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Abstract

We report on the estimates of the accuracy of standard numerical methods used to study the motions
and stability of two systems with intermittent dynamics: (1) a 2D rigid rimless spoked wheel, or
regular polygon, rolling downhill and (2) a 3D passive-dynamic walking machine. In the �rst case,
solutions are known analytically so both the numerical result and error estimates can be checked.
The eigenvalue error is about 1 � 10�10. The same numerical and error estimation procedures
are used for the second case where no analytical solution is known. The eigenvalue error is about
1� 10�7. The overall error estimation approach is similar to those in [1, 2, 3, 4, 5].



1 2D Rimless Spoked Wheel Rolling Downhill

We summarize here the mathematical formulation of the problem. The details of equation derivation
and their solutions are in Coleman [6]. The con�guration of the wheel is shown in Figure 1.
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Figure 1: 2D rigid body model: a rimless spoked wheel of mass m, moment of inertia about the
center of mass IC , and n evenly spaced spokes of uniform mass and length l rolls down a slope of
angle �. The orientation of the wheel is given by angle � and its angular rate by _�. The angle
between the spokes is � = 2�=n.

1.1 Governing Equations

The state vector describing the phase space is q = (�; y), where y = _�.

1. The �rst order system of di�erential equations governing the motion between collisions is:

_� = y

_y = �2 sin(� + �): (1)

2. The termination condition for detecting a downhill spoke collision is:

� = �=n: (2)

3. The jump transition rule at spoke collision is:

(�; y) 7! (��; �y); � = �=n: (3)

�, �, and n are constants, where 0 < � � 1, and

� = 1 + �2(cos(
2�

n
)� 1); 0 � � < 1: (4)
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1.2 Poincar�e section, Return Map, Fixed Points, and Stability

We study this system by sampling the phase space at the points of discontinuity, the collisions,

where we know the pitch angle of the wheel to be � =
�

n
. We then write a map from one point just

after a collision, to the next, as the di�erence equation

qk+1 = f(qk); (5)

where we call f the return map (or Poincar�e map) and qk is the state vector of the system at the
start of a cycle, just after the kth spoke collision.

In this problem, f can be found explicitly as

�
�k+1
yk+1

�
= f(qk) =

�
f1(�k ; yk)
f2(�k ; yk)

�
=

8><
>:

��
n

�
q
y2k + 2�2(cos(�� �

n
)� cos(�+ �

n
))

9>=
>; : (6)

Any q� for which f(q�) = q� is a �xed point. The �xed point of the return map is:

8<
:

�� � ��(n)

y� � y�(�; n; �2)

9=
; =

8><
>:

��
nq

4�2�2 sin �

n
sin�

1��2

9>=
>; (7)

The Jacobian of f evaluated at the �xed point can be computed explicitly as:

J(q�) =

2
664

0 0

���2 sin(���

n
)

2

q
�2 sin

�

n
sin�

1��2

�2

3
775 (8)

The two eigenvalues are �1 = 0 and �2 = �2.
For the numerical analysis, we take the wheel parameters to be

n = 6;

�2 = 2=3; and

� = 0:2 (9)

The �xed point angular rate, from the algebra above, is

y� =

s
4�2�2 sin �

n
sin�

1� �2
= 0:4603411266094583 (10)

and the stability eigenvalues are:

�1 = 0

�2 = �2 = 4=9 = 0:44444444444444: (11)

2 Numerical Analysis and Error Estimation

We now estimate the error in the numerical calculation of �xed points and stability eigenvalues with
and without reference to a closed form solution. In order to investigate the error in computing the
stability eigenvalues for a map evaluated at a �xed point, we �rst determine the accuracy of one
numerical map iteration. Then, using the integration step size that approximately minimizes the
map evaluation error, we �nd a �xed point of the map. Finally, we compute components of the
Jacobian matrix which requires 2 map evaluations slightly perturbed from the �xed point, one for
each of the matrix columns.
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2.1 Map Evaluation Error

We carry out one map iteration numerically as follows: (1) we integrate the system of di�erential
equations forward from the state of the system just after a collision using a constant step size 4th

order Runge-Kutta scheme written in MATLAB

R

combined with Henon's [7] method to detect
collisions and return the state just before the next spoke collision; and, (2) a matrix multiplication
applies the transition conditions at impact, taking the state of the system just before a spoke collision
to just after; i.e., Equation 3 can be accomplished by a matrix multiplication.

