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This thesis is a model-based exploration of the classic hypothesis that animals

locomote in a manner that minimizes the metabolic cost of the task.

First, we formulate perhaps the simplest mathematical model of a bipedal ani-

mal that is capable of an infinite variety of gaits — including many types of walking,

running, and skipping. The model, first described by Alexander (1980), consists of

a point-mass upper body and massless legs which are capable of performing work

on the upper body when in contact with the ground. We determine the positive

and negative work required by the model to perform idealized versions of various

familiar gaits. Approximating the total metabolic cost as being only due to posi-

tive and negative work, we find that inverted pendulum walking is preferable to,

specifically, impulsive running at low speeds and impulsive running is preferable

to inverted pendulum walking at higher speeds. Further, we find that skipping is

always a little more energetically expensive than impulsive running.

We then ask a larger question: why do people choose to walk and run when

their legs are, in theory, capable of an infinite variety of gaits? Using numerical

optimization on the minimal model, we show that from among an infinite variety

of gaits that the minimal model is capable of, inverted pendulum walking requires



the least energy at low speeds. Impulsive running requires the least energy at high

speeds. At a small range of intermediate speeds and large step lengths, a new gait

we have dubbed “pendular run” is found to be optimal.

Next, we provide an analytical proof of the energetic optimality for walking at

low speeds and running at high speeds in an informal simplification of the minimal

biped model.

Finally, we present simple models for the energetics of swinging the leg. Com-

bining this simple leg-swing model with the previously derived model of the work

done by the leg during stance, we find that as an animal moves faster, the ra-

tio of the cost for swinging the leg to the cost of the work done during stance is

approximately a constant, as has been shown in some experiments.
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Chapter 1
Introduction
1.1 Theories of locomotion and motor coordination.

Voluntary motion in most animals consists of a complex of interactions between
the mechanical structure of the body, the muscles, the nervous system, the cir-
culatory system, and to perhaps lesser extents, other physiological systems. Re-
searchers hope to untangle this complex of interactions into dynamical equations.
These equations will predict the physiological consequences (including movement
of limbs) of a high-level volitional decision by the brain or predict the responses to
an external stimulus. These attempts at “dynamical theories” of motor coordina-
tion could be reductionist in the extreme, building up from the level of individual
neurons and muscle fibers. Such reductionist syntheses are likely to be more fruit-
ful for simple rhythmic movements (e.g., Marder and Bucher, 2001) in simple lower
animals (e.g., Grillner et al., 1991, 1995; Grillner, 1996) and/or simple reflex be-
havior (e.g., Kandel et al., 2000). For humans exhibiting more elaborate behavior,
a more realistic near-term goal would be to understand the dynamical coupling
between systems-level behaviors of the relevant physiological components: writing
equations that describe, at a blurred-out level, the interactions between human
free will, whole muscles, some gross efferent motor signals, gross afferent sensory
signals, and the relevant physiological systems. We do not have such detailed
dynamical descriptions of the human motor system (or of any animal for that
matter).

Eventually we might have enough data to put the pieces together, to create
more and more complete, behaving animals in the computer. Complementary to
such attempts at dynamical theories are theories that assume optimality or some
variation thereof in animal behavior. The neo-Darwinian argument goes like this:
Much of animal movement has a purpose. Animals move to forage, predate, evade,
reproduce, migrate, etc. These activities are critical to the eventual reproductive
success of the animal. There is, therefore, a strong evolutionary pressure on animals
to move “well”. The hope, then, is that optimization of behavior in mathematical
models of animals will predict, at least approximately, what they are likely to do
to achieve a specific goal, say locomotion. This thesis is almost entirely concerned
with this second kind of theory.

1.2 Optimality as a predictive theory in biology.

Optimality in biological systems is an ancient hypothesis:

“If one way be better than another, that — you may be sure — is na-
ture’s way.”
– Aristotle, 384 BCE-322 BCE, quoted in Sutherland (2005).

1
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“A perpetual law of nature consists of acting with the smallest work.”
– Borelli, 1608–1679 (Borelli, 1680).

However there is some skepticism whenever optimization is touted as a predic-
tive theory in biology (Gould and Lewontin, 1979). A thorough discussion of the
utility and rationale for optimization in biology is provided in Smith (1978). Other
good references are Smith (1982), Alexander (2001) and Sutherland (2005). For
completeness, we briefly discuss the main issues here.

An optimization study requires a definition of what “good” means. For biolog-
ical systems shaped by natural selection, a “good” trait is often defined roughly as
that which survives better, say, over a time-scale much longer than the life-time
of a single organism. This rough notion of “fitness” can be variously formalized in
simple mathematical models of animal competition and evolution (Smith, 1982).
We can then seek the evolutionarily stable strategies (if such exist) within the
simple models of animal evolution. However, in many situations (including animal
locomotion, we shall argue), the effectiveness of a behavior of a particular animal
can be well-characterized by a single scalar quantity, that depends only on the be-
havior of the particular animal, but not on the behavior of the other animals in the
population. In such situations, it is appropriate to replace the problem of finding
the evolutionarily stable strategy (Smith, 1982) in some model of evolution by a
more tractable proxy problem – that of finding that adaptation that maximizes or
minimizes the scalar “objective function”. We can then see how well optimization
of this objective function can explain particular adaptive behavior or structure. A
reasonable objective function that characterizes the effectiveness of locomotion is
the metabolic cost (e.g., Margaria, 1976; Alexander, 1989) for traveling unit dis-
tance. As will be discussed in the next section, there is some experimental evidence
for energetic optimality in animal locomotion.

Optimization studies are often criticized as being circular, tautological and ir-
refutable. For example, some of these optimization studies posit an optimization
principle, determine the theoretical optimum and if it does not agree with experi-
ment, change the objective function and constraints appropriately to make better
predictions. Sutherland (2005) deflects this criticism by pointing out that this cir-
cularity is a common feature of most scientific enterprise. On the other hand, the
new refined theory should (as should all new theories) not be judged by the data
that motivated it, but be judged by the accuracy of its novel predictions (e.g.,
Smith, 1978).

Nevertheless, the hypothesis of optimality with respect to some, possibly un-
known, objective function is irrefutable (Smith, 1978). It might be possible to
explain a lot of an animal’s behavior by attributing it to the optimization of a
rather complicated objective function. For some problems, we might be able to de-
rive, by repeated human guesswork, the objective function that is (perhaps) being
optimized. Such guesswork can sometimes be automated into a procedure called
inverse optimization (e.g., Ahuja and Orlin, 2001), in which a computer algorithm
searches for the objective function (typically from a finitely-parameterized family
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of objective functions) that when optimized with appropriate constraints predicts
the observed behavior. Especially when the structure of the resulting objective
function is complicated, such optimization is unlikely to offer simple understand-
ing, but might well be a reasonable way to codify a wide range of animal behavior.
Inverse optimization in combination with (forward) optimization has been used
successfully to derive ingenious rules for animation of human motion (Liu et al.,
2005).

Sometimes no single objective function seems likely to predict observed be-
havior and the adaptive behavior might be a compromise for multiple functional
consequences. In such cases, we might still get good predictions from compos-
ite objective functions or multi-objective formulations1 of the optimization prob-
lem (for e.g., Ringuest, 1992). More generally, evolution by natural selection is
never strictly an optimizing process. Given that animals compete, the fitness of a
particular animal is determined not only by its own actions and adaptations but
also those of other animals and plants in a dynamic ecosystem. Co-evolution of
species takes them away from any given objective ideal of optimality. In many of
these cases, non-cooperative evolutionary game theory might be the more appro-
priate approach (Smith, 1982).

Another common criticism of optimization studies is their apparent inability
to account for evolutionary or developmental constraints. The usual response to
this criticism is that all optimization studies require a description of the “the
feasible region”, the set of possible solutions from which the best is sought. The
feasible region is specified either explicitly as constraints on the optimization or
implicitly via modeling assumptions. The feasible region, therefore, implicitly
defines the space of possible phenotypes – implicitly modeling the evolutionary
and developmental constraints. However, the phenotypic variation thus assumed
in optimization studies are based more on convenience, rather than our current
knowledge about developmental constraints and trade-offs. Detailed data on the
possible phenotypic variation is virtually non-existent for most situations (Nijhout
and Emlen, 1998). More generally, the underlying assumption in optimization
studies is that most such constraints can always be violated on a longer time-scale.

Theories based on optimality can be complementary to more dynamical or
mechanistic descriptions of say, how a particular efficient locomotor behavior is
implemented in an animal with muscles and neurons or how a particularly effective
structure is developed as a consequence of developmental trade-offs. Of course, it
is neither fruitful nor reasonable to expect to understand every little feature in an
organism by optimization. Nevertheless, functional adaptation (optimization is a
special case) of structure and behavior remains one of the few unifying themes in
biology.

1in which the set of non-dominated Pareto-optimal solutions are sought
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1.3 The best way to move: energetic optimality in animal
movement.

The best way to locomote depends on the situation. High accelerations and maneu-
verability may be required to successfully catch an evading prey or to successfully
evade a pursuing predator (e.g., Alexander, 2003). At other times, ability to main-
tain a slow but sufficient speed for long periods of time (endurance) might be
important (e.g., Alexander, 2003). Energetic economy, only subtly different from
endurance, is useful in most situations. And not losing stability — not falling
down — is a hard constraint in all these situations (e.g., Kubow and Full, 1999).
These are not necessarily mutually exclusive goals. For example, an animal can
accelerate quickly when it wants to, but be energetically economical when it has
reached the intended steady speed. Energetic optimality could be pursued, for
example, with stability as a constraint.

More generally, minimization of an energy-like quantity might not be appro-
priate for discovering optimal strategies for maximum performance tasks such as
maximum-velocity throwing or maximum speed running. However, many adapta-
tions for maximum speed running, for example, would help energy efficiency and
vice versa (e.g., low friction joints, long light legs). Further, the relationship be-
tween energy efficiency and some other performance measure can be understood
by the study of appropriate dual problems. Given, say a throwing velocity, max-
imal or otherwise, one can ask how one should attain this throwing velocity with
minimum energetic cost. An animal might usefully seek to minimize its metabolic
energy expenditure subject to the constraint that it escape a pursuing predator
with probability one.

This thesis is mostly concerned with energetic optimality of steady legged lo-
comotion. In particular, we will consider only the energetic optimality of the
locomotor behavior, as opposed to the optimality of the locomotor structure. How-
ever there is some evidence of structural adaptations that help locomotor energy
economy. For example, the long tendons in animals store and return energy during
running, and arguably, walking as well – thus minimizing the work requirements
of these gaits (e.g., Alexander, 1988).

Unlike optimality with respect to some as-yet-undetermined criterion, energetic
optimality is an experimentally refutable hypothesis. And as noted earlier, studies
have found some evidence for energetic optimality in animal movement. This
evidence is of two types:

1. Direct experimental evidence. The metabolic energy expenditure dur-
ing a preferred locomotion pattern is compared with those of nearby not-
preferred locomotion patterns. The preferred locomotion pattern tends to
have the least metabolic cost. The metabolic cost here is typically estimated
by monitoring the oxygen (“VO2”) and carbon dioxide (“VCO2”) exchange
through the lungs (e.g., Brooks et al., 2000).
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2. Consequences of Optimality. This kind of evidence is less direct. A re-
searcher uses a model of the animal to determine the consequences of optimal-
ity for the model and compares that to observed behavior (e.g., Alexander,
1980, 1992, 1997; Kuo, 2001; Srinivasan and Ruina, 2006).

Before discussing the experimental evidence of the first type, we need to more
clearly define what we mean by “animals pursue energetic optimality”. When an
animal is resting – that is, not moving – it expends metabolic energy to support
the various physiological processes that keep it alive. But “not moving” is not
a single state, and depending on what processes are going on in the body, the
resting metabolic rate will vary (e.g., Alexander, 1999). For simplicity in specific
applications, this rate Rrest is often assumed to be a constant. When the animal
starts moving, voluntary muscles are employed to perform work on the body and
exert forces as appropriate. Voluntary muscle contraction requires energy. Further,
sustained voluntary muscle use requires increased blood flow to the corresponding
muscles, increased breathing rates to keep up the oxygen required for aerobic
glycolysis and increased motor neuronal firing; all these increases entail energetic
costs. The increase in metabolic rate due to use of voluntary muscles for movement
is the sum total of all such changes in the energy requirements.

What should an animal minimize? It is easiest to discuss this question in the
context of steady horizontal locomotion. Let the total metabolic rate (energy per
unit time) while moving steadily at speed v be Rmov(v). Then the total metabolic
cost per unit distance would be Rmov/v. If the animal needs to travel a given
distance, perhaps it should travel in a manner that minimizes the total metabolic
cost required to travel this distance – hence minimizing Rmov/v. Note that Rmov

includes the resting cost Rrest. This minimization problem results in an optimal
speed of travel vopt. vopt is greater than zero because the cost per unit distance
at zero speed is infinity, given that Rmov(v = 0) > Rrest > 0 (Tucker, 1975;
Radhakrishnan, 1998).

Minimization of the total cost per unit distance is equivalent to selecting the
speed that maximizes the distance traveled on a given energy budget, say without
eating. So vopt is also called the maximum-range speed (Alexander, 1999). This
speed might be the appropriate evolutionary adaptation during periods of spatial
scarcity of food.

In humans, minimizing the total cost per unit distance Rmov/v for walking gives
an energy-optimal speed of about 1.30 ms−1. And people’s self-selected walking
speeds tend to be close to 1.30 ms−1 (Ralston, 1976; Bastien et al., 2005). Hoyt
and Taylor (1981) showed a similar result in horses. They first trained horses to
walk, trot and gallop at a wide range of speeds on a treadmill. The energetic
costs of these gaits were then measured at these speeds. They then calculated the
energetic cost per unit distance as a function of speed for each of these three gaits
– without subtracting the resting metabolic cost. They also determined the speeds
at which the horses tended to employ each of these gaits most often, when not
on a treadmill. They found that these self-selected speeds for each of the three
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gaits line up with the minima of the respective gait’s total metabolic cost per unit
distance.

Self-selected speeds of animals moving on slopes are different from self-selected
speeds on level ground. At a range of slopes, the changes in self-selected speeds are
well-predicted by the changes in the energetically optimal speed in horses (Wickler
et al., 2000) and in humans (Ralston, 1976; Minetti et al., 1994). Self-selected
speeds in walking while carrying loads of up to 75% body weight matched the
energetically optimal speed (Bastien et al., 2005). Also, physically challenged sub-
jects, using crutches or prosthesis seem to have self-selected speeds that minimize
their (much higher) metabolic cost per distance (Ralston, 1958).

Curiously, there seems to be some evidence that unencumbered walking speeds
on streets differ from country to country (e.g., Bornstein and Bornstein, 1976;
Levine and Norenzayan, 1999). And this variation has been correlated to some
measure of “the pace of life”, wealth and affluence of the various countries. Some
of this variation in walking speeds is probably a result of the differences in the
non-trivial cost for time in various countries, as the authors conjecture. However,
it would be interesting to determine the metabolic cost per distance as a function
of speed for individuals drawn from the various countries to see how much of the
variation in walking speeds can be explained by minimization of the metabolic cost
(people from different countries might have different mean values of height, weight,
and other physiological parameters that determine the metabolic cost of walking).

The speed of progression is just one variable among the infinitely many that is
required to completely characterize how an animal moves. There is evidence that
animals (humans) choose these other variables in an energetically optimal manner
as well. In the above discussion of the optimal speed of travel, we implicitly
assumed that at any particular speed the animals move in a way that minimizes
energy per unit distance at that speed. For any given speed, humans select the
stride-length (Högberg, 1952; Cavanagh and Williams, 1982; Kuo, 2001; Bertram
and Ruina, 2001) that seems to minimize the metabolic cost. They also seem to
choose their step-width based on energetic considerations (Donelan et al., 2001).

In humans, gait transition from walking to running or running to walking
happens close to where energetic cost of walking and running are approximately
equal (Margaria, 1976; Thorstensson and Robertson., 1987; Minetti and Alexander,
1997; Hreljac, 1993). Some of these studies show that there is a small but signifi-
cant difference between the speed at which humans prefer to change gait and the
speed at which the walking and running cost curves cross. Similarly, there is some
conflicting evidence regarding the trot-to-gallop transition in horses. While one
study (Farley and Taylor, 1991) found a statistically significant difference between
the minimum sustained galloping speed and the energetically optimal transition
speed, another study (Wickler et al., 2003) found no significant difference.

Humans seem to be able to do constrained energy-optimization dynamically,
as the situation demands it. For instance, the relationship between speed and step
length is different for different constraints and the particular relationship seems
to be consistent on average with the optimization of metabolic cost subject to
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the specific constraints (Bertram and Ruina, 2001). This suggests that humans
(and animals) have evolved an ability to quickly find the energy optimum even
in unfamiliar and novel situations, rather than be energy efficient in only the
more often used tasks such as steady unconstrained locomotion. However, more
experiments are needed to more thoroughly demonstrate the natural constrained
optimization capabilities of humans in strange and unfamiliar situations.

The experiments described above provide evidence that some aspects of animal
behavior might be a consequence of, or at least correlated with, energetic opti-
mality. However, the experiments described above were narrow in scope. They do
not say that among all the possible gaits that our legs are capable of, we choose
the best possible. To show this, we have to compare the energetic cost of the
preferred gait with every other possible gait. This takes far too many experiments.
Moreover even if we did perform a large number of experiments and found that
the self-selected gait has the lowest metabolic cost, the result would be subject to
the criticism that strange and unpracticed gaits are energetically expensive exactly
because they are unfamiliar. Thus the more elaborate tests of energetic optimality
might best be carried out with mathematical models. Such mathematical models,
having assumed energetic optimality, should be able to make a variety of testable
predictions about the locomotor behavior of animals.

Energetic optimality is not yet a well-tested theory. Optimization, espe-
cially of a single scalar objective, can probably be never a very accurate theory
for complex animal behavior. Nevertheless, in many cases, even if animals are
not exactly optimal by any particular measure, optimality might provide useful
approximations of its behavior. The extent to which optimality predicts motor co-
ordination and locomotion cannot be discerned without detailed models predicting
the consequences of optimality.

We do not know what the limits of the hypothesis of energetic optimality are for
the particular case of steady legged locomotion. We do know, through experiments
described in the previous section, that animals tend to behave in a manner that
is more or less energetically optimal in some specific situations. While there have
been many optimization studies whose predictions have been compared with some
experimental measurements (e.g., Alexander, 1980, 1992, 1997; Yamaguchi and
Zajac, 1990; Anderson and Pandy, 2001a), we do not know if the theory is likely
to apply quantitatively in a wider class of situations.

1.4 Muscle modeling

A key component of a model of the energetics of a locomoting animal is a model
of its muscles.

Energy for muscle activity Muscle activity of some kind is required for an
animal to interact mechanically with its environment. The energy for muscle con-
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traction comes most immediately from the hydrolysis of ATP stores in the muscle.
On a longer time-scale, ATP is synthesized by metabolizing glycogen and fatty
acid, which in turn are obtained from more complex food molecules (e.g., Brooks
et al., 2000; Alexander, 1999). As pointed out in a previous section, if we really
wanted an accurate estimate of the energetic cost of a particular motor activity,
we would have to include the energetic cost of pumping the blood at an increased
rate, the energetic cost of faster breathing, and a host of other things that ac-
company the motor activity. Using the amount of oxygen consumed (“VO2”) as a
measure of metabolic cost naturally accounts for all these extra “systemic” energy
costs. And when constructing a mathematical model of the energetics of voluntary
muscle activity, it is usually implicitly assumed that these extra systemic energy
costs scale in proportion to the energy directly consumed by the voluntary muscles
themselves (“direct” energy costs).

Muscle activity has a direct cost whether the muscle is performing external
mechanical work or not. Isometric (constant muscle length) force generation has,
for instance, a non-trivial energetic demand. However, the simple model that we
will use in this thesis assumes that the metabolic cost of muscle use solely depends
on the positive and negative work performed by it. In this model, if a muscle
is exerting force but performing no work, it does not require energy i.e., there is
no energetic cost for isometric force. This approximation is based on experiments
(Margaria, 1976) that showed that the metabolic rate of walking and running up or
down large-enough slopes at a given speed scales in proportion the rate of change
of potential energy of the person. Assuming that when a person is climbing up a
steep-enough slope his leg muscles mostly do positive work, and when going down a
steep-enough slope, the leg muscles mostly do only negative work, we can estimate
the respective efficiencies of positive work and negative work (Alexander, 1976).
The metabolic cost for each muscle for a task lasting a time duration T can then
be approximated by a linear combination of the total positive and negative work.

Em =

∫ T

0

(b1[P ]+ + b2[P ]−)dt (1.1)

Here the mechanical power of the muscle P = F × v where F is the muscle
force and v is the muscle contraction speed. [P ]+ is the positive part of the power:
[P ]+ = P if P ≥ 0 and [P ]+ = 0 if P < 0. [P ]− is the negative part of the
power, defined by [P ]− = [−P ]+. For a task that requires activity of more than
one muscle, the total metabolic cost could be obtained by summing the metabolic
cost over individual muscles. Typically, b1 ≈ 4 and b2 ≈ 0.8 (Margaria, 1976). In
this thesis, we will make the approximation that b1 + b2 = 5.

Is a purely work-based energetic cost any good? The mechanics of many
tasks are dominated by a need to perform a certain amount of mechanical work.
For these tasks, work is often a good first approximation of metabolic cost. Even
in legged locomotion, where the net work done is zero, work seems to account for a
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substantial fraction of the total metabolic cost (Ruina et al., 2005; Donelan et al.,
2001). But we want to use work as an objective function in an optimization study
to see how well it can predict the locomotor behavior of animals. Is this likely
to give reasonable results? Naive optimization has a curious way of exposing the
inadequacies in the objective function or the inadequacies in the formulation of
the constraints, by often discovering physically unrealistic minima. An animal,
for instance, could drive the muscle work done during locomotion to zero (in the
absence of frictional and viscous dissipation) by evolving springy tendons in series
with the muscles. A purely work-based metabolic cost model would suggest that
the energy cost of locomotion would be close to zero. This conclusion would
be incorrect as the muscles in series with the tendons will need to match the
tension in the spring and this will cost some energy even if the muscles do no
work. Nevertheless, it is useful to understand in detail the predictions of work
optimization in locomotion, if only as a starting point for more elaborate analysis.

Muscle model with a cost for isometric force. A second model for the cost
of muscle use might have an additional term for force, isometric or otherwise, like
∫ T

0
|F |dt.

Em =

∫ T

0

(b1[P ]+ + b2[P ]− + b3|F |)dt (1.2)

Why |F | and not, say a higher power of F like F 2? The linear scaling of the cost of
force with the force is consistent with a simple model of muscle-force production.
This model assumes that the rate of energy consumption is proportional to the
number of active sarcomeres and that muscles produce higher forces by activation
of more sarcomeres in parallel. By a similar argument, b3 has a natural scaling.
Longer muscles producing the same force will have more cross-bridges in series,
implying that b3 scales in proportion to muscle length, for a given muscle cross-
sectional area. In general, it is likely that different muscles are best described by
different values for these constants b1, b2 and especially b3.

Minetti and Alexander (1997) used a more elaborate model that captures the
velocity dependence of force and energy efficiency. Their equations were numerical
fits to the experimental data in Ma and Zahalak (1991).

Other researchers have used models for energetic costs such as the integral of
muscle tension raised to some power (e.g.,

∫

c|F |αdt in Crowninshield and Brand,
1981; Anderson and Pandy, 2001b) or variations thereof. Studies of voluntary goal-
directed hand-movements have used other objective functions not directly related
to muscle energetic costs: Flash and Hogan (1985) suggest a measure of “jerk”
∫

(

d3x
dt3

)2

+
(

d3y
dt3

)2

dt where (x, y) was the position of the hand.

Doke et al. (2005) suggest that the cost of muscle use, especially for high-
frequency motions, can have terms that penalize the rapidity of force production
(cost proportional to high derivatives of force). We will discuss their experiments
in greater detail in chapter 5.
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Finally, we must note that the decomposition of the total muscle cost into a
weighted sum of individual terms is only a convenient first guess.

