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In this work, we study computer simulations of simple biped models with no

actuation except gravity, and no control. These so-called passive-dynamic models

of human gait were �rst studied by McGeer (1989). Computer simulations were

also used to construct two kneed walkers for demonstration purposes.

We begin our study with a simple one-parameter walking model, in 2-D, then we

move to more general 2-D models with and without knees, and �nally we study a

3-D model with no knees. In 2-D, we are most interested in gait e�ciency, while in

3-D, we focus on gait stability. We �nd general rules for the one-parameter model

which can be extended to understand the behavior of the more complicated models.

A summary of the main points is as follows:

1. The \simplest" walking model with only a point-mass at the hip exhibits two

gait cycles, one of which is stable at small slopes. Both gait cycles extend to

arbitrarily small slopes, and are therefore \perfectly e�cient." This model has

a step length proportional to the cube root of the slope; power usage scales



with (velocity)4. An asymptotic analysis agrees with numerical simulation re-

sults at small slopes. The long-step gait exhibits period doubling bifurcations

to chaotic gait as the slope is varied.

2. More general models with and without knees can also have up to two gait

cycles, one of which can be stable. In general, these models will not be able to

walk at arbitrarily small slopes. We present mass distribution conditions for

perfect walking e�ciency. These \tuned" walkers retain one of the cube-root-

scaling gaits, but the other gait, which is always unstable, has a step length

proportional to the slope at very small slopes. A period-doubling route to

chaos is also numerically-demonstrated for a tuned kneed walker. Some data

is also presented from a working physical walker.

3. In 3-D, planar 2-D gaits still exist but are unstable. A torsional spring at

the hip of a 3-D model improves its stability somewhat. Automated gradient-

based parameter searches to minimize the maximum eigenvalue terminate at

local minima; no stable 3-D walking gaits were found for our model. We

conclude that this model is not su�cient to explain the stability of the walker

of Coleman and Ruina (1998).
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3.1 A typical passive walking step. The new stance leg (lighter line)
has just made contact with the ramp in the upper left picture. The
swing leg (heavier line) swings until the next heelstrike (bottom right
picture). The top-center picture gives a description of the variables
and parameters that we use. � is the angle of the stance leg with
respect to the slope normal. � is the angle between the stance leg
and the swing leg. M is the hip mass, and m is the foot mass. l
is the leg length, 
 is the ramp slope, and g is the acceleration due
to gravity. Leg lines are drawn with di�erent weights to match the
plot of Figure 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.2 Leg angles versus time over one step at a long-period gait cycle. At
a gait cycle, heelstrike returns the system to its initial conditions. A
perturbation analysis (Appendix 3.7.1) predicts �� � C1


1=3 + C2
,
where �� is the stance angle at a �xed point. The �rst term of
the perturbation solution also predicts that _� = 0 just before and
after heelstrike, and that the graph should have the time reversal
symmetry (the graph looks the same when rotated 180 degrees). . . 107

3.3 Numerical vs. analytic predictions for point-foot stance angle at
�xed point as a function of slope. The short-period analytic solution
is �� � 0:943976
1=3� 0:264561
. The long-period analytic solution
is �� � 0:970956
1=3 � 0:270837
, where ��is the stance angle at a
�xed point. The inset box is shown expanded in Figure 3.6. . . . . 108
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3.4 Comparison of analytic and numerical stability predictions for long
and short period-one gait. The inset shows an expanded view of
the numerical veri�cation of the analytically-predicted split at 
 �
0:00014 (upper left corner) for the long-period gait. . . . . . . . . . 109

3.5 Several walker steps during a limping (period-two) gait. The walker's
legs are symmetric, but the gait is not. . . . . . . . . . . . . . . . . 111

3.6 Period doubling of stable walking motions, inset from Figure 3.3.
Unstable period-one cycles are shown for reference. Note that the
line weights are opposite to the usual convention; dotted lines rep-
resent stable cycles while solid lines represent unstable ones. No
persistent walking was found at slopes much steeper than 0.019 ra-
dians. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.7 Poincar�e section during chaotic walking motions, 
 = 0:0189. Us-
ing 30,000 points, we calculate the box-counting dimension of the
attractor to be about 1.25. . . . . . . . . . . . . . . . . . . . . . . 114