We would like to know what Runge-Kutta step size h we should select to minimize the errors in
�nding a �xed point and the stability eigenvalue. We proceed assuming that we do not know the
true answer for either.

To do this, we study how qk+1 = f(qk) varies with the step size. The steps for investigating how
the error in calculating a desired quantity, say x, scales with the desired integration step size are as
follows:

1. Integrate forward from some initial condition x0 near the eventual �xed point over one map
iteration to x1 = f(x0) at some �xed integration time step hj . (Note: the last time step is not
hj but smaller, since it is chosen to make the collision detection condition be satis�ed to some
accuracy.)

2. Integrate forward from the same initial condition over one map iteration for a range of step
sizes h1, h2 = Ch1, : : :, hj+1 = Chj , : : : or hj = Cj�1h1.

3. If the true answer is x̂1, then the absolute error for hj is

�j = x1(hj)� x̂1: (12)

4. By eliminating x̂1, form the di�erence in absolute error between calculations at successive step
sizes as:

j�j+1 ��j j = jx1(hj+1)� x1(hj)j; (13)

If round-o� errors are not signi�cant, for 4th order Runge-Kutta integration, we expect

�j � Kh4j

�j+1 � Kh4j+1 = KC4h4j

) (�j+1 ��j) = x1(hj+1)� x1(hj) � K(1� C4)h4j (14)

)
(�j+1 ��j)

(1� C4)
=
x1(hj+1)� x1(hj)

(1� C4)
� Kh4j : (15)

5. Plot log10(jx1(hj+1)�x1(hj)j=(1�C
4)) versus log10(hj); such a plot should indicate the map

iteration error and corresponding integration step size hj , assuming negligible round-o� error.

We investigate the integration error over one step near an estimate for a �xed point. In order to
�nd a �xed point of the map f , we integrate forward from some arbitrary initial condition qk and
�nd qk+1 = f(qk), form the di�erence g(qk) = f(qk)� qk = qk+1 � qk , and use Newton's method
to reduce the di�erence to some acceptably small number, or termination criterion, �N near zero.

To start, we take arbitrarily the integration step size, the termination criterion for Newton's
method, and Jacobian forward di�erence step size to be, respectively:

h = 0:001;

�N = 1� 10�14; and

Æ = 1� 10�7: (16)

We get the �xed point
(��; y�) = (��=n; 0:46034112660946) (17)
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Figure 2: Absolute error in the angular rate y over one forward map iteration for n = 6, �2 = 2=3,
and � = 0:2 where C = 10�1=4. Note that the truncation error has slope approximately equal to
4 as expected. The open circles denote the error with respect to one true map iterate ŷ1 using
Equation 6 and the solid circles denote the estimated error based on single map iterates calculated
at successive step sizes.

which we use as our initial values (�0; y0) for the step size convergence study. After one map iteration
at a particular step size hj , we obtain a new angular rate y1(hj).

Following the procedure outlined above for error estimation, Figure 2 shows a log10� log10 plot
of:

1. jy1(hj+1)� y1(hj)=(1� C
4)j vs. hj where C = 10�1=4 (represented by solid circles), and

2. jy1(hj+1)� ŷ1j vs. hj (represented by open circles).

To get the most precise map iterate, based on the plot, we choose the step size we will use for
the eigenvalue study to be (see Figure 2)

h = 10�3 = 0:001: (18)

The truncation error between calculations at successive integration step size appears reasonably
minimized at about

� � 1� 10�15: (19)

below which there is no apparent gain in accuracy and round-o� error becomes prominent. We use
this value of � as the termination criterion for Newton's method, �N = 1�10�15 (since the Jacobian
involved is of order 1). Finally, using the integration step size and termination criterion suggested
above, we �nd a �xed point. In summary, we have

h = 0:001;

�N = 1� 10�15;

y� = 0:460341126609458 (20)

We use this step size and �xed point for the subsequent stability and eigenvalue error analysis.
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2.2 Stability Eigenvalue Error

We generate the Jacobian matrix of the map evaluated at the �xed point numerically via the method
of centered di�erences where the truncation error is O(Æ2), or quadratic in the di�erence step size Æ.