Limits on muscle performance. Muscles can only produce a finite amount of
force (maximum muscle stress is, very roughly, 0.33 MPa). The force exerted by a
muscle depends (Zajac, 1989) on its current length, its current shortening velocity,
some measure of neuronal activation, its recent history of its use, as in stretch-
induced force enhancement (Lee and Herzog, 2002), or more long-term history, as
in injury or training. One can imagine a sequence of muscle models, varying in
complexity, that incorporate one or more of these features. In this thesis we use
the simplest, where the forces a muscle can exert are conceptually unbounded, not
constrained by the values of any other variables.

Muscle kinematics. Finally, one requires a model of how a muscle is connected
to the body, and how its contraction affects motion. Again, there are various
degrees of realism possible. At one extreme, lie the remarkably detailed modeling
of muscle kinematics, including the wrapping of the muscles around realistically
shaped bones in detailed models of the animal body (Delp and Loan, 2000). In this
thesis, we choose the other extreme of model simplicity. For instance, we model
each leg with all of its muscles as a single telescoping actuator that can change
length, exert force, and perform mechanical work on the upper body (Chapters 2–
4). Somewhere in between these two extremes is the approximation of muscles as
simple torque actuators, uni-articular or multi-articular.

1.5 Brief overview of locomotion research

Researchers from a wide variety of fields have studied and continue to study the
various aspects of walking and running. Researchers at various gait analysis lab-
oratories have studied walking (not so much running) in normal and pathological
subjects, to diagnose and correct specific locomotor deficiencies in patients (e.g.,
Perry, 1992). Physical anthropologists interested in the evolution of the human
bipedality have studied locomotion to understand the role it played in shaping our
functional morphology (e.g., Bramble and Lieberman, 2004; Wang et al., 2004;
Nagano et al., 2005; Sellers et al., 2004). Roboticists who wish to build legged
robots that approach human or animal nimbleness of feet at similar energetic costs
have contributed much to our understanding of legged locomotion (e.g., Raibert,
1986; McGeer, 1990b,c; Pratt, 2000; Collins et al., 2005). Computer scientists who
wish to produce natural-looking graphic animations of humans and animals (e.g.,
Brotman and Netravali, 1988; Liu et al., 2005) have developed tools that might be
of use in studying locomotion.

Then there is a large mainstream biomechanics literature on walking and run-
ning. A complete discussion of this literature is beyond the scope of this thesis.
A part of this literature attempts to model humans, or parts of humans, in great
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detail. These models tend to have a large number of degrees of freedom. Body
segments are approximated as being rigid. Muscles might have realistic origins and
insertions (Zajac, 1993), but have simplified Hill-type transient properties (Zajac,
1989). Contact is typically modeled with stiff springs and dashpots. Impres-
sive whole body models have been assembled and various analyses performed. The
building of such complex models have been made easier by the development of var-
ious software, for example, SIMM (Delp and Loan, 2000), that combine musculo-
skeletal modeling capability with a dynamics package. These models have been
made to track human motion capture data (Neptune et al., 2004, 2001) using in-
verse dynamics calculations. Detailed models have also been used in large-scale
optimization calculations to predict the details of human motion from first princi-
ples (see Sec. 1.6).

Mathematical models of sufficient realism will be required for specific medi-
cal interventions: for example, rehabilitation of muscle function through electrical
stimulation (Yamaguchi and Zajac, 1990). Unfortunately, there exists insufficient
understanding of the many components that such complex models require — for in-
stance, in vivo muscle behavior is not understood well enough (Alexander, 2002a).
Further, complex models typically imply high computational cost (Anderson and
Pandy, 2001a).

The mathematical models in this thesis are much simpler and might be viewed
as being complementary to the models that incorporate more of the complexities
of an animal body. The hope here is to understand, in detail, the consequences
of energetic considerations in the context of these simple models. There is a great
tradition of simple models in biomechanics of legged locomotion, exemplified by
the tens of papers and books on similar topics by R. McNeill Alexander. This
thesis draws much from this literature.

1.6 Optimal control in locomotion biomechanics

The core of this thesis is the numerical solution of an optimal control problem
in Chapter 3. In a typical optimal control problem, one seeks to minimize a
scalar quantity J by choosing appropriate shapes for a finite number of functions
fi(t) and appropriate values for a finite number of parameters ci. The scalar
quantity J is often related to fi(t) and ci via the dynamics of some differential
equations: ẋ(t) = g(t, x(t), fi(t), ci). The minimization problem might be subject
to various constraints on the state variables x(t), the control functions fi(t), and
the parameters ci.

The hypothesis that animals move in a manner that minimizes the metabolic
cost of locomotion can be translated into an optimal control problem. The func-
tions fi in such an optimal control problem in the context of legged locomotion
often correspond to muscle forces or muscle activations or joint angles as functions
of time. And the differential equations are simply the Newtonian equations of
motion that relate forces to the accelerations.
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A (biomechanics) optimal control problem is often called a “dynamic optimiza-
tion problem” (Davy and Audu, 1987) to differentiate it from a “static optimization
problem” (Hardt, 1978), which does not involve the solution of an optimal control
problem. A number of authors have discussed the so-called dynamic optimization
problem in the context of the biomechanics of legged locomotion.

Chow and Jacobson (1971) seem to have been the first to formulate an optimal
control problem as a means to predicting the motion of a human from first princi-
ples. For computational expedience, the authors make a number of simplifications
that make extensive use data of humans walking data. In particular, they com-
pletely specify the motion of the hip (to decouple the dynamics of the two legs) and
also make use of ground reaction forces (to obtain estimates of ankle forces and
torques). As the authors themselves point out, these assumptions constrain the
model in a manner that only the swinging of the non-stance leg can be optimized.

Since this paper, the most common use of dynamic optimization in biomechan-
ics has been to determine those sets of muscle activation or muscle force histories
that make a particular mathematical model of a human body closely track vari-
ous aspects of human walking data (Davy and Audu, 1987; Yamaguchi and Zajac,
1990; Tashman et al., 1995). In these studies, the objective function was a linear
combination of some model of metabolic cost and the squared deviation of the
model’s motion from the human data. The solution of such “tracking problems”
can be valuable as they provide information about hard-to-measure in vivo muscle
forces.

In order to be able to generate meaningful predictions about how a person will
move (walk) in a novel situation, it is important that the formulation of the basic
metabolic cost optimization problem does not contain references to kinematic data
from human-subject walking trials. Anderson and Pandy (2001a) come closest to
this ideal. They use a mechanical model of a human consisting of 23 degrees of
freedom, actuated by 54 muscles. Briefly, they seek a periodic walking motion
that “starts” from a given posture (obtained from human data) and minimizes the
metabolic cost per unit distance. Specifying the initial posture seems somewhat
unsatisfactory. However the overall effect of such a specification may be evaluated
by detailed sensitivity analysis. Anderson and Pandy (2001a) point out that their
optimization problem was so computationally expensive that the only attempted
numerical solution2 exhibited clear signs of non-convergence – for example, the
periodicity constraints were not met after 10,000 hours of CPU time (assume CPU
speeds circa 1999-2000).

The mechanical model of a biped employed in this thesis is much simpler (and
somewhat less realistic) than those used in the above studies. Because of the
simplicity of the model, we will see that it is possible to obtain reasonable conver-
gence to (what we believe to be) the solution of the corresponding optimal control
problem without specification of initial posture.

2using a gradient-based parameter optimization method similar to the one used
in this thesis
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Finding minimal energy bipedal gaits is obviously of interest to roboticists who
wish to design and build efficient walking robots. Consequently, many roboti-
cists have attempted the solution of the optimal control problem for finding the
minimum-energy bipedal gaits. Here, “energy” almost always refers the integral of
the sum over all the joints of squared joint-torque, and typically does not involve
work-like terms. Interestingly, most of these robotics papers (e.g., P H Channon,
1990; Roussel et al., 1998; Chevallereau et al., 1999; Hardt et al., 1999) use the
same 4-DOF bipedal robot model with torque-motors at all joints. Many of these
papers do assume the initial posture as given a priori. The paper by Hardt et al.
(1999) probably contains the most elaborate solution of the optimal control prob-
lem among these robotics papers. Hardt et al. (1999) used DIRCOL — a software
for numerical solution of optimal control problems by direct collocation techniques,
developed by von Stryk and coworkers (von Stryk, 1999).

Liu et al. (2005) solve locomotion-related optimal control problems in the con-
text of computer animation. As described earlier, this paper is quite novel in its
use of inverse optimization to obtain the objective function, which when mini-
mized predicts a pre-specified locomotion pattern. The mechanical model used in
this work has passive springs in parallel with muscles. Although biomechanically
somewhat unrealistic, these parallel springs presumably mitigate some of the insta-
bilities inherent in a multi-body system — possibly promoting robust convergence
to solutions that “look” reasonable (the primary objective in computer animation).

We have so far discussed some studies that formulate optimal control problems
in the context of legged locomotion. There exist a few other papers that solve
other biomechanics-related optimal control problems: examples include rising up
from a chair (Pandy et al., 1995; Menegaldo et al., 2003), maximum-speed pedal-
ing (Raasch et al., 1997), maximum-height jumping (Pandy et al., 1990; Anderson
and Pandy, 1999), and kicking (Hatze, 1976). We shall not review these papers
here. Gomes and Ruina (2003, 2005a,b) implicitly solve optimal control problems
by finding zero-work dissipation-free periodic solutions in simple models of ape
brachiation and in a biped model with springs.

Finally, it seems appropriate to mention a sequence of classic papers by Alexan-
der (1980, 1992) and Minetti (1997) even though they did not contain explicit op-
timal control formulations. Instead, the optimizations were over a two-parameter
family of gaits for every speed and step length.

1.7 Outline of this thesis

In Chapter 2 of this thesis, we describe a minimal model of a bipedal animal that is
capable of a range of gaits. This minimal model has a point-mass upper body and
massless telescoping legs. We discuss the mechanics of some familiar gaits such as
walking, running and skipping as well as some not-so-familiar gaits such as level
walking in the context of this minimal bipedal model. We estimate the metabolic
costs of these various gaits and determine which of these particular gaits have the
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lowest energetic cost at a given forward speed and step-length. In Chapter 3, we
ask a more general question. We determine which gait, from an infinite variety
of gait possibilities (subject to some restrictions), minimizes the energetic cost of
moving unit distance for the minimal biped model. Numerical optimization shows
that a classic simple description of walking is optimal at low speeds and a classic
simple description of running is optimal at high speeds. In Chapter 4, we present
an approximate simplified version of the optimization problem in Chapter 3 and
provide an informal proof of the global optimality of the analogs of walking and
running at low and high speeds respectively in the simplified optimization problem.
In Chapter 5, we describe simple models of the cost of swinging the leg. In Chapter
6, we present a simple theory of why the cost of leg-swinging as a fraction of the
total metabolic cost changes little with change in speed. We conclude the thesis
with a list of short-term goals of the line of research begun in this thesis.



Chapter 2
Simple models of walking, running,
skipping, and level walking.
Human legs are capable of much more than just walking, running and skipping.
With appropriate, but perhaps unusual muscle activations, human legs can be
made to simulate a variety of unusual locomotor patterns. We would like a simple
general model of a bipedal animal that is capable of describing a similar large
variety of locomotor possibilities.

In this chapter, we describe a minimal mechanics-based model of a bipedal ani-
mal as relevant to legged locomotion. This model was first described by Alexander
as a special case of a quadruped model (Alexander, 1980). This minimal model
can be made to track the center of mass motion for a number of characteristic
patterns of locomotion (“gaits”). In particular, various classical descriptions of
walking and running such as inverted pendulum walking (Alexander, 1976, 1989;
Kuo, 2002; Kuo et al., 2005; Ruina et al., 2005), level walking (Alexander, 1976,
1991), impulsive running (Rashevsky, 1944, 1948), a more compliant spring-mass
running gait (Blikhan, 1989; Blickhan and Full, 1993) can be treated as special
cases of this minimal model. We will discuss the energetics of these and other ide-
alized gaits in the context of the simple model. This chapter is, in part, a review
of these classic idealizations of bipedal locomotion, but contains a number of new
results as well.

2.1 Minimal model of a bipedal animal

The model here is based on the basic assumption that humans have compact
bodies and light legs. For humans, the upper body is about 70% of the total body
mass and each leg is about 15% of the total mass. During walking and running,
the upper body has little or no rotational dynamics. This is presumably due to
some stabilizing muscular control preventing rotation of the upper body during
stance. But the lack of body rotation is mostly because the forces the legs exert
on the upper body act more or less through the center of mass, and therefore,
applying very little rotational moment on the upper body. So it is convenient
to entirely neglect any rotational motion and idealize the upper body as a point-
mass (Alexander, 1976, 1980) at position (x, y), as shown in Fig. 2.1.

The two legs are identical and indistinguishable. But where their functional
roles are distinct, it is convenient to label them leg-1 and leg-2. One or both
or neither of the two legs might be in contact with the ground at any point in
time. The two legs are modeled as having zero mass. A leg therefore can have
no meaningful dynamics of its own when it is not in contact with the ground.
Instead, when not in contact with the ground, we assume that a leg can be swung
around arbitrarily quickly, if so required. We will discuss the rationale and the
consequences of this modeling assumption in greater detail in Section 2.2.

15
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We assume here that the leg does not have an extended foot, and has only a
point-foot. Since we have assumed that the leg is massless and that the body is a
point-mass, the leg can only transmit an axial force. That is, the force is always in
the direction of the line joining the point-foot and the point-mass upper body. A
massless leg, even if its length fluctuations are mediated by hip and knee flexion,
acts mechanically like a telescoping actuator (Fig. 2.1). The respective lengths of
leg-1 and leg-2 as functions of time are l1(t) and l2(t). These lengths must always
be less than or equal to lmax, the maximum length of the legs. When they are on
the ground the legs support compressive time-varying forces – respectively F1(t)
and F2(t). We assume that the legs are arbitrarily strong, both structurally and in
the active force-producing sense, so that there is no upper bound on the magnitude
of these forces. This means that the leg can instantaneously change the velocity of
the upper body by applying suitable impulses — infinite forces over infinitesimal
durations.

When not in contact with the ground, the forces through the legs are identically
zero. Also, when not in contact with the ground, the legs can be lengthened or
shortened arbitrarily quickly, without any cost. Finally, real muscles are connected
to the body via tendons. The tendons are elastic and act as springs in series with
the muscles. In the simple model here, we have assumed that there are no springs
in series with the telescoping actuator. We shall explore some of the consequences
of this assumption in Section 2.4.

Equations of motion. When neither leg is on the ground (flight phase), the
governing equations for the upper body are:

ẍ = 0 (2.1a)

ÿ = −g (2.1b)

where g is the acceleration due to gravity.
When a foot is in contact with the ground, it does not slip. Note that we

do not simply assume frictional contact. Rather we impose zero foot-slip as being
inviolable during stance. When only leg-1 is on the ground (single stance phase),
the governing equations are:

mẍ =
F1(x − xc1)

l1
(2.2a)

mÿ = −mg +
F1(y − yc1)

l1
(2.2b)

where (xc1, yc1) is the point of contact of the foot of leg-1 with the ground. For
locomotion on a flat horizontal plane, yc1 = 0.

And when both the legs are on the ground exerting a force on the upper body
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(double stance phase), the equations are:

mẍ =
F1(x − xc1)

l1
+

F2(x − xc2)

l2
(2.3a)

mÿ = −mg +
F1(y − yc1)

l1
+

F2(y − yc2)

l2
(2.3b)

where (xc2, yc2) is the point of contact of the foot of leg-2 with the ground. As
before yc2 = 0 if the ground is horizontal.

Gait, step, stride, periodicity. A particular gait can have flight, single stance
and double stance phases in any permutation. The model here can quantitatively
track the center of mass motion of any conceivable bipedal gait by appropriate
actuation of the telescoping legs. And it can be made to qualitatively match the
footfall pattern of any conceivable bipedal gait.

For unknown reasons (perhaps energetic economy), gaits observed in nature
are periodic to a fair degree1. Therefore we consider only periodic gaits here. In
a periodic gait on level ground, all relevant state variables except the horizontal
position of the center of mass repeat themselves after a duration tperiod.

For simple periodic gaits, terms such as “step” and “stride” are closely related
to the periodicity of the gait. In symmetric walking and running, two steps make
a stride. And one stride is equal to one period of the motion (when the two legs
are considered as being distinguishable). Such terms are less well-defined when
considering asymmetric gaits or gaits with higher periodicity (as in some skipping
gaits). For clarity, we shall define these terms again in the respective section on
skipping (Sec. 2.5).

Metabolic cost of locomotion. Given the leg forces F1,2(t) and the leg lengths
l1,2(t) over one period of a periodic gait, the total positive and negative work done
by each leg can be evaluated by integrating, respectively, the positive and negative
part of the leg-powers P1 and P2. These quantities can then be used to obtain a
work-based estimate of the metabolic cost as described in Sec. 1.4:

P1 = F1l̇1, P2 = F2l̇2 (2.4)

Em/period = b1

∫ tperiod

0

([P1]
+ + [P2]

+)dt + b2

∫ tperiod

0

([P1]
− + [P2]

−)dt (2.5)

1But some evidence of deterministic non-periodic behavior, chaos, has been re-
ported in the so-called passive dynamic walking models (e.g., Garcia et al., 2000).
Various studies have looked at the statistics of step-to-step variability in walk-
ing (e.g., Hausdorff et al., 1995). Some studies wonder if this variability is random
noise or due to some deterministic process (e.g., Dingwell and Cusumano, 2000).
We note that the assumption of periodicity of gaits simplifies the definition and
analysis of the stability of gaits via poincare maps (e.g., Hurmuzlu and Moskowitz,
1987a,b)
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Recall that [P ]+ = P if P ≥ 0 and [P ]+ = 0 if P < 0 is the positive part (or
the “rectification”) of P . Also, [P ]− = [−P ]+ is the absolute value of the negative
part of P . If the horizontal distance travelled over a single period is dperiod, the
nondimensional cost of transport is given by:

ct =
Em/period

mgdperiod

(2.6)

Dynamic similarity and nondimensionalization. For a given gait to be com-
pletely described, many parameters need to be specified: for instance, the average
speed v, the step-length d, the leg-forces as a function of time, the trajectory
of the center of mass (not all independent). All these relevant variables can be
nondimensionalized by expressing them in terms of m, lmax and g. The forces
are nondimensionalized by dividing by mg, the lengths by lmax, the velocities by√

glmax, time by
√

lmax/g and so on. A gait of one (model) animal can be said
to be “dynamically similar” to the gait of another animal if the nondimensional-
ized set of all parameters describing the two gaits are identical. Since the cost
of transport is a nondimensional quantity, it will be equal for dynamically similar
gaits.

Two nondimensional parameters that are especially useful are the nondimen-
sionalized speed: V = v/

√
glmax and the nondimensionalized step-length: D =

d/lmax. Note that V 2 is the so-called Froude number (Alexander, 1976). For the
idealized gaits we discuss in this chapter (for instance, inverted pendulum walking
with push-off before heel-strike, and impulsive running), the two parameters V
and D suffice to specify a family of dynamically similar gaits2.

2.1.1 Relation to “external work” calculations

Analogous to the calculation of positive and negative work in the model above,
it is similarly possible to estimate the work done by each leg when a real person
walks or runs. This is achieved by measuring the ground reaction forces for each
leg Fg1(t) and Fg2(t), say, by using force plates (Cavagna, 1975) on the ground or a
force treadmill (Kram et al., 1998). Given the initial velocity of the center of mass
v0, and knowing the external forces, namely, the ground reaction forces and gravity
as functions of time, we can compute the center of mass velocity as a function of
time: mv(t) = mv0 +

∫ t

0
(−mgj + Fg1 + Fg2)dt′. Having determined the velocity

of the center of mass, the work done by each of the legs can be approximated as
the work done by the two ground reaction forces as if they were acting on a point-
mass upper body : the respective leg powers are thus approximated by P1 = Fg1.v
and P2 = Fg2.v respectively. Exactly as in Eq. 2.5, we can then estimate the
metabolic cost from the positive and negative work done by each leg separately.

2because in these special gaits, the nondimensional leg-forces and leg-impulses
are only dependent on V and D and no other parameters



20

This procedure was proposed by Donelan et al. (2002b) and they called it the
“individual limbs method” for estimating the so-called “external work”. They
suggested this as an alternative to the more older notion of “external work” in
legged locomotion, first described in Fenn (1930a,b) for running and which has
since been used for walking and other gaits in various studies (Cavagna et al.,
1963, 1964; Cavagna, 1975). This older “external work”, dubbed “the combined
limbs method” by Donelan et al. (2002b), did not consider the two legs as separate
actuators. Instead of using the integral of [P1]

+ + [P2]
+ for the total positive work

as in the individual limbs method, the combined limbs method uses the integral of
[P1 + P2]

+. The two methods give the same answer for running, as in this gait not
more than one leg is on the ground at any time. However the two-limbs method
is sometimes liable to underestimate the quantity of interest, as it cannot account
for one leg doing positive work, while the other leg simultaneously doing negative
work (Donelan et al., 2002b). In other words, [P1 + P2]

+ < [P1]
+ + [P2]

+, when
P1 and P2 are of opposite signs. This situation can and does arise in walking, for
example.

We remark that the term “external work” as used in the biomechanics of legged
locomotion is misleading in a thermodynamic sense as it is not the work done by
the environment on the body (A. Ruina, unpublished note). After all, the point on
the body in contact with the ground slips very little during stance phase (and not
at all in most idealized models). So the forces on the body exerted by the ground
typically do essentially zero mechanical work (Ralston, 1976). However the prefix
“external” comes presumably from how the quantity is most often calculated —
by using the external forces on the body. Perhaps a change in terminology is
in order: a more descriptive and less misleading, but somewhat long term could
be point-mass stance-leg work estimate. This estimate is identical to the
positive-work-based mechanical cost estimate that we use for our minimal model.

2.2 An additive cost for swinging the legs

The simple model here has the property that the metabolic cost per unit distance
can be reduced to zero by taking the limit of zero step-lengths (d → 0). In
particular, all the idealized gaits to be discussed in this chapter have the property
that their metabolic costs per distance approach to zero as the step length d
approaches to zero. This is analogous to the rolling of a rimless wheel becoming
more like that of a circular wheel as the number of spokes increase (resulting in
small step-lengths).

For a given speed, a small step length implies a large step frequency and a
large step frequency requires moving the legs at correspondingly large frequencies.
Swinging a leg with non-zero mass entails a metabolic rate that increases rapidly
with the leg-swing frequency. Therefore, the unrealistic prediction of the small
costs at small step-lengths can be avoided if the simple model was endowed with
legs having non-zero masses (Kuo, 2001).
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As an alternative to replacing the massless legs of the simple model with legs
with masses, one can augment the simple model with massless legs with an additive
cost for swinging the legs (Alexander, 1976; Kuo, 2001). Such an additive cost for
swinging a leg in a model with massless legs is only a convenient simplification.
But it lets us ignore the dynamics of swinging legs, and restrict our attention to
only the motion of the center of mass due to lengthening and shortening of the
stance leg.

Simple expressions for this leg-swing cost can be derived in terms of the ampli-
tude and the time duration of the leg-swing (see Doke et al., 2005, and chapter 5 of
this thesis). We will not use any such specific additive cost for leg-swing in Chap-
ters 2-4. Instead, we will simply refrain from calculations that are meaningless
without including a leg-swing cost (for example, take the limit of small step-length
locomotion). We will compare the energetic costs of two gaits (without adding
the leg-swing costs) only when they have the same speed and stride-length. The
implicit assumption here is that the additive leg-swing cost is simply a function of
the speed and step-length3.

Finally, we remark that the energetic costs derived in this chapter might be
considered as underestimating the true metabolic cost because we do not explicitly
include the leg-swing costs. Of course, these model-based energetic costs will not
be strict underestimates because of all the other simplifications here.

2.3 Walking

When humans wish to go slowly from point A to B, they choose to walk. All gaits
that have no flight phase – no period of time when neither leg touches the ground
– are often classified as walking. Clearly, by this definition, there are infinitely
many such walking gaits. But the term “walking” in this thesis will usually mean
some idealization of normal walking as practiced by healthy individuals.