3.8 A plot of the function z(�0) showing locations of the zero-crossings.
There are in�nitely many more zero crossings for �0 > 4 representing
multiple-swinging solutions. . . . . . . . . . . . . . . . . . . . . . . 126
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3.10 Analytically-predicted and numerically-evaluated step periods for
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3.11 A 2D projection of the return map at 
 = 0:0189. The line �i = �i+1
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4.1 Our description of McGeer's kneed walking model. Shown above are
(a) model parameters, and (b) dynamic variables. Radii of gyration
and masses of thigh and shank are denoted by rt; mt; rs; and ms,
respectively. The foot is a circular arc centered at the \+". "T
is de�ned to be the angle between the stance thigh and the line
connecting the hip to the foot center. Dynamic variable values �st,
�th, and �sh are measured from ground-normal to lines o�set by "T
from their respective segments. A stop (not shown) at each knee
prevents hyperextension of either knee. In straight-legged models,
the knee is locked. . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.2 Strobe photo of our passive dynamic walker walking down a shallow
ramp in our lab. The double leg-set constrains motions to a plane.
The simulation we show in Figure 4.3 uses the parameters measured
from this walker. Photo by R. Pratap. . . . . . . . . . . . . . . . . 137
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4.3 Simulated gait cycle (ours, similar to McGeer's). Angles of leg seg-
ments are shown from just before a heelstrike to just after the next
heelstrike in a steady stable gait of the walker in Figure 4.1. The
heavy line corresponds to the motion of the heavy-line leg on the
small cartoon under the graph. At the start of the step, this is the
stance leg, but it becomes the swing leg just after the �rst heelstrike
shown, and again becomes the stance leg after the second heelstrike
shown. In general, the angular velocities of the segments have discon-
tinuities at kneestrike and heelstrike, which would appear as kinks in
the trajectories above, but they do not happen to be prominent here.
The strobe-like picture of the walker simulation shows the anthro-
pomorphic nature of the gait; it was created from the simulated gait
cycle in the graph. Measured human data (including trunk, with a
smaller scale and a longer stride) from Winter (1987) is shown to
the right. The parameters used in the simulation are those of the
working physical model in Figure 4.2. The dimensional parameters
are as follows: lt = 0:35m, wt = 0m, mt = 2:345kg, rt = 0:099m,
ct = 0:091m, ls = 0:46m, ws = 0:025m, ms = 1:013kg, rs = 0:197m,
cs = 0:17m, R = 0:2m, 
 = 0:036rad; g = 9:81m/s2; "T = 0:097rad. 139

4.4 Close to heelstrike, the x and y coordinates of any point on the
foot relative to any point on the ground can be used as generalized
coordinates to describe the con�guration of the walker. Since we are
examining a known gait cycle, these points can be chosen to be the
points at which contact will occur at heelstrike. l is the distance
between the foot center and the hip. . . . . . . . . . . . . . . . . . 148

4.5 Scaling transition comparison for two point-foot walkers. Data for
walker E is shown again in Figure 4.9. Parameters for walker E are
shown in Table 4.1. Walker F has a foot mass of 0.05 and a hip mass
of 0.9. At large ground-slopes (
 � �3=2), the walker stance angles
and velocities scale as 
1=3. The predicted critical slopes for walkers
E and F are shown at the bottom of the plot. Above these slopes,
we expect the stance angle to be proportional to the cube root of the
ground-slope. The ratio of the two critical slopes is nearly identical
to the ratio of the intersections of the two best-�t lines in the linear
scaling regimes with a cube-root scaling line. The solution curves
for the \simplest" walker would show as parallel lines more or less
on top of the upper curves in this �gure. Note that the \�" symbol
used here refers to data from a di�erent walker than in Figure 4.9.
See Figure 4.11 for a similar plot of step velocity versus slope for the
above walkers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
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4.6 Numerically-calculated locus of solutions showing stance angle as a
function of ground-slope for our physical kneed walking model (solid
line) and for the same model but with the knees locked (dashed
line) at �xed points. The thick portion of the solid line denotes
stable solutions for the kneed walker. Figure 4.12 is a similar plot
but with velocity replacing stance angle. . . . . . . . . . . . . . . . 155

4.7 To walk at arbitrarily shallow ground-slopes, a walker must allow
a static standing solution at zero slope with the stance leg locked,
the swing leg unlocked, the legs parallel, and the hip directly above
the foot contact. These conditions are shown graphically for (a) a
straight leg, and (b) kneed walker. . . . . . . . . . . . . . . . . . . 159

4.8 Solution families during de-tuning of the tuned kneed walker. Sub-
plot (a) shows the perfectly tuned walker with solutions extending
to zero slope. Subplots (b), (c), and (d) show the solution curves no
longer meeting at low slope. Subplot (e) shows the solutions merg-
ing and splitting into two solution regions, and subplot (f) shows the
(100 % detuned) original lab walker of Figure 4.6. Presumably, the
higher-slope solutions are also present but not visible on subplot (f). 161

4.9 Gait families for tuned zero-slope-capable walkers on (a) a linear
plot, and and (b) a log-log plot. Parameter values are listed in Table
4.1. By \gen. mass. dist." it is meant that the parameters are close
to those of the kneed walker of Figure 4.3. Note (1) there are two
gaits cycles at each 
 for all walkers shown; (2) for the \simplest"
walker (D) both step lengths are proportional to 
1=3; (3) the short-
step gaits of the other walkers have step lengths proportional to 

for small 
; (4) the long-step gaits for the other walkers have step
lengths that are much longer than for the short-step gaits, though
not necessarily exactly proportional to 
1=3 for small 
; and (5) for a
point-foot, straight-legged walker with non-negligible foot mass, the
step length of the long-step gait is proportional to 
1=3 for small 
.
Figure 4.13 is a similar plot but with step velocity instead of stance
angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