Finding each column of the Jacobian involves two map iterations. We use the MATLAB

R

function
eig.m1 to compute the eigenvalues of the Jacobian.

One eigenvalue is exactly zero (�1 = 0), and, as mentioned previously, re
ects the fact that the
initially perturbed point might lie o� the Poincar�e section, but the next iterate will lie exactly on
the Poincar�e section. Thus, we concern ourselves with the error in computing the second eigenvalue
�2 which governs stability of the wheel �xed point. We compute the error in �2 in the same manner
as was done for the map iteration error.

Using the integration step size found above, h = 0:001, Figure 3 shows a log10� log10 plots of:

1. j�2(Æj+1) � �2(Æj)=(1� C2)j vs. Æj evaluated at the numerically determined �xed point y� =
0:460341126609456 and with C = 10�1=4 (represented by solid circles) and

2. j�2(Æj)� �̂2j vs. Æj (represented by open circles).

The error in the stability eigenvalue between estimates at successive step sizes is reasonably
minimized at about

�(Æ) � 1� 10�10 (21)

at a central di�erence step size of about

Æ � 1� 10�5: (22)

This procedure, then, lets us bound the error safely for the stability eigenvalue,

�2 = 0:4444444444� 1� 10�10: (23)

Compared to the map iteration error plotted in Figure 2, the eigenvalue round-o� errors are more
signi�cant due to the fact that one Jacobian calculation by centered di�erences involves 4 map

iterations; plus, additional errors are incurred due to invoking MATLAB

R

's eig.m.
As for the map iteration error analysis, if round-o� errors are not signi�cant in the eigenvalue

calculations, we expect the errors in the eigenvalue �2 to scale with central di�erence step size as
follows:

�j � K�Æ
2
j

�j+1 � K�Æ
2
j+1 = K�C

2
�Æ

2
j

) (�j+1 ��j) = �2(Æj+1)� �2(Æj) � K�(1� C
2
�)Æ

2
j (24)

)
(�j+1 ��j)

(1� C2
�)

=
�2(Æj+1)� �2(Æj)

(1� C2
�)

� K�Æ
2
j : (25)

2.3 Comparison of Numerical to Exact Solutions

We summarize the analytical and numerical calculations for the wheel thus far in Table 1: (1) the
numerically determined �xed point di�ers from the analytical solution (Equation 10) in the 16th

decimal place; and, (2) the numerically evaluated stability eigenvalue di�ers from the analytical
solution (Equation 11) in the 11th decimal place. In addition, at a �xed central di�erence step size
of Æ = 10�5, the stability eigenvalue di�ered at most in the 9th decimal place with the true solution
while varying the integration step size from h = 1� 10�2 to h = 1� 10�5.

1eig.m uses EISPACK, a library of Fortran 77 routines for computing eigenvalues and eigenvectors in numerical

linear algebra.
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log10[ | σ2(δj+1) - σ2(δj) | / (1 - C2)] =
 
log10[ |∆j+1 - ∆j) | / (1 - C2) ] = estimated error  

log10 | σ2(hj) - σ2|  = log10 |∆j | = true error 

Wheel Eigenvalue Error

Figure 3: Absolute error in the stability eigenvalue �2 for n = 6, �2 = 2=3, and � = 0:2 where
C� = 10�1=4. Note the quadratic convergence of the truncation error (slope 2 on the log10� log10
plot).The open circles denote the error with respect to the true eigenvalue �̂2 using Equation 11
and the solid circles denote the estimated error based on eigenvalues calculated at successive central
di�erence step sizes.
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y� �2
analytical 0.4603411266094583 4/9

numerical 0.4603411266094588 0.44444444444080

true error 5� 10�16 4:8� 10�12

estimated error 6:1� 10�16 6:2� 10�11

Table 1: Comparison of numerical and analytical calculations of the �xed point and stability eigen-
value for the 2D rimless wheel.