In normal walking at not-too-high speeds, body pivots over relatively straight
legs during single stance. This motion is often compared to that of an inverted
pendulum. Close to the end of one such single stance phase, the leg in contact
with the ground, say leg-1, starts to push-off with the foot, just as the heel of the
contralateral leg, leg-2, strikes the ground. There is a small period of double stance
phase in which leg-1 finishes pushing-off and loses contact with the ground. The
double stance is followed by another single stance phase, now with leg-2 on the
ground. During the single stance of one of the legs, the other leg swings forward,
partly bending at the knee to avoid scuffing the ground, orienting itself for the
next heel-strike and the subsequent single stance phase. This swinging of the
leg is not all passive pendular motion due to gravity but involves some muscular
effort (Braune and Fischer, 1895-1904).

3While this assumption is especially inaccurate for gaits dominated by double
support phase, all gaits discussed is this chapter, except one, have no double
support phase.
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2.3.1 Inverted pendulum walking

We can make the minimal model describe the actual center of mass trajectory
during normal walking. But it is easier to understand a limiting case of the above
picture of normal walking. We shall call this idealized walking gait, “inverted
pendulum walking” in this thesis. The specific idealizations seem to have been
first described in detail by Ruina (unpublished) and Kuo (2002), while models
with minor variations have been described previously, especially by Alexander
(1976, 1991). Later in this section, we discuss the history of inverted pendulum
walking model in somewhat greater detail. Kuo et al. (2005) present a review
of various aspects of inverted pendulum walking. For completeness here, we will
derive expressions for the energetic cost for inverted pendulum walking. The key
simplifications are:

• There is no extended double stance phase.

• Assume that the stance leg is always at its maximum length. The single
stance phase is, therefore, exactly circular.

• At the end of a single stance phase, the leg on the ground pushes off impul-
sively. There is an instantaneous change in the velocity, but no change in
position. The other leg then strikes the ground, again impulsively, changing
the velocity of the upper body. The push-off and the heel-strike together
change the downward-pointing velocity at the end of one circular arc to the
upward-pointing velocity at the beginning of the next circular arc.

This abstraction of walking has a sequence of exactly circular single stance
phases, stitched together by push-off/heel-strike impulse-pairs.

The inverted-pendulum phase requires no work, and hence entails no energetic
cost in our cost-accounting. All the work in a period is done at the transition from
one pendular arc to the next – “the step-to-step transition” (Donelan et al., 2002a).
During the push-off, the leg performs only positive work and during heel-strike, it
performs an equal amount of negative work.

Fig. 2.2b shows, in detail, the changes in velocity direction during the impulsive
push-off and the impulsive heel-strike. Fig. 2.2c focuses on just the push-off. α is
the angle made by the leg with the vertical at the end of the stance phase. vi is
the magnitude of the velocity at the end of the stance phase — that is, just before
the push-off impulse. And vm is the magnitude of velocity just after push-off but
just before heel-strike.

From conservation of linear momentum perpendicular to the push-off impulse,
we find that vi = vm cos α (see Fig. 2.2c). Because the push-off impulse does no
negative work, the positive work performed during push-off can be obtained as
the change in the kinetic energy of the body due to the push-off. This is given
by (Kuo, 2001; Ruina et al., 2005):
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Wp/step =
m(v2

m − v2
i )

2
= m

v2
i / cos2 α − v2

i

2
(2.7)

=
mv2

i tan2 α

2
(2.8)

Ruina et al. (2005) used a small-angle approximation of the above expression.
Because the gait is steady and periodic, the positive work Wp during the push-off
is equal to the negative work Wn done during heel-strike.

Small angle approximation. When α is small, tan α ≈ α ≈ dstep/2l and vi ≈ v.
Using these in Eq. 2.8 gives:

Wp/step ≈
mv2d2

step

8l2
(2.9)

The cost of transport is therefore (Ruina et al., 2005),

ct =
(b1 + b2)Wp/step

mgdstep

(2.10)

≈ b1 + b2

8
· v2

gl
· dstep

l
(2.11)

=
b1 + b2

8
· V 2Dstep (2.12)

where Dstep = dstep/lmax.

Relationship between v and vi. While the magnitude vi of the velocity just
before push-off is approximately equal to the average horizontal speed v for small
angles α, vi is not exactly equal to v. More exactly, the relationship between vi and
v is obtained by taking the dynamics of the inverted pendulum into account. If θ(t)
is the angle that the leg makes with the vertical at time t and t = 0 corresponds
to mid-stance, conservation of energy gives:

mθ̇(t)2l2max

2
+ mglmax cos θ =

mv2
i

2
+ mglmax cos α. (2.13)

Therefore,

θ̇(t) =

√

(

vi

lmax

)2

+

(

g

lmax

)

(cos α − cos θ) (2.14)

Now we can calculate the time tstep spent by the inverted pendulum leg in one
circular arc (one step), in terms of vi, g, lmax and α.

tstep = 2

∫ α

0

dt

dθ
dθ = 2

∫ α

0

dθ

θ̇(t)
. (2.15)
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This integral can be evaluated in terms of elliptic functions, or evaluated by numer-
ical quadrature (Bertram et al., 1999; Usherwood, 2005). v can then be obtained
as a function of vi, g, d and lmax by noting that v = dstep/tstep, where dstep = 2l cos α
and tstep is given by Eq. 2.15.

Other variants of inverted pendulum walking. So far, we have assumed
that the push-off happens entirely before heel-strike in inverted pendulum walking.
Another extreme possibility is that of heel-strike happening entirely before push-off
(but this requires tensional leg forces: Ruina et al., 2005). Ruina et al. (2005) point
out that infinitely many possible variants of inverted-pendulum walking gaits exist
between these two extremes – each distinguished by a different amount of overlap
between the impulsive push-off and the impulsive heel-strike. It turns out that
the energetic costs of these variants of inverted pendulum walking depend on the
details of this short impulsive contact period. Ruina et al. (2005) show that the
extreme of pushing-off entirely before heel-strike has the least cost among these
variants (assuming among other things, that the animal has a point-foot).

In the light of these considerations, when we compare the energetic costs of
inverted pendulum walking with other gaits, we shall use the variant of inverted
pendulum walking with the least energetic cost — in which push-off occurs entirely
before heel-strike.

A brief history of inverted pendulum walking. The key modeling assump-
tion in inverted pendulum walking is that the center of mass describes an arc of
a perfect circle during each single stance phase and that the leg is more or less
straight during this stance phase. We could not find this approximation in the
two great nineteenth century treatises on locomotion (Marey, 1874; Braune and
Fischer, 1895-1904), even though the latter obtained detailed trajectories of the
center of mass of a walking person. Saunders et al. (1953) 4 introduced the idea of
a compass gait – a walking gait in which the leg is relatively straight during stance,
reminiscent of a compass. Following this, idealizations of walking with a constant
leg-length stance phase are often called compass gaits. Bekker (1956) seems to
have been one of the first to idealize the stance phase as being exactly circular in
a mathematical model. However, he does not seem to have treated the inverted
pendulum phase as being work–free — he ascribed a work-based energetic cost to
the up and down motion of the body during the inverted pendulum phase. Bekker
seems to have also been the first to draw an analogy between bipedal walking and
the motion of a rimless wheel, later mentioned again by Margaria (1976). Alexan-
der (1976) described an inverted pendulum walking gait, and derived an energetic
cost that is identical to that described here. This energetic cost was derived with-
out specification of how exactly the transition between the circular arcs is effected.
McGeer (1990a) presented an analysis of the collisional energy losses in a rimless
wheel rolling down a slope. Alexander (1991) modified this analysis to make it

4as described in McMahon (1984)
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apply for a point-mass human walking on a level surface. He assumed that the
heel-strike came before the push-off. This seems to have been the first complete
description of the energetics of (any variant of) inverted pendulum walking. In-
verted pendulum walking, with push-off before heel-strike, alluded to by Tucker
(1975) and McGeer, seems to have been first described in detail by Ruina and Kuo
(Kuo, 2002; Kuo et al., 2005; Ruina et al., 2005).

2.3.2 The limits of inverted pendulum walking.

Alexander (1976), among other things, derives a simple upper limit on the speed
of progression for inverted-pendulum walking gaits. Imagine a point-mass animal
vaulting over a straight mass-less leg. If the speed of the upper body is too high, a
purely compressive leg-force cannot keep the foot on the ground, the legs will need
to pull on the body to keep the foot in contact with the ground — the centripetal
acceleration required would have exceeded the acceleration due to gravity. If the
horizontal speed at midstance was vmid, then the (compressive-is-positive) leg-force
at mid-stance is F = mg−mv2

mid/lmax. For a non-tensional leg-force at midstance,
we require that F > 0. Consequently a necessary condition for pendular walking
is v2

mid/(lmaxg) ≤ 1. Since for small step lengths, the average horizontal speed v is
approximately equal to vmid, the above necessary condition was approximated by
Alexander (1976) as v2/(glmax) ≤ 1.

This elegant reasoning requires slight modification for two reasons: 1) In in-
verted pendulum walking, the compressive leg-force in the legs is minimum, not
at midstance, but at the end of stance. In fact, the leg-force is maximum at mid-
stance. So as the speed is increased, the leg will lose contact with the ground
first, not at midstance but close to the end of stance. This means that a necessary
condition based on the midstance velocity (as derived above) will not be a “strict”
necessary condition. 2) The formula needs to be accurate for large step lengths.
Further, in some biomechanics circles, the infeasibility of inverted pendulum walk-
ing is treated as a theory for gait transitions — this is a questionable premise as
will be discussed later in this section.

Here we derive expressions for the boundary of infeasibility that is applicable
for large-step-length inverted pendulum walking. Consider a gait with step-length
dstep and average horizontal speed v. The linear momentum balance along the leg
at the maximum leg angle α = sin−1 (dstep/2lmax) gives:

mv2
i /lmax = mg cos α − F (2.16)

where F is the force on the leg and vi is the velocity magnitude at the end of a
stance phase, but just before the impulsive push-off. If F is to be greater than
zero, we need:

v2
i /(glmax cos α) ≤ 1 (2.17)

As derived earlier in this section, vi and α are related to v, d, g and lmax, so this
inequality can be translated into a feasible region in the v-d plane, or more usefully,
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the non-dimensional V -D plane. The shaded region in Fig. 2.3 shows where the
above condition is satisfied. The dotted line is the boundary of this region. This
figure indicates that at larger step-lengths inverted pendulum walking with only
compressive leg-forces becomes infeasible at a lower speed. These observations
were first made by Usherwood (2005), and independantly rediscovered here.

The point P in Fig. 2.3 is where the boundary of infeasibility intersects the
V = 0 axis. The coordinates of this point can be determined analytically as follows:
Imagine the point-mass attached to the mass-less leg is initially vertical. This is an
unstable equilibrium. And the leg-force is compressive in this configuration. Now
let the mass topple over from this position due to an arbitrarily small perturbation.
The inverted pendulum will gain angular speed as it topples (taking an arbitrarily
long amount of time) and the leg-force will eventually go to zero at some angle
αmax to the vertical. This leg-angle specifies a corresponding step-length dmax =
2lmax sin αmax. Note that this motion of the inverted pendulum corresponds to
zero horizontal speed (because it takes infinitely long to topple from a perfectly
vertical position).

By conservation of energy, when started from vmid = 0, the speed magnitude
vmax of the mass at leg-angle αmax is given by

0 = v2
mid = v2

max − 2glmax(1 − cos αmax) (2.18)

Further, speed vmax is such that the leg-force is exactly zero at α = αmax.
So v2

max − glmax cos αmax = 0 from Eq. 2.17. Using this in Eq. 2.18, we get
glmax cos αmax = v2

max = 2glmax(1−cos(αmax)). Which means that cos αmax = 2/3.
The corresponding step length is dmax/lmax = 2 sin αmax = 2

√

1 − (2/3)2 = 2
√

5/3.
As seen in Fig. 2.3, dmax is an upper bound on the feasible step-lengths for any
forward speed. This upper bound, however, is not independent of the boundary
of infeasibility (dashed line) in Fig. 2.3 as noted by Usherwood (2005); rather,
it is one special point on this boundary, corresponding to the limit of zero-speed
inverted pendulum walking.

The above considerations were based on the idealized model of exact inverted-
pendulum walking of an animal with point-mass body, massless legs and impulsive
step-to-step transitions. Obviously the predictions of the model will change as
these assumptions are revised. In particular, if the push-off is not impulsive but
spread out over a finite amount of time, the parameter regime over which the
nominally inverted-pendulum walking is possible will be extended. Because the
push-off and the heel-strike are compressive impulses, smearing them out over an
extended period of time will increase the compressive forces on the legs close to the
step-to-step transition, so there would be less danger of the compressive leg-force
going to zero. Such a gait, however, would not quite be exactly inverted-pendulum
walking. Because when there is an extended (as opposed to impulsive) step-to-
step transition, the gait does not resemble the motion of an inverted pendulum
throughout the stance phase. Further, the relationship between vi and v will be
different when the massless leg is replaced with a leg that has, say, 15% of the
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line represents the boundary of feasibility. The oval represents roughly where hu-
mans on a treadmill cease to walk. P(2

√
5/3 ≈ 1.4905, 0) is where the dashed line

intersects the V = 0 axis.

total mass. This means that the limit of inverted pendulum walking with legs
with masses would be slightly different. The swinging of the other (contralateral)
leg will further modify the dynamics of the “inverted pendulum”.

As noted briefly above, the infeasibility of inverted pendulum walking is some-
times considered a theory, if only an approximate theory, of why people switch
gait to running. We believe, however, that it cannot be a reasonable theory of
gait transition. Inverted pendulum walking is only one of an infinite variety of
possible walking gaits. Many of these other walking gaits (like the level walking
gaits of the next section) are not subject to a similar upper bound on the speed.
So the reason that inverted pendulum walking is infeasible above a certain speed
is not good enough to change from a gait without flight phase (that is, a walking
gait) to one that has a flight phase (that is, running gait). The above calculation,
therefore, is only a curiosity, relevant only in the presence of artificial constraints
such as in race-walking (in which sport, the walker is not supposed to bend his
legs at the knees for the first half of a stance phase).
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2.3.3 Comparison of model prediction with human data

Bobbert (1960) provides simple regression formulas for the metabolic rate of walk-
ing as a function of walking speed. Converting these formulas to SI units, we have:

Metabolic rate per unit mass =

(

2.2 + 1.155
( v

1 ms−1

)2
)

Watts/kg (2.19)

Subtracting a resting metabolic rate of about 1.4 Watts/kg, and dividing by v and
g we get the cost of transport (over and above the resting cost) to be:

ct =
0.8 Watts/kg

vg
+

1.155 Watts/kg

vg

( v

1 ms−1

)2

(2.20)

We plot this regression equation in Figure 2.4 along with the estimate of the
cost of transport from the inverted pendulum walking model (Equation 2.10). For
the calculation of the cost of inverted pendulum walking, we used the following
regression formula of Alexander and Maloiy (1984) relating nondimensional step
length and speed in walking humans, accurate over the speeds considered.

D = 1.25V 0.6. (2.21)

We find that the inverted pendulum walking model overestimates the cost for
higher speeds. This overestimation could be due to any of the many simplifications
in the inverted pendulum walking model. Addition of a leg-swing cost to the
energetic cost obtained here, will further exaggerate the overestimation.

Inverted pendulum walking is simply an idealization of the walking kinematics.
Better estimates of the positive and negative work performed by the legs while
walking can be obtained by using the actual center of mass motion during human
walking. We present such work-estimates obtained in Kuo et al. (2005) (based
on Donelan et al., 2002b). See Section 2.1.1 for a brief description of how these
estimates were obtained. The corresponding metabolic cost estimate is also shown
in Figure 2.45.

We find that these estimates of the metabolic cost based on the actual kine-
matics of human walking also exceed the actual metabolic cost (in spite of not
including the leg-swing cost). This overestimation is instructive. In real animals,
muscles are in series with elastic tendons. So what is observed as work done by
the “legs” is likely to be a combination of muscle work and passive tendon work.
But we have assumed that none of the leg–work was due to tendons. Perhaps
the overestimation of the metabolic cost by these “leg–work” estimates is due to
a non-negligible fraction of the leg–work being performed passively by tendons
without incurring any energetic cost. As we will discuss in Section 2.4.3, such
“elastic recovery” plays a more prominent role in the energetics of human running
— where the aforesaid overestimation of the metabolic cost is much more dramatic
(Cavagna et al., 1964).

5We note that the subjects in the two studies were of similar stature and weight,
and therefore presumably have similar energetics and walking characteristics.
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Figure 2.4: Comparison of the inverted pendulum walking model with
human data Bobbert (1960) gives metabolic data for human walking. Kuo et al.
(2005) gives estimates of the work done by the legs from the ground reaction
forces – the plotted points correspond to metabolic cost estimates arising from
these external work estimates, assuming b1 = 4 and b2 = 1. That the external
work estimate of metabolic cost overestimates the actual metabolic cost suggests
the possibility that some of the leg-work in walking is performed, not by muscles,
but by tendons.
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2.3.4 The smoothest gait: Constant speed level walking

Ortega and Farley (2005) showed that a person expends more energy while walking
with a constant-height center of mass trajectory than while walking naturally at
the same speed. These experiments were in response to the hypothesis (Saunders
et al., 1953) that walking smoothly, perhaps with no vertical motion of the center
of mass and little change in horizontal speed, will improve energy efficiency. This
hypothesis was based on the reasoning that only changes in kinetic and potential
energies required work. So, the reasoning went, if there were no changes in kinetic
and potential energy, there would be no requirement for work. As alluded to in
Alexander (1980), this reasoning is faulty – because even when there is no net work,
each leg might be doing positive and negative work that might cancel out. Such
positive and negative work will have an attendant metabolic cost. It is thought that
many contemporary robots waste energy in a similar manner by simultaneously
performing positive and negative work (Chris Atkinson, personal communication
and Collins et al., 2005).

For the minimal model here, there are many ways to walk with a perfectly
horizontal center of mass trajectory. Here we discuss only two types of level walk-
ing. We will first consider the smoother of these two gaits. This gait, not only
has no vertical excursion of the center of mass, but also has no fluctuations in
the horizontal speed. Fig. 2.5a shows the progression of the upper body and the
leg-postures in this gait. Since there is no acceleration, there is no net force on the
body. This gait requires double support to balance gravity at all times.

Also, it is clear from Fig. 2.5a that this gait requires infinitely quick leg-swings
between two consecutive steps. However, the point we wish to make here is that
even without consideration of the (possibly large) leg-swing cost, the work required
for this smooth gait is greater than the other gaits discussed in this chapter.

We measure the horizontal position x from the mid-stance of leg-1. The trailing
leg (leg-1) supports a compressive force of magnitude F1 and the leading leg (leg-2)
supports F2. As the body moves forward, the trailing leg does positive work and
the leading leg does negative work. If l1 is the length of the trailing leg and l2 that
of the leading leg, then force balance gives:

F1x

l1
− F2(dstep − x)

l2
= 0 (2.22)

F1h

l1
+

F2h

l2
− mg = 0 (2.23)

Eq. 2.23 gives F2 = mgl2x/(hdstep). If the (vector) force due to leg-2 is F2 =
F2xi + F2yj and the velocity of the body is v = (dx/dt)i, the negative work done
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Figure 2.5: Two types of level walking. (a) is a level walk without constant
speed and with no double support. b is level walking with constant speed and with
double support at all times. Also shown are the forces on the point-mass body at
a typical point in each of the two gaits (free-body diagrams).
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by the trailing leg over a distance dstep is:

Wn/step =

∫ tstep

0

(F2.v)dt (2.24)

=

∫ dstep

0

F2xdx (2.25)

=

∫ dstep

0

F2(dstep − x)

l2
dx (2.26)

=

∫ dstep

0

mgl2x

hdstep

· dstep − x

l2
dx (2.27)

=
mgd2

step

6h
(2.28)

Noting that the positive work is equal to the negative work, we find the cost of
transport is given by

ct = (b1 + b2)
mgd2

step

6h
· 1

mgdstep

= (b1 + b2)
dstep

6h
(2.29)

The cost per unit distance is independent of velocity.
We will find that the energetic cost of this smooth variant of level walking

is higher than the not-so-smooth version of level walking to be discussed below.
Because the smoother version of level walking requires infinitely quick leg-swings,
this observation is quite robust to adding a metabolic cost for leg-swing.

With double support, we have a whole function space of possible level walks,
parameterized by the horizontal acceleration as a function of x during the double
support. However exactly one of these gaits (described above) has a constant
horizontal speed and requires only non-tensional (non-negative) leg-forces.

2.3.5 Another smooth gait: Level walking with no double
support

Level walking is possible even in the limit of no double support. Fig. 2.5b shows
such a level walking gait — one that is symmetric about each mid-stance. There
is a one parameter family of such level walking gaits with no double support,
parameterized by the degree of asymmetry about mid-stance (for example, the
distance from the center of the switch from leg-1 to leg-2). We will only consider
the symmetric case here, discussed first by Alexander (1976, 1991). The following
discussion is similar to Alexander (1991).

In this level walking gait with no double support, each leg performs negative
work until mid-stance and performs positive work from mid-stance until the step-
to-step transition. Let the compressive force supported by leg-1 be F1 = Fx1i+Fy1j
of magnitude F1. Since the acceleration in the vertical direction is zero, force
balance gives mg = Fy1 = F1h/l1, where h is the height of the center of mass, and
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l1 is the length of the leg. This gives Fx1 = mgx/h. The positive work performed
by the legs is:

Wp/step =

∫ dstep/2

0

mgx

h
dx =

mgd2
step

8h
(2.30)

The corresponding cost of transport is ct = (b1+b2)dstep/8h. This cost has the same
functional form as the level walking with constant speed, except for the smaller
leading constant, 1

8
instead of 1

6
. The cost is similarly independent of speed.

For the simple model here, numerical calculations similar to those in Chapter 3
show that symmetric non-constant-speed level walking gait with no double stance
described in this section has the least metabolic cost (without considering leg-swing
costs) among all level walking gaits, for given speed and step length.

2.4 Running

Broadly, running is defined as any gait in which all the legs are off the ground at
some point during a gait cycle i.e., any gait that has a flight phase. This definition
is mildly confusing because humans have many gaits that involve a flight phase:
normal running, unilateral skipping (often called galloping) and bilateral skipping
(typically just called skipping), hopping on one or two legs, etc, but only one of
these gaits (normal running) is called running in the popular parlance. In this
section, we will restrict our discussion to normal bipedal running. However, note
that for the minimal model, hopping with one or two legs will be energetically
indistinguishable from running.

2.4.1 Impulsive running

Impulsive running is conceptually the simplest running gait that our minimal model
can perform. The motion of the center of mass during impulsive running is shown
in Fig. 2.6. The stance phase is reduced to a vertical impulse of infinitesimal
duration. Between two such impulsive stance phases, the body flies through the
air in a parabolic trajectory. This idealization of running seems to have been first
discussed in Rashevsky’s papers (Rashevsky, 1944, 1948).

During the short stance phase, the vertical impulse first performs negative work
reducing the vertical component of the body velocity to zero and then performs
positive work to restore the vertical velocity to its pre-impulse magnitude, but now
in opposite direction. The positive work is, therefore, equal to Wp/step = mv2

y/2,
where vy is the magnitude of the vertical component of the velocity just before
and just after the stance phase. Noting that the flight phase is parabolic, we have
vy = gTstep/2 = gdstep/(2v). So Wp/step = mg2d2

step/(8v
2). The cost of transport is

then:
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ct = (b1 + b2)
mg2d2

step

8v2
· 1

mgdstep

(2.31)

= (b1 + b2)
gdstep

8v2
(2.32)

= (b1 + b2)
1

8
· dstep

lmax

· glmax

v2
(2.33)

= (b1 + b2)
D

8V 2
(2.34)

Impulsive run

Flight

Bounce

Bounce

d

Figure 2.6: Impulsive run. The flight phase is a symmetric parabola. During
the short stance phase, the leg is vertical and applies a vertical impulse.