4.10 Period doubling of stable kneed walking motions. Only stable walk-
ing motions are shown, although all periodic gaits persist as unstable
gait cycles after they undergo period-doubling. The parameters are
those of the tuned kneed walker (C) in Table 4.1. . . . . . . . . . . 169
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4.11 Scaling transition comparison for two point-foot walkers. Data for
walker E is shown again in Figure 4.9. Parameters for walker E are
shown in Table 4.1. Walker F has a foot mass of 0.05 and a hip mass
of 0.9. At large ground-slopes (
 � �3=2), the walker stance angles
and velocities scale as 
1=3. The predicted critical slopes for walkers
E and F are shown at the bottom of the plot. Above these slopes,
we expect the velocity to be proportional to the cube root of the
ground-slope. The ratio of the two critical slopes is nearly identical
to the ratio of the intersections of the two best-�t lines in the linear
scaling regimes with a cube-root scaling line. The solution curves
for the \simplest" walker would show as parallel lines more or less
on top of the upper curves in this �gure. Note that the \�" symbol
used here refers to data from a di�erent walker than in Figure 4.9. 173

4.12 Numerically-calculated locus of solutions showing step velocity as a
function of ground-slope for our physical kneed walking model (solid
line) and for the same model but with the knees locked (dashed
line) at �xed points. The thick portion of the solid line denotes
stable solutions for the kneed walker. . . . . . . . . . . . . . . . . . 174

4.13 Gait families for tuned zero-slope-capable walkers on (a) a linear
plot, and and (b) a log-log plot. Slope is plotted against average
step velocity. Parameter values are listed in Table 4.1. By \gen.
mass. dist." it is meant that the parameters are close to those of
the kneed walker of Figure 4.3. Note that there are two gaits cycles
at each 
 for all walkers shown. . . . . . . . . . . . . . . . . . . . 176

5.1 McGeer's 3D passive-dynamic walking model: parameters and con-
�guration variables. Like McGeer's 2D straight-legged model, it has
two identical straight legs and semi-circular feet. Orientation of
the stance leg relative to the ground frame is determined by the
heading(�), bank( ), and pitch(�) sequence of rotations about the
axes indicated. The swing and stance legs have the same heading
and roll angles, but can pitch independently. The leg mass is ml and
has location �x, �y, and c (with respect to the stance leg frame)
and the leg coordinates are aligned with its principal moments of
inertia. The radii of gyration are rgyrx, rgyry , and rgyrz . The hip has
only a point mass, mT . The radius of curvature of the feet is R.
This �gure is used with permission from Coleman (1998b). . . . . . 200

5.2 Parameterization of the moment of inertia matrix, based on an illus-
tration from Coleman (1998b). The inertia matrix is described by
the distances d1; d2; d3 and angles �x; �y; �z. . . . . . . . . . . . . . 205

5.3 Three-dimensional passive cycle, as calculated for a straight-legged
biped having legs separated by 15% of leg length. The slope is 0.032;
Other parameters are shown on the right side of the plots. (Used
with permission from McGeer (1991); also in Coleman (1998b)) . . 209
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5.4 Leg angles as functions of time for our version of McGeer's walker.
The angles plotted are meant to match those in �gure 5.3. Parame-
ters are the same as those of McGeer's walker. . . . . . . . . . . . . 210

5.5 McGeer's data: step period, slope, and eigenvalue moduli at each
�xed point, shown as a function of hip spacing for his walker pa-
rameters. z1 and z2 are the largest and second-largest eigenvalue
moduli, respectively. Along the curves, the stance angle is constant.
(Reprinted with permission from McGeer (1991). Also reproduced
by Coleman (1998b)). . . . . . . . . . . . . . . . . . . . . . . . . . 214

5.6 Eigenvalue modulus and stability ratio at each �xed point shown as
a function of slope 
, hip spacing h, and foot radius R for McGeer's
walker. In each plot, except for the parameter varied, the parameter
values are the same as those in Figure 5.3. . . . . . . . . . . . . . . 215

5.7 Eigenvalue modulus and stability ratio, at each �xed point shown
as a function of x-position of the center of mass, y-position of the
center of mass, and z-position of the center of mass of the leg. In
each plot, except for the parameter varied, the parameter values are
the same as those shown in Figure 5.3. . . . . . . . . . . . . . . . 217

5.8 Eigenvalue modulus and stability ratio at each �xed point shown as
a function of the torsional hip spring sti�ness, and hip and steering
damper coe�cients. In each plot, except for the parameter varied,
the parameter values are the same as those shown in Figure 5.3. . 218

5.9 Graphical description of constraining the search algorithm to avoid
areas of high condition number. . . . . . . . . . . . . . . . . . . . . 220

5.10 A local minimum of maximum eigenvalue with respect to six pa-
rameters. This was found by application of a gradient search rou-
tine beginning with McGeer's original parameters plus a torsional
hip spring. Parameters for this case are as follows: R = 0:3, 
 =
0:032, h = 0:15, 3pc

3
= [0:38; �0:004 � 0:015], d1 = 0:562244,

d2 = 0:072705, d3 = 0:070994, �x = �1:521920, �y = �0:044393,
�z = 0:159859, and the torsional hip spring coe�cient is 0:54. . . . 222
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