figure 3.13.
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Figure 3.11: A 2D projection of the return map at 
 = 0:0189. The line �i = �i+1

is shown for reference.
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Figure 3.12: Evolution of the attractor at several slopes.
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Figure 3.13: Inset of lower portion of attractor showing foliated structure.