Given the speed vs step-length data (here we use data from Wright and Weyand,
2001) for real human running, the above expression can be evaluated for the cost
of transport and compared with the actual metabolic cost of transport in human
running (Wright and Weyand, 2001). This comparison in shown in Fig. 2.7. We use
b1 = 4 and b2 = 0.8. We see that the metabolic cost estimates of the impulsive run
far exceed the actual metabolic cost of running. This could mean many things.
That impulsive running is an inefficient way to run and a more compliant gait,
where the leg forces change more gradually, could cost less energy (and agree
better with human metabolic data). Or it could just mean that impulsive running
is a bad model of human running. The primary deficiency in this model is that
all the work is attributed to the telescoping actuator (muscles) and hence entails
metabolic cost. Whereas when there are tendons in series with the muscles –
springs in series with the telescoping actuator – some or all of the negative and
positive work during the stance phase could be performed by passive springs. We
explore these issues in the next two sections.
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Figure 2.7: Metabolic cost of running The metabolic cost of real runners is
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costs estimated by an impulsive running gait, and a pseudo-elastic running gait.
These estimates assume that muscles do all the work. Both impulsive running
and compliant pseudo-elastic running seem to overestimate the real running cost
because apparently, in real running much of the work is done by springy tendons
costing little metabolic cost.
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2.4.2 Compliant running: the spring-mass model of run-
ning

Human running gaits are not impulsive. The duty factor for any gait is defined as
the time-fraction of a stride (one stride = one period = two steps of running) over
which a given leg is in contact with the ground. Running has a maximum duty
factor of 0.5, each leg touching the ground for less than half a stride. Slow running
typically has high duty factors, over 0.4 at speeds lower than 1.75 ms−1 in humans.
While running at higher speeds has lower duty factors (e.g., 0.31 at 3.5 ms−1; see
Wright and Weyand, 2001), the duty factor never goes below 0.1 for humans in
steady running (as can be verified by observing a sprinter at top speed).

Normal human running has flight phases interspersed with the extended stance
phases of alternating legs. This gait has often been compared to a perfectly elastic
ball bouncing along a flat surface for two reasons (Margaria, 1976). Firstly, the
changes ∆l in the length of the leg during a stance phase seem to approximately
obey the law of a Hookean spring: Fleg = k∆l, where k is some effective spring
constant (Blikhan, 1989; Farley and Gonzalez, 1996). Secondly, human legs have
large tendons in series with the major muscles (although these tendons are not as
prominent as in many other animals). These tendons serve as elastic storage mech-
anisms. If human legs did not have these springs, the compression and extension
of the leg would be entirely powered by active muscle contraction. However, the
tendons seem to store some of the energy during the compression phase, and this
stored energy seems to be used to partly power the leg extension (Cavagna et al.,
1964; Alexander, 1997). Direct evidence for this elastic storage has been obtained
in running turkeys (Roberts et al., 1997), horses (Biewener, 1998), and guinea
fowls (Marsh et al., 2004) by various experimental means (Alexander, 2002b).
These studies show, for instance, that the length changes in the muscles are much
smaller than the length changes in the tendons. In particular, many of the muscles
do little work, but only provide isometric forces that brace the stretching tendon
in series.

These experimental observations have led to extensive research about spring-
mass running (e.g., Blikhan, 1989; McMahon and Cheng, 1990; Farley et al., 1991;
Carver, 2003; Ghigliazza et al., 2005; Seipel and Holmes, 2005; Seyfarth et al., 2002;
Geyer et al., 2005). The central mechanical model in such research is the “spring-
mass model of running”, sometimes called the Spring-Loaded Inverted Pendulum
(SLIP) model of running. This model consists of a point-mass upper body and
a massless leg. This leg, however, is a simple linear spring with a given spring
constant k, rather like a person riding on a pogostick. The spring-mass model
can be obtained by replacing telescoping actuator in the minimal model here by
a linear spring. The spring force is zero during a flight phase and non-negative
during a stance phase. The end of a stance phase is determined by the spring force
going to zero.
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Fitting the spring-mass model to human running data. Briefly, the pa-
rameters that define the spring-mass model are m, g, lmax and k. These can be
combined into one nondimensional parameter: a non-dimensional stiffness keff =
klmax/mg. For simplicity, we consider only in running–like motions of the spring-
mass model that are symmetric about mid-stance. This symmetry requires that
the velocity at mid-stance has to be horizontal (zero vertical component). For
given spring-mass model parameters, there is a two parameter family of such sym-
metric running motions6 – the leg length lmid at mid-stance and the horizontal
speed at mid-stance vx−mid. We can nondimensionalize these two parameters by
respectively dividing by lmax and

√
glmax.

A real human running gait can be simply characterized by the average hor-
izontal speed v, step-length dstep and the duty factor µd. Toward this end of
fitting the spring-mass model to human running data, for every specification of
(v, dstep, µd) of human running, we wish to find a motion of the pogo-stick model
that has the same (v, dstep, µd). We noted in the previous paragraph that the set
of spring-mass motions is characterized by two parameters, for a specified value of
non-dimensional stiffness. If we choose to vary the stiffness as well, we have access
to three parameters (lmid, vx−mid, keff ) which we can vary to obtain a motion of
the pogo-stick model that have the specified values three parameters (v, dstep, µd).
The appropriate (lmid, vx−mid, keff ) for a specified (v, dstep, µd) can be (and is here)
obtained by a numerical root-find.

When asked to run at a particular speed on a treadmill, people automati-
cally select their preferred step-length and duty factor. That is, the preferred
step-length and the preferred duty factor can be represented as functions of the
forward speed. Wright and Weyand (2001) present such data: (v, dstep(v), µ(v))
combinations that humans use as they naturally run at a variety of speeds. Such
human running data can be fit by the pogo-stick model as described in the pre-
vious paragraph. Among other things, this model-fit indicates how the effective
stiffness keff changes with speed (Fig. 2.8). Somewhat remarkably, it is found that
the effective non-dimensional stiffness that best fits the human data for a range of
speeds is approximately a constant (keff ≈ 15). It does act as if the human leg is a
linear spring whose stiffness does not change with speed. This intriguing result was
first obtained by somewhat different arguments by McMahon and Cheng (1990).

The pogo-stick model with a constant leg-stiffness is perfectly capable of going
at a given forward speed at a variety of step-frequencies. But when humans are
forced to choose a non-preferred step-frequency at a given speed, the effective
spring constant of 15 is no longer a good description of leg-behavior, but rather,
the leg seems to behave like a spring with lesser or greater apparent stiffness (Farley
et al., 1991; Farley and Gonzalez, 1996). This suggests that perhaps the constancy

6Not all values of these parameters lead to symmetric running–like solutions but
every symmetric running–like solution is characterized by these two parameters.
For instance, some values of the parameters, the spring force would never go to
zero, and the leg would never leave the ground.
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of leg-stiffness during natural running may not be a simple mechanical consequence
of passive elastic elements in the leg. As a consequence, it is not clear why the
stiffness is approximately a constant for natural running (with self-selected step
frequencies and duty factors) in the first place.

Why does the leg behave like a spring at all? Calculations in Chapter 3 show
that energetic optimality for the minimal model imply that running should “look”
perfectly elastic even when the legs do not have no springs in them. These cal-
culations predict elastic-looking impulsive running as opposed to a more realistic
compliant running gait. We conjecture (Chapter 8) that the details of the spring-
like behavior can be still be explained as a consequence of energetic optimality
but in a more realistic mechanical model of the running animal, perhaps includ-
ing springs in series with muscles and incorporating a metabolic cost for isometric
force.

2.4.3 Pseudo-elastic spring-mass running

The minimal biped model of Section 2.1 has no springs. Nevertheless the minimal
model can simulate the running motion of a spring-mass model by appropriately
changing the length of the telescoping actuator — the telescoping actuator of the
minimal model could be made to actively duplicate the behavior of a linear spring
of a specified spring constant. We shall call this pseudo-elastic spring-mass running
because the compliance is simply simulated.

Simulating spring-mass running using the telescoping actuators requires energy.
For any particular pseudo-elastic running gait, the energy required can be easily
calculated by noting that because the forces and length changes are identical to
that of an actual spring-mass model, the positive and negative work done by the
telescoping actuator is identical to the positive and negative work performed by the
linear spring of the spring-mass model that is being simulated. And these quantities
are both equal to the energy stored in the spring when it is maximally compressed.
That is, Wp/step = Wn/step = 0.5k(lmax − lmid)

2. Thus given a running–like motion
of the spring-mass model, we can estimate a metabolic cost for the motion as if
it were performed in the absence of springs. Fig. 2.7 shows the metabolic cost
estimates thus obtained by fitting a spring-mass model to real human running as
described in the previous section and attributing metabolic cost to the spring work.

Fig. 2.7 shows that the metabolic cost estimate from the pseudo-elastic runner
is almost twice as much as the actual metabolic cost for running. Cavagna et al.
(1964) did a similar calculation, and obtained essentially the same result. They did
not of course fit a pseudo-elastic running model to real human running. Instead,
they estimated the work of the legs during stance by measuring the ground reaction
forces and calculating the “external work” as described in Sec. 2.1.1. The “external
work” was found to be only about 50% of the total metabolic cost, which means
a muscle efficiency of about 50% if all the leg-work is due to muscles. Since other
experiments have established that muscles are not more than 25% efficient, the
inference was that some of the leg-work must have been done for free by real
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springs in the leg.
Note that it is not surprising that the estimate of the leg work from fitting the

pseudo-elastic runner (as in this section) is essentially the same as the external
work estimate of the leg work (not shown: Cavagna et al., 1964). This agreement
is because the spring-mass model was originally intended as an approximation
of actual human running ground reaction forces and hence also center of mass
kinematics (these are the only determinants of the “external work” estimate).

What fraction of the leg work is performed by the springs and what fraction
by active muscle contraction? Recall that the above numbers indicate that the
leg work (which is a sum of tendon work and muscle work) is about 50% of the
metabolic cost. For clarity, consider the following two extreme cases:

• All the leg-work is due the springy tendons and all the metabolic cost is due
to isometric contraction of muscles to stretch the spring. Then the so-called
elastic recovery, the fraction of the total positive leg-work that is performed
by stored elastic energy, would be 100%.

• On the other hand, if we assume that no metabolic cost is consumed for
isometric contraction, and assume that all the metabolic cost is due to muscle
work at 25% efficiency, then the fraction of the total leg-work due to the
elastic elements would be about 50%.

Reality is somewhere between these two extremes — the elastic work probably
accounts for more than 50% of the total leg work, and the total metabolic cost is
probably, in part, due to force.

2.5 Skipping

Children skip more often than adults do. And it seems like children can skip
much more easily than adults can. Skipping also seems to be a preferred form of
locomotion for astronauts on the moon and some birds when not flying (Minetti,
1998). While there is a long history of modeling the metabolic cost for walking
and running, there seems to be no such for skipping.

There are two types of skipping gaits. The first type, unilateral skipping,
is sometimes called galloping. It is an asymmetric gait in which one leg is always
in front of the other (Fig. 2.10b). Bilateral skipping, on the other hand, is a
symmetric gait in which each leg takes turns leading the skip. An idealization
of a bilateral skipping gait is shown in Fig. 2.10a. Bilateral skipping is obtained
when we replace the single stance phase of inverted pendulum walking with a flight
phase. In the model here, half a period of bilateral skipping (assuming that the
legs are distinguishable) is equal to one period of unilateral skipping. Otherwise
the two idealizations are identical.

In Fig. 2.10, the distance covered over one period of unilateral skipping or half
a period of bilateral skipping is denoted d2. The subscript “2” is to indicate that
the event of leg contacting the ground happens twice during this distance. For
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convenience, we shall call one period of unilateral skipping, a stride. The angle
between the legs when they impact the ground in sequence is 2α. As in walking,
the push-off is assumed to be complete before the heel of the other leg strikes the
ground. The magnitude of the velocity just before the stance phase is vI as in
walking, and the angle the velocity vector makes with the x-axis is θ. Since the
average horizontal speed is v, and in the idealization here, almost all the time is
spent in flight, we have v = vI cos θ or vI = v/ cos θ.

The action of leg-1 and leg-2 are assumed anti-symmetric. That is, the amount
of negative work performed by leg-1 is equal to the amount of positive work per-
formed by leg-2 and vice versa. Just like in inverted pendulum walking. So it
suffices to look at the energetics of leg-1 in detail. This is shown in Figs. 2.10c,d.
Also, again by symmetry, the velocity is horizontal just after the impulse due to
leg-1 and just before the impulse due to leg-2.

Ruina et al. (2005) briefly discuss the energetics of skipping in the limit of small
step lengths (and therefore small angles θ and α). Here we generalize the small
angle analysis to large angles.

Whether leg-1 performs both negative work and positive work, or performs only
positive work, depends on the relation between the leg-angle α and the angle θ of
incoming velocity at the end flight phase. We consider two cases.

Case 1. Steep incoming angle θ ≥ α Here, leg-1 first does negative work, and
then does positive work (Figs. 2.10c). The component of the incoming velocity in
the direction opposite to that of the leg is lost to negative work in this case:

Wn/leg1 =
m

2
v2

I sin2 (θ − α) (2.35)

We see that the velocity after the leg impulse has a positive component in the
direction of the leg. This is due to the positive work performed by leg-1.

Wp/leg1 =
mv2

m sin2 α

2
(2.36)

Since leg-2 does exactly the same as leg-1 but only in reverse, positive work
done by leg-2 is equal to the negative work done by leg-1. This means that the total
positive work over the stride is simply Wp/stride = Wn/leg−1 +Wp/leg−1, which is also
equal to the total negative work Wn/stride. This gives us the following expression
for the metabolic cost:

Em/stride:case1 =
1

2
· m(b1 + b2)(v

2
I sin2 (θ − α) + v2

m sin2 α) (2.37)

Linear momentum balance in the direction perpendicular to the leg gives

vm cos α = vI cos θ − α. (2.38)

Using this relation and vI = v/ cos θ, we have:

Em/stride:case1 =
(b1 + b2)mv2

2 cos2 θ

(

sin2 (θ − α) + tan2 α cos2 (θ − α)
)

(2.39)
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Case 2: Shallow incoming angle θ ≤ α In this case, the incoming velocity
has a non-negative component in the direction of leg-1 (Fig. 2.10d). This means
that no negative work can be done. All work by leg-1 is positive and this is given
by the change in the kinetic energy across the impulse by leg-1.

Wp/stride =
m

2
(v2

m sin2 α − v2
I sin2 (α − θ)) (2.40)

=
mv2

2 cos θ2
(tan2 α cos2 (θ − α) − sin2 (θ − α)) (2.41)

This gives,

Em/stride:case2 =
(b1 + b2)mv2

2 cos2 θ
[tan2 α cos2 (θ − α) − sin2 (θ − α)] (2.42)

=
(b1 + b2)mv2

2 cos θ2
R (2.43)

where, R = tan2 α cos2 (θ − α) − sin2 (θ − α) (2.44)

Cost of transport for skipping. Consider Eq. 2.39. Making the small angle
approximation that θ << 1 and α << 1,

Em/stride:case1 ≈
(b1 + b2)mv2

2
· ((θ − α)2 + α2) (2.45)

Em/stride:case2 ≈
(b1 + b2)mv2

2
· (α2 − (θ − α)2) (2.46)

For fixed values of v, θ, m, etc., the small-angle expression for Em/stride:case1

above is minimized with α = θ/2. The minimum value is (b1 + b2)mv2θ2/4. On
the other hand, the small angle expression for Em/stride:case2 increases with α and is
minimized at α = θ with value of (b1 + b2)mv2θ2/2. The minimum value for case
1 (α ≤ θ) is smaller than the minimum value over case 2 (α ≥ θ) for small angles.

From Eqs. 2.35 and 2.36, we see that when α = θ/2 each leg performs an equal
amounts of negative work and positive work. That is, each leg acts in a “pseudo-
elastic” manner. Note that tan θ = d2g/(2v2), which for small angles reduces to
θ ≈ gd2/(2v

2). Substituting this expression for θ and α = θ/2 in Eq. 2.45, we
get a simpler expression for the cost applicable to locomotion restricted to shallow
angles.

Em/period = (b1 + b2)mv2

(

θ

2

)2

(2.47)

=
(b1 + b2)mv2

4

(

gd2

2v2

)2

(2.48)

=
(b1 + b2)mv2g2d2

2

16
(2.49)
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The corresponding cost of transport is given by:

ct =
(b1 + b2)D2

16V 2
(2.50)

where D2 = d2/lmax and V = v/
√

glmax are the nondimensional versions of d2 and
v. This small angle approximation is also obtained in Ruina et al. (2005).

Comparing skipping with impulsive running. We now compare the cost of
idealized skipping, derived above, with the cost of impulsive running. One stride
of unilateral skipping has two footfalls. We can roughly match the leg-swing costs
of the compared gaits by ensuring that the number of footfalls per unit time is the
same for both gaits. Therefore, we compare one stride of unilateral skipping with
two steps (therefore two footfalls) of impulsive running — that is, the step-length
d for the compared running gait is chosen to be d2/2.

We find that the small angle expression for the energetic cost of skipping
(Eq. 2.50) is exactly the same as the cost of covering the distance D2 by impulsive
running (Eq. 2.34) with two equally spaced vertical impulses.

More detailed calculations show that for large angles, the costs of impulsive
running with two impulses and skipping are not identical. Is skipping better or
worse than impulsive running? To make this comparison for a given v and d2,
we use numerical optimization on the large angle expressions for the skipping cost
(Eqs. 2.39, 2.42) to determine the α that gives the least skipping cost. For the
small angle approximation above, the optimal α was equal to θ/2. More generally,
for large angles, we find that the optimal α is not equal to θ/2 but less than θ/2,
approaching θ/2 asymptotically with small θ. Using this optimal skipping cost,
we find that impulsive running with two equally spaced impulses is always slightly
better than skipping. Thus it seems like, while the cost of skipping asymptotically
approaches that of running for small step-lengths and high velocities, impulsive
running is still cheaper than skipping in general in this model.

2.6 Comparing the cost of various gaits

Now that we have estimates of the metabolic costs of a few salient gaits, we can
compare these to determine which gait the animal should choose at a given speed
and step-length. We have already noted above that skipping is always more ex-
pensive than impulsive running, for given speed and given distance over which two
footfalls are allowed. So skipping need not be included in the comparison. Among
the two level walking gaits, the one with constant horizontal speed is always more
expensive than the one with non-constant horizontal speed and no double stance.
So only the latter level-walking gait needs to be considered for gait choice.

For simplicity, we ignore compliant spring-mass running and compare the costs
of inverted pendulum walking, level walking with no double stance, and impulsive
running for a range of speeds and step-lengths. The results of the comparison are
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shown in Fig. 2.11. We find that inverted pendulum walking is best at low speeds,
impulsive running is better at high speeds. Level walking (with no double support)
is better than inverted pendulum walking and impulsive running in a region that
starts out as a small sliver at V = 1 and grows at larger step-lengths. Alexander
(1976) presents similar results.

Fig. 3.4a shows the cost of the three gaits for two step-lengths D = 0.5 and
D = 1.00. We see that for low V , inverted pendulum walking is least expensive.
At high V , impulsive running seems least expensive. Level walking with no double
support seems least expensive for a small range of speeds – near V = 1 for D = 0.5
and between V = 0.8 and V = 0.9 for D = 1.00.

The energetic trade-offs between inverted pendulum walking and impulsive
running is easily understood for small step lengths. At small step-lengths, the cost
of transport for walking is cwalking = DV 2/8 and the cost of transport for running
is crunning = D/(8V 2). This implies that at V = 1 and small D, cwalking = crunning.

This energetic trade-off between inverted pendulum walking and impulsive run-
ning can be understood with following geometric argument. Both walking and run-
ning have essentially work-free motions interrupted collisional work. The work-cost
of these gaits at a given speed are determined by the collision angle (Ruina et al.,
2005). The energetic trade-off between inverted-pendulum walking and impulsive
running can be understood as a minimization of collision angles for a specific step
length D. At low speeds, the circular arc of walking has shallower collisions than
the parabolic free-flight of running and at high speeds, the situation is reversed
(Fig. 3.4).

We omitted pseudo-elastic running from the above comparison. When we com-
pared the costs of inverted pendulum walking, impulsive running and pseudo-
elastic running (but omitted level walking), we obtained a picture quite similar
to Fig. 2.11 with level walking more-or-less replaced by pseudo-elastic running.
That is compliant pseudo-elastic running is better than impusive running for some
values of V and D. For instance, we see in Fig. 2.7 that for the particular speeds
and step-lengths used by humans, an impulsive run requires more work than the
pseudo-elastic spring-mass running. In brief, the next chapter shows that impul-
sive running requires the least work for some range of speeds and step-lengths.
But the human running data used here (Wright and Weyand, 2001) does not fall
in the speed-step length region where impulsive running is optimal for this model.

2.7 Conclusions

In this chapter, we presented a simple model of a general bipedal animal that is
capable of a wide variety of gaits. We found that particular abstractions of various
bipedal gaits discussed in the literature are special cases of this simple model.
We used the simple model to estimate the energetic costs of a few idealized gaits,
compared these costs, and found that among these few gaits considered walking
seems best at low speeds, and impulsive running at high speeds and level walking at
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a narrow range of intermediate speeds and step-lengths. This result is generalized
in the next two chapters, where we show that inverted pendulum walking and
impulsive running are optimal (in terms of the work-based metabolic cost model
here) respectively at low and high speeds, even when compared against many other
strange gaits of the simple biped model.



Chapter 3
Computer optimization of a minimal
biped model discovers walking and
running
The first part of this chapter is word-for-word the text of Srinivasan and Ruina
(2006), except where noted as footnotes. Five minor typographical errors in the
published version have been corrected in this version, as also a small error in Fig-
ure 3.3. Also, since Srinivasan and Ruina (2006) was a short paper, it could give
only a cursory treatment of some of the more technical details. These details are
provided in the second half of this chapter, starting from Sec. 3.2 titled “Further
comments”.

Although people’s legs are capable of a broad range of muscle-use and gait
patterns, they generally prefer just two. They walk, swinging their body over a
relatively straight leg with each step, or run, bouncing up off a bent leg between
aerial phases. Walking feels easiest when going slowly, and running feels easiest
when going faster. More unusual gaits seem more tiring. Perhaps this is because
walking and running use the least energy (Borelli, 1680; Margaria, 1976; Hoyt and
Taylor, 1981; Alexander, 1980, 1989, 1992; Minetti and Alexander, 1997). Ad-
dressing this classic (Borelli, 1680) conjecture with experiments (Margaria, 1976;
Hoyt and Taylor, 1981) requires comparing walking and running with many other
strange and unpracticed gaits. As an alternative, a basic understanding of gait
choice might be obtained by calculating energy cost by using mechanics-based
models. Here we use a minimal model that can describe walking and running as
well as an infinite variety of other gaits. We use computer optimization to find
which gaits are indeed energetically optimal for this model. At low speeds the
optimization discovers the classic inverted-pendulum walk (Alexander, 1976; Cav-
agna et al., 1977; Alexander, 2003; Kuo, 2002; Ruina et al., 2005; Kuo et al., 2005),
at high speeds it discovers a bouncing run (Ruina et al., 2005; Rashevsky, 1944)1,
even without springs, and at intermediate speeds it finds a new pendular-running
gait that includes walking and running as extreme cases.

One way of characterizing gaits is by the motions of the body (Fig. 3.1a). In
these terms, walking seems well caricatured (Kuo et al., 2005) (Fig. 3.1b) by the hip
joint going from one circular arc to the next with push-off and heel-strike impulses
in between. Similarly, running could be caricatured by a sequence of parabolic free-
flight arcs (Fig. 3.1c), with impulses from the ground at each bounce (Rashevsky,
1944; Alexander, 1988; McMahon and Cheng, 1990).

Why do people not walk or even run with a smooth level gait (Alexander,
1976), like a waiter holding two cups brim-full of boiling coffee? Why do people
select walking and running from the other possibilities? We address such questions

1The published version incorrectly referred to Ruina et al. (2005); Kuo et al.
(2005)
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to the calculations here.
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by modelling a person as a machine describable with the equations of newtonian
mechanics. The basic approximations are: first, that humans have compact bodies
and light legs; second, that gait choice is based on energy optimization (Borelli,
1680; Alexander, 1980); and third, that energy cost is proportional to muscle
work (Margaria, 1976; Alexander, 1980, 1976). We use a simplification of previous
models (Alexander, 1980, 1992; Minetti and Alexander, 1997), perhaps the simplest
mechanical model that is capable of exhibiting a broad range of gaits that includes
walking and running. Although the model is a mechanical abstraction that is not
physically realizable, it is subject to the laws of physics. Because of its simplicity,
the model is amenable to interpretation. It can also be studied with exhaustive and
accurate simulation experiments, far beyond what is possible with human subjects.