3 Error Analysis for the 3D Passive-Dynamic Walking Model

This analysis for the 2D rimless spoked wheel was carried out to better understand the errors
involved in similar numerical procedures we apply to systems with intermittent dynamics where we
do not know the true answer a priori, unlike the wheel. In particular, we apply these procedures
in studying passive-dynamic walking mechanisms where we know neither the �xed points nor their
stability analytically.
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Figure 4: The 3D rigid body model. The parameters and state variables are described in [8].

We apply the approach described above in Section 2 for the wheel to the estimation of the error
in maximum eigenvalue calculations for a 3D passive-dynamic straight-legged walking model shown
in Fig. 4 (see [8, 9]). The physical parameters are: IXX = 0:1982, IY Y = 0:0186, IZZ = 0:1802,
IXY = 0:0071, IXZ = �0:0023, IY Z = 0:0573, � = 0:0702, Xcm = 0, Ycm = 0:6969, and Zcm =
0:3137,W = 0:3624, and R1 = 0:1236 and R2 = 0 (capital letters indicate nondimensional variables,
IMN are tensor components).

Following the procedure outlined above for error estimation, Figure 2 shows a log10� log10 plot
of j�st(hj+1) � �st(hj)=(1 � C4)j vs. hj where C = 10�1=4. To get the most precise map iterate,
based on the plot, we choose the step size we will use for the eigenvalue study to be (see Figure 5)

h = 3� 10�4 = 0:0003: (26)

The truncation error between calculations at successive integration step size appears reasonably
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minimized at about
� � 1� 10�14 (27)

below which there is no apparent gain in accuracy and round-o� error becomes prominent. We use
this value of � as the termination criterion for Newton's method, �N = 1� 10�14.

Finally, using the integration step size and termination criterion suggested above, we �nd a
�xed point for the given parameters (see Table 2). We use this step size and �xed point for the
subsequent stability and eigenvalue error analysis. The limit cycle period is �� = 1:00711403622059
where _( ) = d( )=d� with � the dimensionless time.

�� 0.09866765986740

 � -0.00924861067616

��st -0.16016583495522

��sw 3.43583389038583
_�� -0.13220965510356
_ � -0.01990961987794
_��st 0.47124237466979
_��sw -0.39255916866486

Table 2: Fixed point for the 3D walking model with the parameters cited in the text and an
integration step size h = 0:0003.
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Figure 5: Error in the �xed point stance leg angle (for the 3D walking model of [9]) with the
parameters cited in the text.

Figure 6 shows a log10� log10 plot of j j�(Æj+1)jmax � j�(Æj)jmax j vs. Æj evaluated at the �xed
point where we have used the integration step size found above, h = 0:0003. The error in the
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stability eigenvalue between estimates at successive step sizes Æj is reasonably minimized at about

�(Æ) � 1� 10�7 (28)

at a central di�erence step size of about

Æ � 1� 10�5: (29)

Compared to the map iteration error plotted in Figure 5, as for the wheel, the eigenvalue round-o�
errors are again more signi�cant due to the fact that one Jacobian calculation by centered di�erences
involves 16 map iterations. In addition, the round-o� error for the walker is more signi�cant than
for the wheel since the number of operations to compute the Jacobian is greater by a factor of 4.

This procedure, then, lets us bound the error safely for the stability eigenvalue,

j�jmax = 0:8391560� 1� 10�7: (30)

In addition, at a �xed central di�erence step size of Æ = 10�5, the maximum eigenvalue di�ered in
the 8th decimal place while varying the integration step size from h = 10�3 to h = 5:5� 10�4, for a
number of values.

20 18 16 14 12 10 8 6 4 2 0
10

8

6

4

2

0

2

slope = 2  

Walker Eigenvalue Error

log10(δj), central difference step size

   
   

   
es

tim
at

ed
 a

bs
ol

ut
e 

er
ro

r 
lo

g 1
0[

 | 
|σ

(δ
j+

1)
| m

ax
 -

 |σ
(δ

j)|
m

ax
 | 

/ (
1 

- 
C

2 )
]

 integration step size h = 0.0003

Figure 6: Absolute error in the maximum eigenvalue modulus eigenvalue (for the 3D walking model
of [9]) for the parameters cited in the text. Again, note the quadratic convergence of the truncation
error. The integration step size is h = 0:0003.
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