We wish to find how a person can get from one place to another with the
least muscle work W (Methods). We treat the body as a point mass m at position
(x, y) at time t (Fig. 3.2a). The legs are massless and therefore, when not in ground
contact, they can be oriented, lengthened and shortened with no energy cost. The
fluctuations of the leg length l(t) due to flexion of the hip, knee and ankle are
incorporated in a single telescoping axial actuator (Alexander, 1980) that carries
a compressive time-varying force F = F (t). For simplicity, we seek an explanation
of gait choice with no essential dependence on elastic energy storage; we assume
no springs (tendons) in series or parallel with the actuators.

We assume that during the stance phase, when a foot is in contact with the
rigid level ground, that it does not slip. At most one foot can be in contact with
the ground at a time. During stance, both gravity mg and F act on the body
(Fig. 3.2a). During the flight phase, when neither leg touches the ground, gravity
is the only force. We seek periodic motions, in which each step is like the previous
step. The left and right legs have identical force and length profiles. A single step
consists of one stance phase (possibly short, as in high-speed running) and one
flight phase (possibly of zero duration, as in walking).

A gait is characterized by the position and velocity of the body at the start of
a stance phase relative to the stance foot, by the step period, and by F (t). Given
these, we can integrate the newtonian equations of motion forwards in time to find
the body trajectory and leg length as functions of time (including the maximum
leg length lmax). At the end of the step, we assume that the next foot is placed on
the ground at the same position relative to the body as at the start. We can thus
calculate the step length d, the average forward speed v, and the work done by the
leg per unit weight and distance C = W/(mgd). For random F (t), the final body
height and velocity generally do not match the starting conditions and therefore
do not generate a periodic gait. Nonetheless, by appropriately varying F (t) we
can find infinitely many periodic gaits (Fig. 3.1a) with all manner of complicated
trajectories (Methods). Of those periodic gaits, we wish to find those that minimize
the cost C.

The optimal solutions have cost arbitrarily close to zero unless the optimization
is further constrained. The cost can be made arbitrarily small by growing the leg
length (and the locomotion becomes akin to the rolling of a giant multi-spoked
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wheel), so we set the maximum length to be lmax, representing the leg length.
Because we have no leg-swing cost, C can be reduced to zero by taking very small
steps (Alexander, 1992; Ruina et al., 2005; Kuo, 2001) so we optimize for various
fixed values of step length d. Finally, C has a non-anthropomorphic lower bound
(corresponding to standing on one leg for an infinite time mid-step), approached
as the average speed v goes to zero, so we constrain v.

After nondimensionalizing using m, g and lmax, no free parameters remain.
We seek solutions as two conditions are varied: the dimensionless average speed2

V = v/
√

glmax (V 2 is the so-called Froude number) and the dimensionless step
length D = d/lmax. For given values of V and D, the optimal periodic gait is
determined with numerical optimal control methods that are more or less standard
(Methods).

All optimizations converged toward one of three stereotypical collisional gaits,
depending on V and D, but never to a smooth collisionless gait. First, at low
V , the classic inverted-pendulum walking gait (Figs. 3.1b and 3.2b) is optimal.
Second, at high V , an impulsive running gait is optimal (Figs 3.1c and 3.2c).
Third, at intermediate V , a new gait, pendular running (Figs. 3.1d and 3.2d), is
optimal. Pendular running has a flight phase between extended inverted-pendulum
stance phases. Pendular running is a generalization of, and a connection between,
walking and running: with no flight phase it is inverted-pendulum walking; with
an infinitesimal pendular phase it is impulsive running.

The numerical optimization, unbiased by an expectation of what the optimal
gaits might be, has thus discovered the classic gaits that caricature walking and
running. The new third gait might be the model’s way of running with a non-zero
stance phase, given the model’s lack of tendons. A tentative prediction would be
the existence of a ground force versus time curve with two humps during the stance
phase for, perhaps, weak or obese people running slowly. The respective regions
of optimality of the three gaits are shown in Fig. 3.3.

Alexander (Alexander, 1976, 2003) argued that inverted-pendulum walking is
limited to those speeds at which the centripetal acceleration of a body pivoting
over a straight leg is less than gravity, ensuring that the body does not vault off
the ground. However, walking becomes energetically non-optimal at speeds lower
than the above limit (Alexander, 1976, 2003) (Fig. 3.33). Indeed, people switch
from a walk to run (Thorstensson and Robertson., 1987; Minetti et al., 1994) at
about V=0.65 and D=0.95, close to the boundary at which walking ceases to be
optimal (Fig. 3.3) in this model.

The numerical optimization results are buttressed by heuristic considerations.
The cost C is an integral of the leg power (Methods). There are two ways of
setting this power to zero: setting l̇ = 0 (corresponding to inverted-pendulum

2The published version had V = v/
√

gl/max, a typo.
3In Fig. 3.3 of the published version, the y-intercept of the dashed line was at

about 1.7. The y-intercept should be at about 1.5 as shown in Fig. 3.3 in this
corrected version.
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approximations to the converged impulsive (collisional) forces. In the extrapolated
optimum, as the grid size h → 0 and the allowed force upper bound Fmax, the
optimizations find that e1, e2 → 0 and that the maximum forces used go to infinity
(Methods). In these limits the walking gait (b) is an inverted pendulum with heel-
strike and push-off impulses, the running gait (c) is an impulsive bounce between
free flights, and the pendular run (d) has constant-length pendulum phases and
flight phases separated by impulses.
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Figure 3.3: The regions in which each of the three collisional gaits are optimal.
Inverted-pendulum walking ceases to be locally optimal at the pendular-run inter-
face. The oval indicates the approximate speed and step length range at which hu-
mans switch from walking to running (Thorstensson and Robertson., 1987; Minetti
et al., 1994). The dashed line indicates where compression-only inverted-pendulum
walking becomes mechanically infeasible ( (typically approximated Alexander,
1976, as V = 1, which is correct for small D). At the right part of the interme-
diate region, the pendular run is almost impulsive running; at the left edge, it is
almost inverted-pendulum walking.
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motion) or setting F = 0 (corresponding to free flight). Thus, the flight phase
(F = 0) of running is an energy-saving analogue of the pendular (l̇ = 0) motion of
walking; both phases involve no work. All the work is crowded into brief impulses
at appropriate times.

Inverted-pendulum walking, pendular running and impulsive running all have
work-free motions, punctuated by impulses (collisions). The costs of these colli-
sional gaits can be calculated directly (Alexander, 2003; Kuo, 2002; Ruina et al.,
2005). For inverted-pendulum walking, positive work performed during push-off
is evaluated as the difference in kinetic energy just before and after the push-
off (Alexander, 1976, 2002a; Ruina et al., 2005). Cwalking = DV 2

I /(8−2D2), where
VI is the magnitude of the velocity vector just before push-off. For impulsive run-
ning, cost is equal to the vertical kinetic energy that is lost and regained in every
bounce (Ruina et al., 2005; Kuo et al., 2005) (Crunning = D/8V 2). For a given V
and small values of D, the cost for the collisional gaits is proportional (Ruina et al.,
2005) to the square of the kink-angle in the trajectory (Fig. 3.4c). The energetic
trade-off between inverted-pendulum walking and impulsive running (Fig. 3.4a, b)
can be understood as a minimization of collision angles (Ruina et al., 2005) for
a specific step length D. At low speeds the circular arc of walking has shallower
collisions than the parabolic free-flight of running, and at high speeds the situation
is reversed (Fig. 3.4c).

The optimizations here show that smooth collisionless gaits require more work
than the optimal collisional gaits. For example, consider a flat walk (Alexander,
1976, 2003), in which the body moves at constant height. This gait has (Alexander,
1976, 2003) Cflat = D/8

√
1 − D2. Figure 3.4a, b shows that the exceptionally

smooth, flat walk is never optimal (Methods). Recent human experiments (Ortega
and Farley, 2005; Gordon et al., 2003) also show that a flat walk uses more energy
than normal walking.

As has been found for a gait model that assumes collisions a priori (Ruina
et al., 2005), the more general model here shows that it is advantageous to simulate
elasticity during running, even with no genuine elasticity (tendons). Indeed, real
human legs do approximately simulate an elastic spring during running (McMahon
and Cheng, 1990; Blickhan and Full, 1993). More generally, the model here, as
well as simpler models (Alexander, 1980, 1976; Ruina et al., 2005), indicates that
the energetic utility of running probably does not depend on genuine elasticity
in the legs. However, such elasticity, neglected here, would further decrease the
cost of running (Alexander, 1980, 1992; Cavagna et al., 1977), supporting the
idea (Bramble and Lieberman, 2004) that human ancestors could have started to
run before the modern human long Achilles tendon was fully evolved.

To maximize simplicity of calculation and interpretation, we have neglected
various crucial features including a cost for leg-swing (Ruina et al., 2005; Kuo,
2001; Marsh et al., 2004), a more realistic model of muscle cost (Minetti and
Alexander, 1997; Anderson and Pandy, 2001a), allowance of a non-infinitesimal
double-stance phase (Alexander, 1980, 1992, 1997), elastic and dissipative elements
in series with the actuator (Alexander, 1980, 1992; Minetti and Alexander, 1997;
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Figure 3.4: Cost of transport versus speed. (a) For small D (= 0.50), all
periodic gaits (that do not involve leg tension) have nearly equal costs near V = 1.
Inverted-pendulum walking is optimal at low speeds, pendular running at a narrow
range of intermediate speeds, impulsive running at high speeds, and flat walking is
never optimal. b, However, for large D (= 1.00) and for V ≈ 0.8−0.9, flat walking,
perhaps like a ‘Groucho walk’ (Bertram et al., 2002), although not optimal, has
lower cost than both inverted-pendulum walking and impulsive running. The colors
used in (a) and (b) indicate the following gaits: red, impulsive running; blue,
pendular walking, green, level walking; purple, optimal gait. (c) Body trajectories
for a pendular walking gait (blue; kink angle is independent of speed), a low-speed
impulsive running gait (red; kink angle is large), a high-speed impulsive running
gait (orange; kink angle is small) and level walking (green; no kinks, but generally
more costly), all with the same step length.
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Bramble and Lieberman, 2004), the possibility of higher-period gaits (for example
skipping (Minetti, 1998)), an extended foot instead of a point foot (Anderson and
Pandy, 2001a), and other anatomical realism (Anderson and Pandy, 2001a).

The simplest way of including a leg-swing cost would be to assume that it is a
function of frequency and amplitude which is independent of gait. The leg-swing
cost is then a function of V and D, has no effect on which gait uses less energy at
a given V and D, and therefore has no effect on which gait is optimal at that V
and D. Figure 3.3 would be exactly unchanged. The simplest way of incorporating
elastic recovery is to assume that a fixed fraction of the leg work is from elastic
energy storage and hence should have no cost in the optimization. This would scale
the costs of all gaits by the same constant (less than 1) and would therefore have
no effect on any of the relative costs of various gaits. Thus, leg-swing and elastic-
recovery effects can affect gait choice only through more complex dependencies.

We do not know which neglected effects are the most important for explaining
the deviations of observed human behavior from the model predictions here, par-
ticularly the prediction of the pendular-running gait, which seems little used by
humans. Nonetheless, this model, having no free parameters, might most simply
explain why we choose walking and running over the plethora of other possible
gaits.

3.1 Methods

3.1.1 Formulation

The governing equations are

mẍ = F (x − xc)/l, mÿ = −mg + Fy/l (3.1)

for stance with duration ts, and

ẍ = 0, ÿ = −g (3.2)

for flight with duration tf , where l =
√

(x − xc)2 + y2 . Time t = 0 is the beginning
of a stance phase with foot-contact point xc = 0. The initial conditions are x(0) =
x0, y(0) = y0, ẋ = ẋ0 and ẏ = ẏ0. At t = tf + ts, periodicity requires that
xf = x0 + d, yf = y0, ẋf = ẋ0 and ẏf = ẏ0. The numerical integration then
determines v, d, lmax and C. For given lmax, d and v, we seek the control strategy
(x0, ẋ0, y0,ẏ0, F (t), ts) that minimizes the work-based specific mechanical cost of
transport

C =

∫ tstep

0

[F (t)l̇]+

mgd
dt (3.3)

where []+ is non-zero only for positive values ([p]+ = p if P = 0 and [p]+ = 0 if
p < 0). The only cost is for mechanical work (dW = Fdl).



58

3.1.2 Numerical solution of the optimal control problem

We nondimensionalize all quantities by lmax, M and g. We seek

(X0, Ẋ0, Y0, Ẏ0, F̄ (τ), τs) =

(x0/lmax, ẋ0/
√

glmax, y0/lmax,

ẏ0/
√

glmax, F (t)/mg, ts
√

glmax)

where τ is the non-dimensional time, that produce the optimal periodic gait with
given V and D, and with the non-dimensional step-length satisfying 0 ≤ L(τ) ≤ 1.

The infinite-dimensional search space for this optimization problem contains
the set of all possible functions F̄ (τ). We restrict our search to the set of piecewise
linear functions, defined on an evenly spaced time-grid (0 = τ0, τ1, τ2, . . . , τN = τs),
with grid spacing4 τi − τi−1 = h = τs/N . So the search space becomes z =
(X0, Ẋ0, Y0, Ẏ0, F̄i=0...N , τs), where5 F̄i = F̄ (τi). The linear constraints are ǫ ≤
τs ≤ τstep, F̄min ≤ F̄i ≤ F̄max. We need ǫ > 0 because a periodic step requires
a stance phase. In addition, although the forces are allowed to be unbounded
conceptually, for numerical optimization they need to be bounded: we choose a
bound F̄max >> 1 and F̄min = 0. Ultimately F̄max is allowed to grow arbitrarily,
so that it is not a parameter in the solutions we present. Interestingly, choosing
F̄min < 0, allowing tensional leg-forces, does not affect the optima. The leg-length
constraint, 0 ≤ L(τ) ≤ 1, is enforced at the grid points τ = τi. Gait periodicity is
another nonlinear constraint.

For given z, C and the constraint violations are evaluated by integration of the
differential equations. C(z) is to be minimized subject to the various linear and
nonlinear equality and inequality constraints: geq(z) = 0 and gineq(z) ≤ 0. We
smooth C(z) with h as a smoothing parameter. We used a particularly robust
implementation of Sequential Quadratic Programming SQP (Gill et al., 2002) for
the optimization.

Convergence to the idealized collisional gaits is discovered by letting N → large,
F̄max → large and ǫ → small. At high V , if F̄max is set large enough for a given ǫ,
F̄max has no effect on C. The optimization then always finds τs = ǫ as ǫ → 0, thus
converging to impulsive running. We assure ourselves of the convergence to the
collisional walking by Richardson extrapolation. That is, we solve the problem for
grids of sizes N = N1, N2, N3, . . . assuming that the cost is a smooth function of
N−1, and extrapolating the cost to N−1 → 0. F̄max is maintained high enough and
ǫ low enough to be unused constraints. The ODE solutions are accurate to about
10−14 over a grid interval (obtained by integrating from grid-point to grid-point
with an adaptive RK-45 method, benchmarked by a Taylor-series method) and
accurate to less than 10−14N over the whole step. We thus avoid significant sources
of error not related to the finiteness of N and can therefore treat the convergence
as dependent only on N . The convergence is observed to be linear in N−1. The

4The published version had τi − ti−1 = h = τs/N , a typo
5The published version had F̄i(τ) = F̄ (τi), a typo.
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linearly extrapolated limit of the sequence of C values is found to differ from the
cost of the corresponding analytically determined inverted-pendulum collisional
walking gait by a relative error of about 10−3.

For each V and D, multiple optimization runs, each started with a different
initial seed, all converged towards the same control strategy, indicating the likely
uniqueness and globality of each collisional minimum. To determine the regions in
which each gait is optimal more precisely (Fig. 3.3) we repeated the optimization
over the space of (analytically calculable) collisional gaits.

Pontryagin’s maximum principle Pontryagin’s maximum principle (Bryson
and Ho, 1975) can be used over the stance phase, neglecting the leg-length con-
straint, to get necessary conditions on the optimal solutions. This calculation
shows that during stance, if the optimal control is not singular, the leg-forces must
be maximum (Fmax, apparently corresponding to heel-strike or push-off), or zero
(stance simulating flight by having no force). This much agrees with our full op-
timizations and heuristics. The pendular stance portions we found, with l̇ = 0,
seem to be singular arcs of the optimal control.

Note: The verbatim text of Srinivasan and Ruina (2006) ends here.

3.2 Further comments about Srinivasan and Ruina (2006)

3.2.1 A consequence of periodicity on the objective func-
tion

In Chapter 1, we presented a simple model of the energetic cost for muscle (Eq. 1.1).
In essence, this simple model posits that the energetic cost of muscle use is pro-
portional to a linear combination of the positive and negative work performed by
the muscle. That is :

Cost = b1 |positive muscle work| + b2 |negative muscle work|

Since our minimal biped model has no external dissipation:

Change in energy = positive work - |negative work|

In particular, over a full period of a the minimal biped, there is no change in
energy, which means that:

positive work = |negative work|

This means that:

b1 |positive muscle work| + b2 |negative muscle work|
= (b1 + b2) (positive muscle work)



60

for a full period of the minimal biped. In other words, minimizing (any multiple
of) the total positive work is exactly equivalent (here) to minimizing some linear
combination of the positive and the negative work. All such minimizations will
give exactly the same optimal solution, independent of the values of b1 and b2. Of
course, the optimal value of the objective function will depend on the particular
values of b1 and b2.

3.2.2 Description of the optimal control problem

Here, we provide a mathematically precise description of the optimal control prob-
lem described in the first part of this chapter. Note that each optimal control
problem is defined for a given value of the nondimensional step-length D and the
nondimensional step-period τstep, and hence the nondimensional average speed V .
In the following, the derivative of a quantity, say x, with respect to the nondimen-
sional time τ is denoted by x′: that is, x′ = dx

dτ
.

The goal is to determine the nondimensionalized initial conditions
(X0, X

′
0, Y0, Y

′
0), the nondimensionalized leg-force F̄ (τ), and the nondimensional-

ized duration of the stance phase τs, such that C, defined as follows, is minimized.

C =
1

2D

∫ τs

0

∣

∣

∣

∣

F̄ (τ)
XX ′ + Y Y ′
√

X2 + Y 2

∣

∣

∣

∣

dτ (3.4)

The expression for C in Eq. 3.3 is different from that in the above equation
Eq. 3.4. We have replaced the

∫

[P ]+ in Eq. 3.3 by
∫

|P |/2 in the above equation.
This replacement is equivalent to b1 = b2 = 0.5 in the discussion of the previ-
ous section – and as such does not make any difference to the optimal solutions
obtained, as noted in the previous section.

Given the initial conditions, X(0) = X0, Y (0) = Y0, X ′(0) = X ′
0, Y ′(0) = Y ′

0 ,
the state (X(τ), X ′(τ), Y (τ), Y ′(τ)) over the complete duration of a step, that is,
0 ≤ τ ≤ τstep, can be determined by integrating the following piecewise-defined
dynamical system:

When 0 ≤ τ ≤ τs,

X ′′ = F̄ (τ)X√
X2+Y 2

(3.5)

Y ′′ = −1 + F̄ (τ)Y√
X2+Y 2

(3.6)

When τs < τ ≤ τstep,

X ′′ = 0 (3.7)

Y ′′ = −1 (3.8)

Finally, there is the (periodicity) constraint on the state at the end of a step
τ = τstep,

X(τstep) = X0 + D, Y (τstep) = Y0, X ′(τstep) = X ′
0, Y ′(τstep) = Y ′

0 (3.9)
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We note here that the integrand, being the absolute value of the leg-power
P is not a continuously differentiable function of P at P = 0 and therefore not
a continuously differentiable function of whatever parameters P depends upon
(typically). This non-smoothness of the integrand creates a similar non-smoothness
in the integral — the objective function. We show numerical evidence for such
non-smoothness in the objective function in a later section (Section 3.2.6). Non-
smoothness of the objective function rules out the use of many powerful numerical
optimization techniques that assume a certain degree of smoothness of the objective
function. Since we wish to use these numerical techniques, we resort to two tricks
that result in “smooth” optimization problems.

3.2.3 Trick-1: Smoothing the non-smooth integrand

The source of non-smoothness in the problem formulation above is that |P | is
a non-smooth function of P . Therefore, we can remove the non-smoothness by
replacing the non-smooth |P | by a smooth function f(P, ǫ), such that |P | ≈ f(P, ǫ)
for ǫ << 1. Instead of minimizing C, we minimize Cǫ:

Cǫ =
1

2D

∫ τs

0

f

(

F̄ (τ)
XX ′ + Y Y ′
√

X2 + Y 2
, ǫ

)

dτ (3.10)

=
1

2D

∫ τstep

0

f (P, ǫ) dτ (3.11)

Here are some examples of the smoothing function f :

1. Arctan smoothing (Fig. 3.5a): f1(P, ǫ) = 2
π
P tan−1(P/ǫ).

2. f2(P, ǫ) =
√

P 2 + ǫ2 illustrated in Fig. 3.5b is related to the so-called Chen-
Harker-Kanzow-Smale smoothing function (Taji and Miyamoto, 2002). We
will call this the square-root smoothing.

3. f3(P, ǫ) = ǫ log(1 + e−P/ǫ), ǫ > 0 illustrated in Fig. 3.5c is related to the
so-called neural network smoothing function (Taji and Miyamoto, 2002).

Respectively, the analogous smooth approximations of [P ]+ are:

1. g1(P, ǫ) = P
2
( 2

π
tan−1(P

ǫ
) + 1),

2. g2(P, ǫ) = P+
√

P 2+ǫ2

2

3. g3(P, ǫ) = P + |ǫ| log(1 + e−P/|ǫ|)

We qualify Cǫ by a subscript — C1,ǫ, etc. — depending on which of the three
smoothing functions is used in its definition. Now note that while f2(P, ǫ) and
f3(P, ǫ) are greater than |P | for all P and ǫ > 0, f1(P, ǫ) is less than |P | (Fig. 3.5).
That is,

0 ≤ f1(P, ǫ) ≤ |P | ≤ f2(P, ǫ), f3(P, ǫ) (3.12)
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Integrating the above equation over the stance phase, noting that P is the
leg-power, we get:

0 ≤ C1,ǫ ≤ C ≤ C2,ǫ, C3,ǫ (3.13)

for any particular value of the control parameters. This means that minimizing
each of these above quantities over the same search-space preserves the ordering
of the costs. In other words,

0 ≤ min C1,ǫ ≤ min C ≤ min C2,ǫ, min C3,ǫ (3.14)

This above equation provides a smooth and well-conditioned way to bound
the optimal value of C from above and below. Solving the above optimal control
problems for different values of ǫ, gives us a sequence of upper and lower bounds
on the optimal C. Further, assuming that Cǫ depends smoothly on ǫ, the optimal
value of the objective function at ǫ = 0 can be obtained by smooth extrapolation.
We shall present the results of such extrapolation in the section on the numerical
solution of this optimal control problem (section 3.2.5).

3.2.4 Trick-2: Assume the non-smoothness away

Here we make the assumption that the trajectory of the center of mass is symmetric
about mid-stance (when the leg is assumed vertical and touching the ground).
Further we assume that only positive work is done in the second part of the stance
(after mid-stance).

Since the gait is assumed symmetric, we consider only half a step — from
mid-stance to the end of the step. The goal is to determine the nondimension-
alized initial conditions (X ′

0, Y0), the nondimensionalized leg-force F̄ (τ), and the
nondimensionalized duration of the stance phase τs that minimize the cost function

Csymm =
1

D

∫ τs

τstep/2

P (τ)dτ (3.15)

where,

P (τ) = F̄ (τ)
XX ′ + Y Y ′
√

X2 + Y 2
(3.16)

subject to the inequality constraint that

P (τ) ≥ 0 for
τstep

2
≤ τ ≤ τstep (3.17)

.
The system dynamics are governed by the same differential equations as before.

When τstep/2 ≤ τ ≤ τs,

X ′′ = F̄ (τ)X√
X2+Y 2

(3.18)

Y ′′ = −1 + F̄ (τ)Y√
X2+Y 2

. (3.19)
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When τs < τ ≤ τstep,

X ′′ = 0 (3.20)

Y ′′ = −1 (3.21)

The initial conditions for this piecewise system of equation is:

X(τstep/2) = 0, Y (τstep/2) = Y0, X ′(τstep/2) = X0
′, Y ′(τstep/2) = 0 (3.22)

And for periodicity, the state at time τ = τstep is required to be:

X(τstep) = D/2, Y ′(τstep) = 0 (3.23)

There are no constraints on Y (τstep) and X ′(τstep).
We note again that the Csymm is a smooth function of the control parameters,

and so are all the constraints. We have removed the non-smoothness due to the
absolute value function, by assuming it away. We have assumed symmetry of the
optimal solution, and it is not a priori clear that the solution to the original problem
will be symmetric about mid-stance. But numerical investigations (using say the
smoothed version of the optimization problem, as discussed in the previous section)
suggest that it is so. So we are justified making the above restrictions post-hoc.

3.2.5 Convergence of the numerical optima

The numerical methods used to solve the ǫ-smoothed optimal control problem
(not assuming symmetry) essentially follow the short description in Section 3.1.2.
The numerical method for the symmetric-therefore-smooth optimization problem
is analogously formulated in an obvious manner – the boundary conditions for the
symmetric problem are a little different, and there is the extra state constraint
that the leg-power is positive through the second part of the stance phase. That
the power is positive is enforced at a finite number of points on the grid: Pi ≥ 0.

As mentioned earlier, we used SNOPT, a robust implementation of a sequen-
tial quadratic programming algorithm for solving nonlinear finite-dimensional op-
timization problems. SNOPT requires specification of a number of parameters –
for example, information about how accurately the objective function and non-
linear constraint violations can be calculated and how accurately the first-order
optimality conditions need to be satisfied. We used MATLAB’s ode45 for the nu-
merical integration of the differential equations. Overall, the absolute error in the
solution to the differential equations was maintained at about 10−13 for the state.
This accuracy translates to a similar accuracy in the evaluation of the objective
function and the constraint violation for the symmetric problem, which has a well-
conditioned integrand for the objective function. For the ǫ-smoothed problem, the
absolute errors in the constraint evaluation are again about 10−13. However, we
used a lower accuracy in the objective function evaluation of only about 10−8, be-
cause the integrand in the objective function is not particularly smooth for small
ǫ.
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We discuss below the convergence of the numerical solutions of the two optimal
control problems to the “true” optimum. Please see related discussion in Srinivasan
and Ruina (2006). We present all the convergence results for the specific values
V = 0.5 and D = 0.5. At these values of V and D, the optimal gait seems to
be converging to inverted pendulum walking. The cost of transport of inverted
pendulum walking at V = 0.5 and D = 0.5 can be calculated quite accurately
using Eq. 2.8, without solving any optimization problem. We find this cost to be
about 0.019913159 (accurate to about 10−8). We show below that the numerical
solution of the optimal control problems approach this cost as we let ǫ and 1/N
tend to zero.

For the symmetric problem, we believe that the numerical solution to the op-
timal control problem should approach the true optimal solution as the grid-size
N → ∞. Table 3.1 shows the difference between the optimal values for a range of
N and the accurate collisional value noted above. We note that the optimal values
obtained from multiple runs of the optimization (for a given N) with substantially
different initial guesses of the optimum differed only in the 8-th (or later) decimal
place. This suggests reliable convergence of the optimizations with an accuracy of
about 8-9 digits in the optimal value (given the particular discretization). Plotting
the optimal value with respect to h = 1/N , we find that the optimal value essen-
tially varies linearly with h. We take advantage of this observation to extrapolate
to h = 0 by (least-squares) fitting a line to the h vs optimal value data. We find
good agreement between the extrapolated cost and the accurate collisional value
to be about 10−5.

For the smoothed optimal control problem, we first extrapolate to ǫ = 0 for
given N (see Figure 3.6) and then extrapolate the ǫ-extrapolated optimal values for
a sequence of N to h = 0 (see Table 3.2). Switching the order of convergence (first
h → 0 then ǫ → 0) resulted in poorer comparison with the accurate collisional
value. Similar poor comparison of the extrapolated value with the accurate colli-
sional cost was found when we tried to co-vary ǫ and h linearly to zero ǫ = h/5 (see
Table 3.3). The changing of the quality of the extrapolations with how the extrap-
olation is done is presumably related to the behavior of the underlying function
relating the optimal value, h and ǫ.

3.2.6 Non-smoothness of the objective function

Much of the preceding discussion was motivated by the necessity to avoid the non-
smoothness of the objective function. Here we show (numerically) that indeed the
objective function is non-smooth (Figure 3.7). To obtain this figure, we started
from the optimal solution of the symmetric smooth problem (Section 3.2.4) for
V = 0.5, D = 0.5 and N = 12. We then changed the objective function in
Equation 3.15 by replacing P with a |P |. Then we varied the value of the force
at the first and second grid point, about their respective optimal values, to obtain
Figure 3.7. Note that no constraints (periodicity or any other) were enforced as
these force values were changed. So the non-smoothness is not somehow an artifact
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Table 3.1: Symmetric smooth problem. Optimal value for various N for V =
0.5, D = 0.5 is shown in terms of its difference from the accurate cost obtained for
inverted pendulum walking (0.019913159). Optimal value for N → ∞ is obtained
by extrapolation using a linear and quadratic curve-fits. The mean square errors
for the two curve-fits are respectively about 5×10−5 and 1×10−5 (a cubic fit does
not do any better). The accuracy of the extrapolations seem to be consistent with
these mean square errors.

N h = 1/N Difference of the optimal value
from the collisional value

4 0.25 -7.567 ×10−3

8 0.125 -3.749 ×10−3

16 0.0625 -1.873 ×10−3

32 0.03125 -9.315 ×10−4

64 0.015625 -4.647 ×10−4

Linear Extrapolation 0 +1.788 × 10−5

Quadratic Extrapolation 0 −4.265 × 10−6
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Figure 3.6: Convergence of the smoothed optimal control problem in ǫ.
Optimal value for a sequence of ǫ-smoothed optimal control problems for fixed
N = 17. As before, V = 0.5, D = 0.5. Two types of smoothing were used to
obtain, respectively, a sequence of overestimates of the optimal value for N = 17
and a sequence of underestimates. Such sequences are extrapolated to ǫ = 0 for a
range on N for use in Table 3.2.



67

Table 3.2: Convergence of the smoothed optimal control problem in N .
Optimal values for a sequence of N for V = 0.5, D = 0.5 are plotted in terms of their
differences from the accurate collisional walking cost. Each of these numbers were
obtained by solving a sequence of ǫ-smoothed optimal control problems (with the
smoothing function f1) and extrapolating to ǫ = 0 as in Figure 3.6. We note that
the extrapolation to h = 0 and ǫ = 0 is different from the result of the collisional
value by about 10−5 — somewhat higher than would be expected superficially
from the mean-square errors of the linear (error: 5 × 10−6) and quadratic (error:
5 × 10−7) curve-fits. The source of this inconsistency is not clear.

N Differences of ǫ-extrapolations
from the accurate collisional value

10 -5.432 ×10−3

14 -3.869 ×10−3

16 -3.385 ×10−3

18 -3.010 ×10−3

20 -2.711 ×10−3

Linear Extrapolation in h = 1/N 1.47 ×10−5

Quadratic Extrapolation in h = 1/N -5.61 ×10−5

Table 3.3: Co-vary ǫ and N in smoothed optimal control problem. ǫ and
N were varied according to the relation ǫ = 1

5N
. The optimal values are then

extrapolated to ǫ = 1/N = 0 by fitting a cubic polynomial to the data. Mean-
square error of the cubic fit was about 10−7 — the agreement of the extrapolation
with the accurate collisional value of the walking cost is only about 10−4.

N Difference of optimal value
from accurate collisional value

11 -2.275 ×10−2

13 -1.922 ×10−2

15 -1.666 ×10−2

17 -1.471 ×10−2

19 -1.317 ×10−2

23 -1.090 ×10−2

Cubic Extrapolation -1.638 ×10−4
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Figure 3.7: Non-smoothness of the objective function. Shown is the variation
of the objective function when (a) one or (b) two control parameters are varied with
all other parameters are kept fixed at their optimal values. The objective function
does not seem continuously differentiable at the optimum – in both (a) and (b),
the optimum lies at the kink. We solved the symmetric smooth problem (N = 12,
V = 0.5, D = 0.5), found the optimum, then changed the objective function to
include an absolute value sign, and obtained this plot as the force values at the
first and second grid points were changed. The function looks non-smooth at finer
scales as well.
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of any of the constraints.
Note that had the non-smoothness been bounded away from the minimum,

instead of being exactly at the minimum (as suggested by the figure), smooth
optimization programs such as sequential quadratic programming would have had
much better local convergence properties close the minimum.

3.2.7 Discovering level walking in the optimizations

In Figure 3.3, we claim inverted pendulum walking is optimal for a specific range
of V and D, and no other gait is optimal in this region. This claim, as mentioned
before, was based on numerical experiments where we started the optimization
with different initial guesses and found that the optimization always converged to
walking. To further bolster this claim, we wished to find out what the optimization
would find if we explicitly ruled out walking at low speeds. During the stance of
phase of inverted pendulum walking, the body goes up and then down. So to rule
out inverted pendulum walking, we enforced an artificial constraint that the body
should go down and then up during the stance phase (as in running). Interestingly,
under this constraint we found that the level walking gait with no double stance
(see section 2.3.5) was optimal at low speeds, instead of inverted pendulum walking.
When we imposed the converse artificial constraint (that the body should go up
then down during stance phase) for V and D values in the region where running
was originally optimal, we again found that a level walking gait was optimal6.

3.2.8 Cost of pendular running

Recall that pendular running consists of a walking-like inverted pendulum stance
phase and a running-like flight phase. The transition from the stance phase to the
flight phase is accomplished by an impulsive push-off, which redirects the body
velocity from downward to upward. Over a single step, all the positive work is
performed during the impulsive push-off. The cost of one step of pendular running,
therefore, is proportional to this positive work. Let α be the angle the leg makes
with the vertical at the end of the stance phase. See Fig. 3.8. vI is the velocity
magnitude just before push-off. Let vf be the velocity magnitude at the beginning
of the flight phase and φ be the angle that the velocity at the beginning of flight
phase makes with the horizontal. Then, vf cos (α + φ) = vi by linear momentum
balance in the direction perpendicular to the push-off impulse. The positive work
is, therefore,

Wp = m(v2
f − v2

i )/2 (3.24)

= mv2
f (1 − cos2 (α + φ))/2 (3.25)

= mv2
f sin2 (α + φ)/2 (3.26)

6These are the results of very limited numerical experiments with the symmetric
version of the optimal control problem.
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As we have mentioned before, inverted pendulum walking and impulsive run-
ning may be viewed as limiting special cases of pendular running. Pendular running
reduces to impulsive running when α = 0 and reduces to inverted pendulum walk-
ing when φ = 0. Away from these limits, pendular running – symmetric pendular
running – is characterized by 3 non-dimensional parameters: the duty factor in
addition to V and D. While duty factor is typically defined as the ratio of the
stance time of a single leg to the time duration of a complete stride (two steps) of
walking or running. In the following, we define µd to be twice this duty factor —
that is the ratio of the stance time of a single leg to the time duration of a single
step (half a stride).

Alternatively, the specification of three numbers vi, α, φ completely describes
a pendular run: vi and α define the inverted pendulum stance phase, and vf

(a function of vi, α, φ) and φ define the flight phase. The cost of transport can
be evaluated, and so can the three nondimensional parameters µd, V and D as
functions of vi, α and φ. Conversely, we can determine the cost of transport given
µd, V and D by numerical root-find.

3.2.9 Optimal duty factor for pendular running at small
step-lengths

Small step-lengths imply that φ and α are small. Using this in the expression for
the positive work in a pendular run:

Wp =
m

2
v2

f sin2 (α + φ) (3.27)

≈ m

2
v2

f (α + φ)2 (3.28)

Noting that the vf ≈ v ≈ vi to O(1), time of flight tf = (2vf sin φ)/g ≈ 2vgφ/g,
the time of stance is ts = (2lmax sin α)/v ≈ 2lα/v and µd = tf/(tf + ts), we have
α ≈ tsv/2lmax and φ ≈ gtf/(2lmax). Substituting this in Wp above:

Wp ≈ m

2
v2

(

tsv

2lmax

+
gtf
2v

)2

(3.29)

=
m

2
v2tstep

( g

2v

)2
(

ts
tstep

V 2 +
tf

tstep

)2

(3.30)

=
m

2
v2tstep(µdV

2 + (1 − µd))
2 (3.31)

=
m

2
v2tstep(µd(V

2 − 1) + 1)2 (3.32)

The optimal duty factor is that which minimizes (µd(V
2 − 1) + 1)2 subject to

the condition 0 ≤ µd ≤ 1. (µd(V
2 − 1) + 1)2 is quadratic in µ and has exactly

one stationary point µstat = 1/(1 − V 2) – a minimum – in the extended domain
−∞ < µd < ∞.
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1. When V < 1, µstat > 1. This means that in the domain 0 ≤ µd ≤ 1, the
quadratic is decreasing. The minimum cost is when µd = 1. That is, inverted
pendulum walking is optimal.

2. When V > 1, µstat < 1. This means that in the domain 0 ≤ µd ≤ 1,
the quadratic is increasing. The minimum cost is when µd = 0. That is,
impulsive running is optimal.

3. When V = 1, the quadratic (µd(V
2 − 1)+1)2 becomes independent of µ. All

duty factors 0 ≤ µd ≤ 1 give the same cost!

These conclusions agree with the more elaborate optimization results obtained
here by numerical optimization, and analytically in the next chapter.

3.2.10 Generating the phase boundaries

Given V and D, the cost of transport for a pendular run depends on the single-step
duty factor µ. And for every V and D, there exists a value of the single-step duty
factor µ that minimizes the cost of transport. We perform numerical optimization
to obtain the optimal duty factor at a given V and D: this optimal duty factor
decides whether the optimal gait is inverted pendulum walking, impulsive running
or neither (proper pendular running).

Fig. 3.3 shows the regions over which each of these gaits seem to be optimal.
How were these phase boundaries obtained? The walk-to-pendular-run boundary
was determined more exactly by performing a binary search on where the optimal
duty factor changed from 1 to something less than 1. This binary search was
performed two different ways: 1) searching along constant-D lines – this is good
for determining the boundary at low D. 2) searching along a constant-V lines –
this is good for determining the boundary at low V , where the boundary seems to
have a horizontal tangent.

The pendular-run-impulsive-run boundary was similarly determined. We com-
pare the phase boundaries thus obtained with the optimal control solutions in
Figure 3.9.

3.2.11 Possible discontinuity at the boundary between
pendular running and impulsive running

Fig. 3.3 shows the regions over which each of these gaits seem to be optimal. In the
region denoted as pendular running, the duty factor lies strictly between 0 and 1:
0 < µ < 1. However this figure (Fig. 3.3) does not provide any information about
the variation of the duty factor within the pendular running region. To shed some
light on this, we plot in Fig. 3.10 the duty factor as a function of nondimensional
velocity V for a constant D. We notice that for low V , µ ≡ 1 corresponding to
inverted pendulum walking. And for high V , µ ≡ 0 corresponding to impulsive
running. The intermediate region with 0 < µ < 1 is pendular running. We notice
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Figure 3.8: Pendular run. The impulsive change in velocity due to push-off at
the end of a pendular stance phase is shown.
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Figure 3.9: Classified optimal gaits We solved the symmetric optimal control
problem with N = 11 for a number of different (V,D) combinations and classified
the resulting optimal solution as inverted pendulum walking, impulsive running or
pendular running. Because of the low grid-size, the regions over which a given gait
is optimal is slightly different from that obtained by solving the more-restricted
optimization problem of Section 3.2.10.
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that the duty factor seems to vary continuously except possibly at the apparent
interface of pendular running and impulsive running. The duty factor seems to
drop precipitously from about 0.4 to zero. Is this a true discontinuity? Or is this
an artifact of a vertical tangent that is generally hard to resolve numerically?

Some insight into this rapid change in the optimal duty factor is obtained by
looking at Fig. 3.11. This figure is drawn for D = 1. Fig. 3.11a shows the variation
of the cost of transport for D = 1 and V = 0.97. We see clearly that there is only
one minimum: around µ = 0.5. Fig. 3.11c shows a similar plot at D = 1 and a
somewhat greater speed V = 1.04. Again we see only one minimum: now at µ = 0.
Fig. 3.11b shows the variation of the cost at an intermediate speed V = 1.0255.
Careful examination of this plot indicates the presence of two minima. One at
µ = 0 and another at just over µ = 0.3. The figure does show that the cost is
almost flat – so the presence of two distinct minima is not completely evident from
the figure. However the deviation from flatness seems much less than the small
error in the evaluation of the cost: so we deem the non-uniqueness of the optimum
a genuine feature of the problem, rather than a numerical artifact. Recall that
the almost-flatness of the cost with respect to the duty factor near V = 1 was
anticipated in the previous section, where we show that for small step-lengths cost
is independent of µ when V = 1.

Fig. 3.11d shows the contours of the objective function as a function of the
speed V and the duty factor µ. Fig. 3.11e shows a zoomed-in version of Fig. 3.11a.
These contours were obtained by evaluating the cost on a grid and using MAT-
LAB’s contour function. The dark arrows in Fig 3.11d indicate the directions of
function increase. The contours are therefore based on interpolation between the
grid points, and therefore will not be as accurate as the function accuracy at the
grid points. Figs. 3.11a,b,c correspond to variation of cost along vertical section
in Fig. 3.11e. Three such vertical slices are shown (though not corresponding to
Figs. 3.11a,b,c). The local minima along each of the sections are indicated by open
circles. The contours indicate that there are indeed two minima for the interme-
diate speed: section CC. Examination of the contours in Fig. 3.11e suggests that
the region where there are two locally optimal duty factors might be quite small.
Further, it seems like the two minima arise independently. The vanishing of one
minimum seems unrelated to the creation of the other – implying the presence of
a discontinuous jump in the optimal duty factor.

In conclusion, despite our previous numerical claim of uniqueness of optimal
solution for a given V and D, the above considerations indicate existence of non-
uniqueness in a small range of V and D. This is not surprising given that at V = 1
and D = 0+, there exist infinitely many solutions (same cost for all duty factors).
On the other hand, we must point out that the above evidence for non-uniqueness
comes from the analysis of a restricted optimization problem (optimal duty factor
for a pendular run). It is still possible that the original optimal control problem
has unique solutions in the V − D region of interest (but bounded away from the
D = 0 limit).
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Figure 3.10: Optimal pendular running The optimal duty factor given that the
gait is a pendular run is plotted as a function of V at a constant D = 1.0.
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Figure 3.11: Unique optimal duty factor? Or are there multiple local minima?
(a) shows only one minimum. (b) shows two minima, while (c) again shows one
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shows the contour plot of the cost with respect to V and the duty factor at a
constant D. (e) zooms in on the region shaded yellow in (d). Vertical sections
through this region are depicted in (a), (b), and (c). The contours in (e) were
created using MATLAB’s contour, with 30 grid points on each axis.



Chapter 4
Minimal biped model at small step
lengths: a heuristic proof of optimality
of walking and running
4.1 Introduction

In the previous chapter, we computed the optimal gaits of the simple biped model
by numerical optimization and showed that (for the minimal model) walking is
indeed energetically optimal at low speeds and running at high speeds. To better
understand this gait choice, we consider another simpler optimization problem that
is closely related to the original optimization problem in the limit of small step-
lengths. This simplified optimization problem is amenable to analytical solution.
This analytical solution confirms the results of the computer optimization.

Note that while animals do not naturally prefer small step lengths, we see
in Fig. 3.3a that, for the minimal model of Chapter 3, the gait transition from
walking to running seems to be preserved even at low step-lengths. Therefore, it is
reasonable to explore gait choice for a given small step length and a given forward
speed.

Broadly, this chapter is divided into five conceptual pieces:

• We simplify the original optimal control problem by various symmetry as-
sumptions, resulting in Problem A.

• We replace the radial telescoping leg in Problem A by a vertical telescoping
leg to get Problem B.

• We then show that ratio of the objective function values for equivalent gaits
in Problem A and Problem B approaches 1 as the step length goes to zero,
for the case of finite leg-forces. This result suggests that solving Problem
B might give us some insight into the solution of Problem A at small step-
lengths.

• We simplify problem B to the elevator problem, in which all the motion
is constrained to one dimension.

• We find the optimal solutions for the elevator problem, and note that the
optimal solutions are similar to inverted pendulum walking and impulsive
running in the original problem, Problem A.

The results of this chapter cannot be construed as a complete rigorous proof
of optimality of walking and running in the limit of small step-lengths, although
it might be possible to fill the gaps in the arguments here. This chapter might
be considered as a detailed heuristic device to understand, what we hope, is the
essential structure of the optimization problem.

75
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4.2 Problem A: Symmetry assumptions.

Assumption 1 As in the previous chapters, each “step” consists of the (periodic)
action of a single leg with a given foot-contact point. However, unlike in chapter 3,
we do not restrict the number of flight phases per step in any manner. The two
legs are assumed to perform identically during their respective steps. Given these
assumptions, we only need to consider a single step (of either leg) for a complete
analysis of the gait.

Assumption 2 Define “mid-step” as when the body has the same horizontal
position as the foot-contact point. We assume that the trajectory of the center
of mass is symmetric about mid-step (e.g., Figure 4.1a). This assumption implies
that only half a step — from mid-step till the end of the step — contains all the
information about the gait. The complete gait can be generated from only half a
step by appropriate time reversal and time translation of the half-step.

Constraints on the leg force The idealized gaits such as inverted pendulum
walking and impulsive running, discussed in Chapters 2-3, require infinite forces.
Since unbounded forces can be troublesome analytically, we impose simple bounds
on the leg forces FA(t): Fmin ≤ FA(t) ≤ Fmax.

Ideally, we would like to solve a sequence of minimization problems such that
the force bounds go to infinity: Fmin → −∞ and Fmax → ∞. But for now, we
assume that the forces are bounded.

Implications of the symmetry assumptions The boundedness of the leg
force FA(t) implies that the acceleration is always bounded and that the velocity
of the body is continuous. Because the velocity vector along the gait-trajectory
is continuous, the symmetry conditions above basically require that the vertical
component of the velocity vanish both at mid-step and at the end of the step
(Figure 4.1b).

Problem A in equations We seek the optimal gait for given horizontal speed
v and step length d. In Chap. 3, we enforced a limit on the length of the leg
lmax. Here, for analytical simplicity, we replace the leg-length constraint with a
specification of the height of the center of mass at mid-step l0.

We slightly modify the notation used in Chapter 3. Here t = 0 corresponds
to mid-step here and therefore, the end of step corresponds to t = tstep

2
= d

2v
. All

the variables are subscripted with A to denote that they correspond to problem A.
e.g., xA, FA, etc. Further, the costs here are not normalized by step-length here
(such normalization is superfluous for the purposes of optimization when both v
and d are fixed).
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We wish to determine that ẋA(0) and FA(t) over t ∈ [0, tstep

2
] that together

minimize the total positive work CA, where

CA =

∫

tstep
2

0

[FAl̇A]+dτ, (4.1)

subject to the constraints that xA(0) = 0, yA(0) = l0, xA( tstep

2
) = d

2
, dyA

dt
(0) = 0 and

dyA

dt
( tstep

2
) = 0. The differential equations governing the position of the point-mass

xA and yA are

mẍA = FA
xA

lA
, and (4.2)

mÿA = −mg + FA
yA

lA
(4.3)

where FA, xA, yA and lA are all functions of time t and lA =
√

x2
A + y2

A.

Trajectories can be completely specified by v, d, and ÿA(t) A given gait
trajectory is completely described by the specification of the initial conditions and
the leg-force FA(t). We will show below that given average speed v and step length
d, a gait trajectory is completely determined by the specification of the vertical
acceleration ÿA(t).

Noting that yA(0) = l0 and ẏA(0) = 0, we can integrate a given vertical accel-
eration to obtain the vertical velocity component ẏA(t) and the vertical position
yA(t). Only those vertical acceleration functions that satisfy the symmetry condi-
tion ẏA(0) = ẏA( tstep

2
) = 0 are considered relevant.

Having determined yA(t), we can determine FA(t)
lA(t)

from Eq. 4.3:

FA(t)

lA(t)
=

mÿA(t) + mg

yA(t)
(4.4)

= f(t), say (4.5)

We can use this f(t) in Eq. 4.2 to obtain the following equation for xA.

mẍA = f(t)xA (4.6)

Solving for xA(t) requires two initial conditions. One of these, the horizontal
position at mid-step, is known: xA(0) = 0. We will now show that the other initial
condition can uniquely be determined as a function of f(t), v and d.

First, observe that Eq. 4.6 is linear in x for a given f(t). This linearity, taken
together with the initial condition xA(0) = 0 implies that the final horizontal
position xA( tstep

2
) will simply be proportional to the initial speed ẋA(0). That

is, xA( tstep

2
) = kẋA(0), where k depends on f(t). This proportionality allows us

to uniquely choose the initial horizontal speed ẋA(0) to obtain any given step
length d = 2xA( tstep

2
), and thus obtain any given speed v, given f(t) and tstep.



78

Determination of xA(t) completes the description of the trajectory. The leg-force
FA(t) can be determined from the knowledge of xA(t), yA(t) and f(t)

In summary, specification of v, d and ÿA(t) uniquely and completely describes
a trajectory in Problem A. Conversely and perhaps more obviously, every (mean-
ingful) trajectory has a unique v, d and ÿA(t).

4.3 Problem B: Riding a circular arc with vertical tele-
scoping legs

Two key observations help motivate the description of Problem B.

1. In Problem A, no work is done whenever the (radial) leg-length does not
change – that is, the point-mass moves in a circular arc. We would like a
similar property for Problem B – that is, moving in a circular arc must be
work-free.

2. Recall that we will eventually consider only the limit of small step lengths.
In the limit of small step lengths, the leg is almost vertical. So perhaps a
reasonable simplifying approximation would be to have an exactly vertical
leg.

We combine these two ideas in Fig 4.2a. Imagine a circular track of radius
l0 centered at (0, 0) in the sagittal plane as in Fig 4.1a. And imagine a point-
mass body riding the circular track with a vertical telescoping leg. The foot of the
vertical telescoping leg rides on the circular track with constant horizontal speed.
This constant horizontal velocity component is assumed to be enforced externally,
without any energetic cost to the biped.

As shown in Fig 4.2a, yB is the vertical position of the point-mass from the
ground. yV (t) is the length of the vertical telescoping leg and yC(t) = yB(t) −
yV (t) is the height of the circular track from the ground, corresponding to where
the point-mass is at time t. FB is the vertical force transmitted by the vertical
telescoping actuator.

Problem B in equations The goal is to minimize the positive work CB of the
vertical telescoping actuators, where

CB =

∫ tstep/2

0

[FB(t)ẏB(t)]+dt (4.7)

subject to the same boundary conditions as Problem A:

yB(0) = l0,
dyB

dt
(0) = 0, and

dyB

dt

(

tstep
2

)

= 0. (4.8)

Note that the two extra boundary in Problem A, namely x(0) = 0 and x(tstep/2) =
d/2 are automatically taken care of in Problem B by the assumption of constant
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Figure 4.1: Problem A (a) One step of a gait that is symmetric about the mid-
step. (b) Assumptions that all steps are identical and that each step is symmetric
about mid-step imply that the vertical component of the velocity is zero at mid-
step and the end of the step.
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Figure 4.2: Problem B: riding a circular track (a) The radial telescoping leg
of Problem A has been replaced by a vertical telescoping leg in Problem B. The
foot of the vertical telescoping leg moves on a circular track. (b) The action of the
vertical telescoping leg riding on a circular track is shown in detail. Note that the
vertical velocity components vanish at mid-step and end of step.
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horizontal speed v = d/tstep. The only governing dynamics equation is for the
vertical motion:

mÿB = m(ÿV + ÿC) = FB − mg (4.9)

because a constant speed is enforced in the horizontal direction: xB(t) = vt. A
formula for ÿC in the above equation might be obtained by twice differentiating
yC =

√

l20 − x2
B with respect to time, where xB(t) = vt. The vertical force FB(t)

is bounded: Fmin ≤ FB(t) ≤ Fmax.

4.4 Small step lengths: Problem B is “similar” to Problem
A

Definition: analogous trajectories Recall that every trajectory in Problem
A is completely described by the specification of the speed v, step length d and
the vertical acceleration ÿA(t). For every such trajectory in (the feasible region
of) Problem A, we define a unique analog in (the feasible region of) Problem B
as having the same speed v, the same step length d and the same vertical motion
yB(t) = yA(t) (noting that a trajectory in problem B can be uniquely described
thus).

Feasible trajectories in Problems A and B Note that the vertical component
of the leg-force in Problem A is always less than or equal to the magnitude of the
total leg-force and that the vertical forces are equal for analogous trajectories in
problem A and B (because the vertical motions are the same: see lemma 3). That
is, |FB(t)| ≤ |FA(t)|. This implies that if the total leg-force FA(t) for a trajectory in
Problem A obeys the appropriate force bounds, the vertical (total) force FB(t) for
an analogous trajectory in Problem B also obeys the corresponding force bounds.
Evidently, the converse is not true. In other words, the feasible region of Problem
A is mapped strictly into the feasible region of Problem B. If we wish to show that
Problem A is in some sense related to Problem B, we should demonstrate that the
set of feasible trajectories for the two problems are also, somehow, closely related.
We will ignore this aspect here for simplicity, at the cost of completeness. Indeed,
we will show the “similarity” of Problems A and B in only one limited sense (see
below). Therefore the results of this chapter cannot be construed as a rigorous
proof of optimality of walking and running in the limit of small step-lengths. But
rather as a detailed heuristic device to understand, what we hope, is the essential
structure of the optimization problem.

A one parameter family of gaits In Problem A, given a particular trajectory
with speed v, step-length d0, step-duration t0 and vertical acceleration g(t), we can
generate a one-parameter family of gaits, all with the same average speed v, but
with different step-lengths by simply using a time-stretched version of the vertical
acceleration g(t). That is, the vertical acceleration for a gait with step-length d is
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given by ÿA(t) = g(td0/d). Clearly, this one parameter family is uniquely defined
for every v, d0, and g(t), following our earlier observation that a gait is completely
characterized by specification of v, d and yA(t).

Having defined a one parameter family of gaits parameterized by the step
length, we can meaningfully ask how the energetic costs scale as d → 0. We
formalize the idea of small step lengths by taking d = O(ǫ), as ǫ, a convenient
small quantity, approaches zero.

Proposition 1: For analogous trajectories of Problems A and B, we have CA

CB
=

1 + O(ǫ) when d = O(ǫ). That is, we claim that

∫ tstep/2

0

[FA(t)l̇A]+dt = (1 + O(ǫ))

∫ tstep/2

0

[FB(t)ẏV ]+dt (4.10)

for analogous trajectories of Problems A and B. Simply showing that CA → CB is
not meaningful as both CA and CB can approach zero as d → 0.

Proof: Noting that the integrands in Equation 4.10 are essentially products of
two terms, we shall simply show that the analogous multiplicands in the integrands
are respectively equal up to a factor of at most (1 + O(ǫ)). In particular, lemma
2 shows that l̇A = (1 + O(ǫ2))ẏV and lemma 3 shows that FA = (1 + O(ǫ2))FB for
all analogous trajectories. We now state and prove two other lemmas, 1a and 1b,
which will be used in lemma 2.

Lemma 1a: For any given g(t) and v, the fluctuations in the leg-length are
much smaller than the initial leg-length in the limit of small step-lengths. That is,
lA(t) = l0(1 + O(ǫ2)).

Proof: Noting that ÿA(t) = g(td0/d), we have

yA(t) = l0 +

∫ tstep

0

∫ t′

0

g

(

t′′d0

d

)

dt′′dt′ (4.11)

= l0 + O(ǫ2), (4.12)

noting that t′ ≤ tstep = O(ǫ) and that g(t) is bounded and independant of d.

Combining this with xA(t) ≤ d and lA(t) =
√

y2
A + x2

A, we have lA(t) = l0+O(ǫ2) =
l0(1 + O(ǫ2)).

Lemma 1b: For any given g(t) and v, the fluctuations of the horizontal velocity
component become much smaller than the average horizontal speed in the limit of
small step-lengths. That is, ẋA = v(1 + O(ǫ)).
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Proof: g(t) determines yA(t), which in turn determines f(t) in the differential
equation for ẋA(t): ẍA = f(t)xA. This gives

ẋA(t) = ẋA(0) +

∫ t

0

f(t′)xA(t′)dt′ (4.13)

= ẋA(0) + O(ǫ2) (4.14)

Because the average horizontal speed is a constant v, this equation implies that
ẋA(0) = v + O(ǫ2) and consequently that, xA(t) = v + O(ǫ2) = v(1 + O(ǫ2)).

Lemma 2: l̇A = ẏV (1 + O(ǫ2)) for analogous trajectories.

Proof:

1. lA =
√

xA
2 + yA

2. Differentiating this equation with respect to t, we have

l̇A = xAẋA/lA + yAẏA/lA. Noting that lA = l0(1 + O(ǫ2)) = yA(1 + O(ǫ2))
from lemma 1a, we have l̇A = (xAẋA/l0 + ẏA)(1 + O(ǫ2)).

2. The equation for the circular track of radius l0 gives yC =
√

l0
2 − x2

B. So

ẏC = −(1 + O(ǫ2))xBẋB/l0.

3. yV = yB − yC and yB = yA for analogous trajectories. Therefore,

ẏV = ẏB − ẏC = ẏA − ẏC (4.15)

Substituting items (1) and (2) into this equation, we have

ẏV =
(

1 + O
(

ǫ2
))

(

l̇A − xAẋA

l0

)

+
xBẋB

l0
(1 + O(ǫ2)) (4.16)

=
(

1 + O(ǫ2)
)

(

l̇A +
xAẋA

l0
− xBẋB

l0

)

(4.17)

But by lemma 1b, we have ẋA(t) = v(1 + O(ǫ2)) = ẋB(1 + O(ǫ2)) and as a
corollary, xA(t) = xB(t)(1 + O(ǫ2)). Using these, we have

ẏV =
(

1 + O(ǫ2)
)

(

l̇A +
xBẋB(1 + O(ǫ)2)2

l0
− xBẋB

l0

)

(4.18)

=
(

1 + O(ǫ2)
)

l̇A (4.19)

Lemma 3: FA = FB(1 + O(ǫ2))
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Proof: If FAy is the component of FA in the vertical direction,

FAy =
yAFA

lA
=

yAFA
√

y2
A + x2

A

(4.20)

= (1 + O(ǫ2))FA (4.21)

Further, by definition, the vertical accelerations for analogous trajectories are iden-
tical. This means that the vertical forces are equal: that is, FAy = mÿA + mg =
mÿB+mg = FBy. But FBy = FB by definition of FB. So FB = FAy = FA(1+O(ǫ2)).

As mentioned before, we combine these lemmas 2 and 3 to show that the
energetic costs of analogous trajectories in Problem A and Problem B are different
only by a factor 1 + O(ǫ2). Note that we have assumed bounded leg-forces and
accelerations in this proof.

4.5 The “elevator problem”: Riding a constant accelera-
tion vertical elevator.

Replace circle by a parabola Only item 2 of lemma 2 above uses anything
about the foot of the vertical telescoping actuator traveling in a circular path in
Problem B. And yC(t) enters the proof of lemma 2 only as its first derivative ẏC .
Differentiating yC(t) =

√

l20 − x2
B(t) =

√

l20 − (vt)2 with respect to t, we have

ẏC = −v2t

yC

(4.22)

We now replace the circular track by a parabolic track, yp(t) = l0 − v2t2

2l0
. To

see that yp(t) describes a parabolic track, simply substitute for time t = xB/v
in the expression for yp(t). If the foot of the vertical telescoping actuator travels
with constant horizontal speed on this parabolic track, the corresponding vertical
velocity component of the foot will be

ẏp = −v2t

l0
(4.23)

= − v2t
√

y2
C + x2

B

(4.24)

= − v2t

(1 + O(ǫ2))yC

(4.25)

= (1 + O(ǫ2))ẏC (4.26)

So replacing the circle yC by the parabola yp will not change the truth of lemma 2.
We make this replacement because the vertical acceleration of the foot is conve-
niently a constant when traveling on the parabolic track with constant horizontal
speed. That is

ÿp = −v2

l0
= a constant (4.27)
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Summarizing, we want to find the path of the body over half a step that entails
the least positive work done by the vertical telescoping legs riding on a parabolic
arc with constant horizontal velocity. The constraint is that the initial and final
vertical speeds must be zero.

Galilean relativity Since the horizontal speed is assumed to be a constant in
Problem B, the body will have no horizontal motion observing from an inertial
frame moving with horizontal speed v. Since the foot of the vertical telescoping
actuator is riding the parabolic arc, when the constant speed is subtracted out,
the foot will be simply seen to be accelerating downwards with −ÿp. Let us call
this downward acceleration e.

e = −ÿp (4.28)

=
v2

l0
(4.29)

Note further that the cost to be minimized (Equation 4.7) and the boundary
conditions (Equation 4.8) also depend on only the vertical motion of the telescoping
leg. Therefore, e can rewrite problem B with the parabolic track, just in terms of
the vertical coordinates. This gives us what we will call the “elevator problem”.

The foot moving downwards with constant downward acceleration e = −ÿB =
−v2

l0
is most conveniently represented as being attached to an elevator moving

downwards with constant acceleration e. Fig. 4.3 shows how we reformulate Prob-
lem B with a parabolic track in terms of a person riding the vertical elevator: a
person has vertical telescoping legs and his foot is glued to the top of an elevator
moving downwards with constant acceleration e. At time t = 0, both the person
and the elevator are at the same position (without loss of generality). This initial
state corresponds to mid-step — the apex of the parabolic (circular) arc. The
person can push or pull on the elevator with his vertical telescoping legs. The
person must have zero vertical velocity at time t = tstep

2
. The objective is to meet

this zero vertical velocity constraint by reacting against the elevator in a way that
requires the least positive work.

Elevator problem in equations Fig. 4.3 shows the key variables in the elevator
problem. Downward displacements and velocities are considered positive. ye is the
position of the elevator, ym is the position of the mass m, and yr = ye − ym is the
relative position of the elevator with respect to the mass. We find it convenient
to visualize the motion of the particle in terms of yr. In particular, most of the
following discussions will use representation of the dynamics of the point-mass in
the yr − ẏr plane.

At mid-step t = 0, the positions and the velocities of both the elevator and the
mass are equal to zero: ye(0) = ym(0) = yr(0) = 0 and ẏe(0) = ẏm(0) = ẏr(0) = 0.
Thus this starting configuration is represented by the origin O in the yr − ẏr plane
(Fig. 4.4a, b, c).
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Since the elevator is accelerating downward constantly, ẏe(t) = et and ye(t) =
et2/2. In particular, ẏe(

tstep

2
) = etstep

2
. Since a constraint is that the mass have

zero vertical velocity at the end of the step, we have ẏm( tstep

2
) = 0 and therefore,

ẏr(
tstep

2
) = etstep

2
. In other words, the final state at t = tstep

2
should lie somewhere

on the line AB corresponding to ẏr = etstep

2
in the yr − ẏr plane (Fig. 4.4a, b, c).

Thus goal in the elevator problem can be stated as being to take the state of the
mechanical system from the origin O in the yr − ẏr plane to any point on the line
AB in a given amount of time tstep

2
, and with minimum positive work.

The vertical motion of the point-mass is governed by the equation: mÿm =
mg − F , where F is the force exerted by the leg on the elevator (or vice versa).
The differential equation for the relative position yr is

mÿr = mÿe − mÿm (4.30)

= me − mg + F (4.31)

We wish to minimize the total positive work

Ce =

∫ tstep/2

0

[F (t)ẏr]
+ dt (4.32)

Limit of infinite force-bounds Similar to our numerical calculations in Chap-
ter 3, formally, we wish to determine the limit of the sequence of optimal solutions
as the force-bounds in elevator problem increase without bound (Fmax → ∞ and
Fmin → −∞), for every combination of speed v and step-length d. However, we
find it more convenient in the presentation below to informally allow infinite leg-
forces, in particular, impulses that instantaneously change the vertical speed. The
energetic costs of such impulses can be easily calculated.

Note that to show the similarity of Problem A with Problem B, and eventually
with the elevator problem in the limit of small step-lengths, we assumed that the
leg-forces, and consequently, the accelerations were bounded. We have not shown
the similarity of the energetic costs of Problems A and B if the force-bounds go
to infinity before the step-lengths go to zero. In fact, such a result is not true in
general. However we imagine that asymptotic similarity of the energetic costs will
fail only for gaits with irrelevantly large costs.

4.6 Optimal “gaits” in the elevator problem.

Walking and running in the elevator problem Forgetting our technical
definition of analogous trajectories for a moment, “inverted pendulum walking”
in the elevator problem can be most naturally described as riding the elevator till
t = tstep

2
and then pushing-off impulsively against the elevator at exactly t = tstep

2

so that the vertical velocity of the person gets reset to zero. “Impulsive running”,
on the other hand, is jumping impulsively off the elevator at t = 0 giving the point-
mass an initial vertical velocity that ensures that the vertical speed at t = tstep

2

equals zero.
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We will show below that these two elevator riding strategies are indeed the
optimal solutions to the elevator problem (proposition 2). However, before we
state and prove this result, we present some results about the structure of the
problem in the yr − ẏr plane.

Constant energy contours Rearranging equation 4.31, we get

F = m(ÿr + g − e) (4.33)

The instantaneous mechanical power of this force (as used in equation 4.32) is
given by:

P = F ẏr (4.34)

= m(ÿr + g − e)ẏr (4.35)

=
d

dt

(

mẏ2
r/2 + m(g − e)yr

)

(4.36)

=
dE

dt
(4.37)

The final equation above simply notes that the leg power P is the time deriva-
tive of the total energy E = mẏ2

r + m(g − e)yr. Contours of constant energy E
in the yr − ẏr plane play a key role in the proof of optimality of walking and run-
ning below. Generically, the constant energy contours are parabolas in the yr − ẏr

plane. When g > e, the parabolas open leftward (Figure 4.4a), when g < e the
parabolas open rightward (Figure 4.4b), and when g = e, the parabolas degenerate
into straight lines (Figure 4.4c). Note that the constant energy contours coincide
with the trajectories corresponding to gravitational free-fall, with F (t) = 0 and
P (t) = 0.

Note also that the total cost Ce can also be rewritten in terms of E.

Ce =

∫ tstep/2

0

[P ]+ dt (4.38)

=

∫ tstep/2

0

[

dE

dt

]+

dt (4.39)

Feasible directions in the yr − ẏr plane The trajectory of the point-mass in
the yr − ẏr plane is determined by the following equations (the second equation
among which is the same as Equation 4.31).

dyr

dt
= ẏr

dẏr

dt
= e − g +

F

m
(4.40)

The tangent vector at some point (yr, ẏr) on a given trajectory will be ẏri+(e−g+
F
m

)j where {i, j} is the natural coordinate basis for the corresponding vector space.
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The first element of this tangent vector tells us that the trajectory can only move
to the right in the upper half plane (ẏr > 0) and to the left on the lower half-plane
(ẏr > 0), clearly a property of all such phase planes. Since we impose no bounds
on the force F , the second element of the tangent vector can be any real number.
The set of feasible tangent vector directions is shown in Fig. 4.4d. All rightward
directions are accessible in the upper half-plane and all leftward directions are
accessible in the lower half-plane. The trajectory can only have a vertical tangent
when at ẏr = 0. Note however that Fig. 4.4d is slightly misleading. The vectors in
Fig. 4.4d are drawn to equal lengths only for convenience. They indicate only the
feasible directions, but say nothing about the feasible magnitudes of the tangent
vectors. Not every tangent-vector magnitude is possible in a given tangent vector
direction. This means that while the tangent vectors of every trajectory must lie
within the appropriate cone in Fig. 4.4d, the converse is not true (not every curve
that has the tangent vector at every point pointing in the right directions can be
a solution to Equations 4.40).

Time duration of a given trajectory in the yr − ẏr plane The time taken
to go between two points P1 and P2 along a given trajectory in the yr − ẏr plane
is given by

Time duration =

∫

dt =

∫ yr(P2)

yr(P1)

dyr

ẏr

(4.41)

given that ẏr 6= 0 anywhere along the trajectory. We will now discuss how to
modify this formula if the trajectory does intersect the ẏr = 0 axis. Note first that
by choosing F = mg − me, the right hand sides of the Equations 4.40 become
identically zero. For this choice of force, the ẏr = 0 becomes a fixed line. That
is, arbitrary lengths of time can be spent on this line. So given some trajectory
intersecting or starting from the ẏr = 0 axis, we cannot determine the time taken
for the trajectory without knowing exactly how long was spent on ẏr = 0. So
if a trajectory P1P2 intersects the ẏr = 0 axis at a point R, then the total time
duration for the trajectory needs to be formally calculated as:

Time duration =

∫ yR(R−)

yr(P1)

dyr

ẏr

+ Time spent at R +

∫ yr(P2)

yr(R+)

dyr

ẏr

(4.42)

We will use this formula later in the proof of case 2 of proposition 2. We do not
discuss the convergence properties of the improper integrals in Eq. 4.42 because
the specific instances of this integral that we will consider will either be convergent
by construction or their bounded-ness (or otherwise) will not affect the ensuing
arguments.

Proposition 2. For the elevator problem, when e > g, “impulsive running”
minimizes and when e < g, “inverted pendulum walking” is optimal.
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Case 1. g > e The goal is to move from the origin O to the line AB with
the least positive work. We claim that the optimal strategy is to “walk”: that
is, riding the elevator performing no work, and then at the last moment push-off
impulsively to make the vertical velocity of the point-mass ẏm zero. In Fig. 4.4a
this trajectory is represented by OM: riding the elevator with zero relative speed
is equivalent to remaining at the origin O. And the line OM represents the change
in vertical speed because of the impulsive push-off at the end. In other words, we
claim that the optimal path from O to AB is the vertical line OM (Fig. 4.4a).

How do we show that OM is the optimal strategy? From the explanation in
the previous paragraph, it is clear that OM is a feasible trajectory by construction.
We now need to establish that every other feasible trajectory such as the dotted
lines ON and OPQ (Figure 4.4a) necessarily require greater positive work. We
shall consider two types of feasible trajectories.

1. Trajectories entirely in the upper half-plane Trajectories entirely in
the upper half-plane can never move leftward, as discussed earlier. Starting
from O, such a trajectory can reach any point on AB in the right half-plane.
Clearly it is best to go straight up to M, because any point N to the right
of M will lie on a higher-energy parabolic contour. So reaching N will have
required higher positive work.

2. Trajectories not entirely in the upper half-plane We can extend the
proof to paths not entirely lying in the upper half-plane by noting that for
such paths, for example OPQ, where PQ is the part of the path that lies
entirely in the upper half-plane.

Cost OPQ = Cost OP + Cost PQ (4.43)

≥ Cost OP + minimum cost from P to AB (4.44)

The cost for going from P to AB when restricted to the upper half-plane is
minimized if Q is directly above P (repeating arguments from item 1). And
this cost will be the same as that of OM (because the parabolas are equally
spaced). Therefore

Cost OPQ ≥ Cost OP + Cost OM (4.45)

> Cost OM (4.46)

Thus the any such path OPQ will necessarily be worse than OM as well.

Case 2. g < e We claim that the optimal strategy in this case is to “run”:
impulsive jump at t = 0 from O to R, then fly freely to S without doing any
further work along a constant-E parabola. That is, we claim that ORS is the
optimal trajectory.

Now consider an alternate path, say OT. A necessary condition for OT to have
a lower positive work than ORS is that OT never touches an E-contour of higher
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energy than RS. Consider such a path (Fig. 4.4d). This path will lie entirely below
the path ORS. We will now show that any such a path that has lower positive
work cannot satisfy all the constraints of the optimization problem.

One constraint of the optimization problem is that the total time take to go
from O to AB is tstep/2. Therefore, candidate path OT needs to last for exactly
the same time duration as the path ORS. We use the formula we derived earlier
for the time taken (Equation 4.42). By construction, the time spent at O for the
trajectory ORS is equal to zero (the impulse OR is applied immediately). So the
time duration for path ORS is simply given by

Time duration ORS =

∫ yr(S)

yr(O+)

dyr

ẏr

(4.47)

Noting that yr(S) < yr(T ) and that

ẏr(yr) on OT ≤ ẏr(yr) on ORS. (4.48)

we have
∫ yr(S)

0+

dyr

ẏr

<

∫ yr(T )

0+

dyr

ẏr

(4.49)

Therefore,
Time for ORS < Time for O+T ≤ Time for OT (4.50)

Summarizing, no path that has a lower cost than ORS can simultaneously reach
AB in time. Thus the path ORS is the optimal strategy.

Case 3. e = g We show below, by construction, that there are infinitely many
globally optimal trajectories.

Consider trajectories that go from O to AB over which ẏr never decreases; that
is, ÿr ≥ 0. Such “non-backtracking” trajectories also necessarily have ẏr ≥ 0.
Examples of such trajectories are OF, OG, OH in Fig. 4.4c.

How many such non-backtracking trajectories exist that go from O to AB in
t = tstep/2? The equation of motion when e = g reduces to mÿr = F . So all we
need for such non-backtracking trajectories to exist is that, for F > 0:

∫ tstep/2

0

F (t)

m
dt =

etstep
2

(4.51)

Clearly infinitely many F (t) satisfy this equation. Now we will show that all these
non-backtracking trajectories have the same cost, equal to the minimum possible
cost.
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When e = g, the power P simplifies to P = mÿrẏr, which for non-backtracking
trajectories is greater than zero by definition. But for P ≥ 0, [P ]+ = P .

Cp =

∫ tstep

0

Pdt (4.52)

=

∫ tstep/2

0

mÿrẏrdt (4.53)

=
mẏr

( tstep

2

)2 − mẏr(0)2

2
(4.54)

=
m

2

(

etstep
2

)2

(4.55)

A lower bound on the cost of going from O to AB is given by the energy difference
between O and AB (note that AB is a constant energy contour for e = g). And
every non-backtracking trajectory accrues a cost (Eq. 4.55) exactly equal to this
lower bound.

Summarizing, all feasible gaits with non-tensional leg-forces (F ≥ 0) are opti-
mal when e = g.

4.7 Discussion

We have noted that e is just the centripetal acceleration while travelling on a
circular arc: e = v2

l0
. Thus the conditions e > g, e < g and e = g reduce to

conditions on the classical Froude number V = v2/(glmax) as defined in Chapters 2
and 3.

When V < 1 and e < g, the elevator problem suggests that the best strategy is
to ride the parabolic arc and push off at the last moment. This is essentially the
description of the classic inverted pendulum walking.

Similarly, when V > 1 and e > g, the elevator problem suggests that the best
strategy is impulsively push-off at mid-step, and fly through the air for the rest of
the step. This is essentially the description of the classic impulsive running.

At speed V = 1 or e = g, the elevator problem suggests that all gaits that use
only non-tensional leg forces (F > 0) have the same cost. The cost landscape is
perfectly flat for a large part of the domain. This flatness of the cost-landscape
suggests structural instability of the conclusion of non-uniqueness of the optimum
strategy — that the optimal solution might be very sensitive to small changes in
the model.

These results agree both qualitatively and quantitatively with the variety of
optimization results presented in Chapters 2 and 3. However, we do not claim to
have rigorously proved the optimality of walking and running for Problem A in
the limit of small step-lengths. Nevertheless, the detailed similarity between the
elevator problem and the original locomotion optimization problem is clear and
possibly useful in aiding the intuition.
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Repeating the observation we made in the previous chapter, whenever work is
to be minimized, the optimal strategy seems to consist of largely passive work-free
motions with brief periods of impulsive work. There are two ways to have zero
leg power P = F l̇. One is to set F = 0 and the other is to set l̇ = 0. Walking
and running seem to utilize exactly these two mechanisms. In walking the body
rides on a stiff-leg of constant length (l̇ = 0), not doing any work until the final
moment when the trailing leg pushes off. In running, all the work is done in a
brief impulse during mid-stance, and no further work is done during the flight
phase (F = 0). We will encounter this optimal solution structure (consisting of
brief impulses and mostly work-free motions) again in the next chapter, where we
derive derive work-optimal strategies for swinging a pendulum (leg).
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Figure 4.3: Problem C: Riding an accelerating elevator. Both the point-mass
and the elevator start at the same position (START) with zero vertical speeds. The
elevator maintains a constant downward acceleration e. The point-mass can react
push or pull against the elevator using arbitrarily strong vertical telescoping legs.
When the elevator reaches END, the vertical speed of the point-mass should again
be zero. The objective is to ensure this by doing the least amount of work with
the vertical telescoping legs.
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Figure 4.4: Solution to the elevator problem. (a), Case 1: g > e. The thin
parabolic contours are constant energy lines. The goal is to go from the origin O to
the dotted line AB with the least positive work. Optimal strategy is the vertical
line OM. Two alternate suboptimal strategies ON and OPQ are shown as thin
dashed lines. (b) Case 2: g < e. Optimal strategy is the path ORS. An alternate
path OT is shown as a thin dotted line. (c), Case 3, g = e. All trajectories (e.g.,
OF, OG, OH) that do not backtrack have the same cost and hence are optimal. (d)
shows the set of accessible velocity directions – directions in which the trajectory
can proceed. In the upper half-plane, the trajectories can never move left. In
the lower half plane, the trajectories can never move to the right. No magnitude
information is intended by the equal length of the arrows.



Chapter 5
Cost of swinging the leg.
5.1 Introduction

During walking, the vertical position of the hip is nominally periodic at the same
frequency as the the step frequency. A natural conjecture is that the motion of
the swing leg during walking is powered entirely by the vertical motion of the hip.
However, it has been shown that the motion of the the swing leg during walking is
powered, in part, by the hip muscles (Braune and Fischer, 1895-1904) and requires
some energy (Marsh et al., 2004).

The amount of energy required by the hip muscles to swing the leg through
a given angle in a given amount of time will depend to an extent on the motion
of the hip. Nevertheless, it may useful to understand how much energy a person
takes to swing his leg when his hip is held at rest. Here we will discuss some simple
models of the energetics of swinging.

5.2 Model of leg-swinging: No tendons

Following Doke et al. (2005), we model the leg as a compound pendulum attached
via a torque motor to an immovable object of infinite inertia (Fig. 5.1). The
pendulum has mass m, moment of inertia I about the center of mass, and the
center of mass is situated at a distance r away from the pivot. The motor effectively
models all the muscles articulating the hip — both the agonists and the antagonists.
For simplicity, this motor is assumed to be able to produce arbitrarily high torques,
and arbitrary time-histories of torque. So, for example, impulsive torques that
change the angular speed instantaneously are assumed to be possible.

When the torque time-history Q(t) is bounded, the motion of the leg can be
described by

(I + mr2)θ̈(t) + mgr sin θ = Q(t). (5.1)

A particular gait might require the legs to move in a periodic manner with
specified amplitude and frequency. Given that the motor in this model can produce
arbitrary torque time-histories, we wish to determine the torque time-history that
minimizes the total positive work per period of oscillation of the pendulum — for a
given time period of swing ts = 1/fs and given swing amplitude θmax. The positive
work over a period is:

Wp =

∫ tswing

0

[Q(t)θ̇(t)]+dt, (5.2)

where θ̇(t) is the angular velocity.
We will consider only swinging that is symmetric about the vertical. We require

the pendulum to go from θ = −θmax to θ = θmax and back in one swing.
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a)   Leg as a compound pendulum b) 

c) 
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Figure 5.1: Mechanics of leg-swinging. (a) The leg is modeled as a compound
pendulum attached to a rigid support. (b) Phase portrait θ vs. θ̇ for the pendulum.
The concentric ellipses are denote constant energy contours for the mechanical
system; the ellipses coincide with the trajectories of unforced oscillations of the
pendulum. Thick solid line is the optimal motion for amplitude θmax when the
required swing frequency is less than or equal to the natural frequency at this
amplitude. (c) Thick solid line is the optimal motion for a swing frequency greater
than the natural frequency at the given θmax.
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5.2.1 Strategies for the total positive work

Since we are dealing with a compound pendulum, and not a simple harmonic
oscillator, the natural frequency of oscillation fn depends on the amplitude θmax;
that is, fn = fn(θmax). And for any specific amplitude of oscillation, we can discuss
three different cases: swinging the pendulum at a frequency that is 1) equal to, 2)
less than, or 3) greater than the natural frequency of oscillation. As we shall see
below, the optimal solutions for case-2 and case-3 are qualitatively different from
each other and case-1 is at the interface of these other two cases.

Case 1: fs = fn, swinging at the natural frequency Clearly swinging at
the natural frequency requires no actuator work, positive or negative. Completely
passive swinging is work-free and hence optimal. In Fig. 5.1a curve PQRSP is the
passive oscillation corresponding to given amplitude θmax, and therefore optimal.

Case 2: fs < fn, swinging slower than the natural frequency Symmetric
swinging slower than the natural frequency can be achieved with zero actuator
work as well. The optimal strategy is to let the swinging be completely passive.
However, with no intervention, passive swinging would take less time than the
required oscillation period ts, because fs < fn. To use up the extra time to get
a slower swinging frequency, the torque actuator can simply hold the pendulum
motionless for the appropriate amount of time (a total time of 1

fs
− 1

fn
) at the end

of each swing. Since the natural oscillatory motion has zero velocity at the end
of each swing, the motor does not have to perform mechanical work to bring the
velocity to zero. All it has to do is provide some additional torque to hold the
pendulum at rest at one of its extreme positions. Thus in Fig. 5.1b, the trajectory
PQRSP is again the optimal trajectory, except that the pendulum spends some
time at points P and R.

Case 3: fs > fn, swinging faster than the natural frequency Swinging
faster than natural frequency requires non-zero work. We claim that the work-
optimal strategy corresponding to a specified amplitude θmax is ABCDFGA, as
shown in Fig. 5.1c. In this work-optimal strategy, the pendulum is momentarily at
rest at state A. The torque actuator impulsively accelerates the pendulum to state
B — a finite change in velocity in infinitesimal time. The pendulum then swings
passively from state B to state C. This passive swing, because it happens with a
higher speed, covers the same oscillation amplitude in less time than the ellipse
directly connecting states A and D — so that the appropriate high frequency fs

can be achieved. When θ = −θmax is reached, the trajectory discontinuously jumps
to state A and so on.

In summary, we claim that the optimal motion has basically passive motions
BC and FG for all time but for brief periods at the beginning and end of a swing
when there is rapid acceleration and deceleration. It is at these brief periods that
all the work is done and all the cost is incurred.



97

How do we prove that this strategy minimizes the positive work? Consider,
for simplicity but with no loss of generality, the problem of going from A to D
with minimum positive work. Let us consider an alternative route from A to D,
suggested by the dotted line in Fig. 5.1. Any such alternate route cannot lie entirely
below ABCD. An alternate route lying entirely below ABCD (that is, one that has
lower θ̇ for every θ) can be shown to have a time duration that would be longer
than of ABCD. Therefore for the alternate route to last for the same duration as
the path ABCD, the alternate route must necessarily go above ABCD by at least
a little bit (or be identical to ABCD).

We shall now show that any such alternate route will necessarily require more
positive work. Note that the concentric ellipses are also constant total energy con-
tours and bigger ellipses correspond to greater energy. Therefore, moving from an
inner ellipse to an outer ellipse requires some positive work (equal to the difference
in their energies). Since the dotted path necessarily touches an outer ellipse, the
pendulum on the dotted path has at some point a higher total energy than it ever
has on ABCD. This means that it required more positive work than ABCD (where
no negative work is performed until the last moment).

Overall, this optimization problem is qualitatively similar to minimizing the
positive work required to move a mass on a frictionless floor through a given
distance in a specified amount of time, starting from rest and ending at rest. The
strategy again is to accelerate impulsively to the required average speed, coast
for the entire distance, and impulsively decelerate to a stop at the last moment.
The key is that the accelerations and the decelerations are impulsive. If they are
not impulsive, the speed of the mass will have to be higher than the (specified)
average speed at some point during the motion — and achieving this higher speed
will require more positive work than simply reaching exactly the average speed
impulsively.

5.3 Analytical expressions for the cost of impulsive work.

We now derive an approximate expression for the cost of the work-optimal swinging
described above. The equations of motion for the passive oscillation of a pendulum
can be solved in closed form in terms of elliptic functions. However, it is easier
and perhaps more enlightening to consider the small amplitude approximation of
the dynamics of the pendulum with a simple harmonic oscillator. The equation
for the approximating simple harmonic oscillator is:

θ̈ + ω2
nθ =

Q(t)

I + mr2
, (5.3)

where ωn =
√

mgr/(I + mr2) and fn = ωn

2π
is the natural frequency of oscillation.

This equation has a family of oscillatory solutions given by θ(t) = θ0 sin (ωnt), each
θ0 corresponding to a different ellipse in the small angle version of Fig. 5.1b,c.
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The positive work done on the path ABCDFG in Fig. 5.1b is simply equal
to twice the energy difference between the inner ellipse motion with swing ampli-
tude θmax and the outer ellipse of which BC and FG are segments. Let the swing
amplitude corresponding to the bigger ellipse (BC-FG) be θb. The passive oscilla-
tory solution corresponding to this ellipse has θ(t) = θb sin ωnt. Since the motion
ABCDFG takes time ts, BC should require a duration ts/2. And θ at C is equal
to θmax. This gives θmax = θb sin (ωnts

4
).

The maximum angular speed corresponding to a constant energy ellipse cor-
responding to θ(t) = θ0 sin ωnt is ωnθ0. The energy corresponding to this con-
stant energy ellipse is equal (up to a constant) to the maximum kinetic energy:
0.5(I +mr2)(ωnθ0)

2. Therefore, the total positive work over ABCDFG is given by:

Wp/ABCDFG = 2 · 1

2
(I + mr2)ω2

n(θ2
b − θ2

max) (5.4)

= mgrθ2
max

(

θ2
b

θ2
max − 1

)

(5.5)

where θb = θmax/ sin (ωnts/4). In Fig. 5.2, we plot the non-dimensional quantities
Wp/ABCDFG/(mgrθ2

max) and fs/fn.
A useful comparison case is work-optimal oscillation in the absence of gravity.

This problem is identical to the problem of moving a block on the frictionless floor
discussed earlier. The positive work of the impulses in this case is given by

Wp/nogravity =
(I + mr2)θ2

maxω
2
s

π2
= mgrθ2

max

4ω2
s

π2ω2
n

. (5.6)

For swing frequencies sufficiently larger than the natural frequency, the cost of
work-optimal leg-swinging in the presence of gravity is essentially different by only
an additive constant from the cost of optimal leg-swinging in the absence of gravity.

We can compare the optimal swinging cost derived above with the cost for an
exactly sinusoidal oscillation at the appropriate frequency fs as derived in Doke
et al. (2005),

Wp/sinusoid = mgrθ2
max

|ω2
n − ω2

s |
ω2

n

. (5.7)

So far, we have considered the cost to be proportional to only positive work.
What happens when we add to this work-cost, a cost for muscle force proportional
to the integral of the force, in this case the torque Q(t):

∫ ts
0
|Q(t)|dt? For swinging

at the natural frequency, the optimal cost will still be equal to zero. For fs < fn,
presumably, there will now be a non-zero optimal cost and the optimal swinging
strategy may not be the same as the work-optimal strategy. On the other hand, for
fs > fn, the new optimal swinging strategy will the same as the work-minimizing
strategy (as perhaps alluded to in Kuo, 2001). The optimal energetic cost will now
have an extra component proportional to the integral of the impulsive torques.
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the ratio of swing frequency and natural frequency ωs
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. Three cases are shown.

Solid curve is the cost of work–minimizing strategy in the presence of gravity.
Thick long–dashed curve is work–minimizing in the absence of gravity. Thin short–
dashed curve is the cost of a sinusoidal oscillation at the required frequency.

5.4 Effect of tendons

We will now briefly discuss the effect that elastic tendons might have on the ener-
getics of swinging the leg. The mechanical system in Fig. 5.1a can be augmented
with a torsional spring (tendon) in series with the torque motor (muscle). The
mechanical system shown in Fig. 5.3b is formally equivalent to the small angle
approximation of such a mechanical system. The mass M in Fig. 5.3b corresponds
to the rotational inertia about the pivot of the pendulum in Fig. 5.1a. Other sys-
tem components in the pendulum model have similar obvious analogs in Fig. 5.3b.
Here, the tendon is represented as a linear spring in series with the muscle, which
is now represented as a linear telescoping actuator. Gravity can be treated as a
spring of effective stiffness kg in parallel with the muscle. Absence of gravity can
be studied by removing this parallel spring from the model, as in Fig. 5.3a.

Discussion of the work-optimal swinging of the mass M in the context of these
models is beyond the scope of this chapter. Instead we will simply consider the
energetic cost required for sinusoidal oscillation of the mass. Further, we will
consider only the no-gravity case in detail. Assume that the motion of the mass is
sinusoidal with amplitude A and frequency ωs/(2π): xm(t) = A sin(ωst). Noting
that the equation of motion for the mass is mẍm + k(xm − xf ) = 0, we have

xf =
A(k − Mω2

s)

k
sin(ωst) (5.8)
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The positive work performed by the muscle over a single oscillation is given by

W+
muscle =

∫ 2π
ωs

0

[Fẋf ]
+dt (5.9)

=

∫ 2π
ωs

0

[MẍM ẋf ]
+dt (5.10)

=

∫ 2π
ωs

0

[

MA2

k
ω3

s(k − Mω2
s) sin(ωst) cos(ωst)

]+

dt (5.11)

= MA2ω2
s

∣

∣

∣

∣

1 − Mω2
s

k

∣

∣

∣

∣

(5.12)

As would be expected, the energetic cost per oscillation is zero when ωs =
√

k/M , the natural frequency of the spring-mass system. But more significantly,

we see that for large swing frequencies ωs >>
√

k/M , the positive work per swing
scales like ω4

s . Thus the positive work increases much faster with the frequency
than in the no-tendon case discussed earlier, in which the cost per swing scales like
ω2

s (Eq. 5.6).
The key observation here is that the positive work done by just the muscle can

be (and is) very different from the total work done on the mass (by the muscle-
tendon complex). The total work performed on the mass is given by

W+
total over one period =

∫ 2π
ωs

0

[Fẋm]+dt (5.13)

=

∫ 2π
ωs

0

[MẍM ẋm]+dt (5.14)

=

∫ 2π
ωs

0

[

MA2ω3
s sin(ωst) cos(ωst)

]+
dt (5.15)

= MA2ω2
s (5.16)

From Eq. 5.12 and Eq. 5.16, we see that the muscle work scales differently from
the total work on the leg. Taking the ratio of these two quantities,

Wmuscle

Wtotal

=

∣

∣

∣

∣

Mω2
s

k
− 1

∣

∣

∣

∣

(5.17)

Eq. 5.17 shows that for sufficiently high values of ωs, the positive muscle work
can far exceed the total positive work on the leg. This suggests (as Alexander re-
marks elsewhere) that springs in series with the muscles can either be energetically
beneficial or be energetically detrimental depending on the operating frequency
range relative to the natural frequency of the system.

With the inclusion of gravity (Fig. 5.3b), there are two key “natural frequen-
cies”. The first natural frequency ωn1 =

√

kg/M is due to gravity acting in isola-
tion when the muscle not activated (and therefore the spring is slack). The second
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natural frequency ωn2 =
√

(k + kg)/M is with the muscle activated isometrically
(no change in length), so that the two springs act in parallel. When the swing
frequency is sufficiently higher than this second frequency, we suppose that the
energetic cost per oscillation will scale like ω4

s as in the no-gravity case discussed
above.

5.5 Discussion

There is electromyographic evidence that during walking (Basmajian and De Luca,
1985) and during isolated leg-swingin (Doke et al., 2005), the swing-leg muscle
activity is large at the beginning and end of the swing phase, but relatively small
during most of the swing phase. This muscle activation strategy seems similar to
the work-optimal strategy discussed here in the absence of tendons. On the other
hand, we note that muscles act like low-pass filters and impulsive forces are not
really possible.

Doke et al. (2005) has pointed out that positive work alone cannot explain the
rapidity of the rise in metabolic cost as a function of frequency. And that the
rapid increase in metabolic cost could be explained with a dependence of cost on
a higher derivative of force. To support these conjectures, subjects were asked
to swing their leg at various frequency-amplitude combinations that ensure that
the total work done on the leg is approximately a constant. It was found that
although the total work rate on the leg was kept constant, the metabolic rate
still increased with frequency. While this result is indeed consistent with a cost
proportional to the rapidity of the changes in muscle forces, it is also consistent
with the behavior of a work-based energetic cost in the presence of tendons, as
discussed in the previous section (muscle work can be much more than the work
on the leg). Eq. 5.17 indicates that when the total work is kept a constant, the
muscle work increases with the second power of frequency — similar to the ω2.5

s

suggested by Doke. Of course, for this purely work-based theory to be relevant,
recall that the swing frequencies need to be sufficiently higher than the effective
natural frequency

√

(kg + k)/m.
From the data in Doke et al. (2005), we can determine the ratio of the total

work on the leg and the metabolic cost. This ratio is around 0.1 — this number can
be treated as an upper bound on the muscle efficiency if there were no tendons (no
spring work). This unusually low muscle efficiency can then be explained by a cost
for rapid force production. But as before, this unusually low “apparent” muscle
efficiency can, in theory, be explained by the presence of tendons, since the muscle
work can be much higher than the actual work on the leg at high enough swing
frequencies. We conclude that distinguishing the energetic costs of work and force
production requires that the experimental swing frequencies not be much higher
than, and preferably lower than, the effective natural frequency of the human leg
ωn2 =

√

(kg + k)/m.
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Figure 5.3: Leg-swinging with tendon springs (a) shows a model for the leg
in the absence of gravity. (b) gravity in a simple pendulum model is equivalent to
a sping in parallel to the muscles.



Chapter 6
Power laws: why cost of swinging is
approximately a constant proportion of
the total cost of locomotion.
6.1 Introduction

The total metabolic cost of legged locomotion can be approximately partitioned
into two parts – one corresponding to the energy required to swing the legs, and
another for the work and force of the leg muscles during stance. As an animal
moves faster, both the stance cost and the leg-swing cost typically increase. Marsh
et al. (2004) show that as the speed of locomotion (in running turkeys) is varied,
the ratio of these two cost components is approximately constant, as measured by
blood flow to the respective muscles1.

Assuming a generic power law relation for each of the cost components, we show
that the constancy of the ratio of stance cost and leg-swing cost can be qualitatively
explained by metabolic cost optimization. This constancy of the ratio follows from
a general property of power laws, and is independent of any specific details of the
actual power laws assumed for the metabolic cost components.

6.2 Optimal trade-off between two power laws

g
2

 = b x
q

x0

0

g = g
1

+g
2

g
1

 = a x
p

x
opt

Figure 6.1: Minimum of the sum of two power law functions.

First we present an elementary calculus result about power laws we shall use
later. Why are we interested in power laws? Because as we will discuss later, the
individual cost components seem to be approximated well by power laws.

1Muscles that are active during a leg’s stance phase seem to be largely inactive
during the swing phase and vice versa.
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Consider two functions g1(x) and g2(x) (Fig. 6.1). g1 is a simple increasing
power-law function of x: that is, g1(x) = axp with p > 0. And g2(x) is a simple
decreasing power-law function of x: that is, g1(x) = bxq with q < 0. Clearly
x = 0 minimizes g1, and x = ∞ minimizes g2. The sum of these two functions,
g(x) = g1(x) + g2(x), has a minimum xopt somewhere in between. xopt is obtained
by differentiating g with respect to x and setting the result equal to zero:

dg

dx
= apxp−1

opt + bqxq−1
opt = 0 (6.1)

The above equation is easily solved for xopt. Multiplying Eq. 6.1 by xopt and
rearranging, we obtain an expression for the ratio of g1 and g2 at xopt.

apxp
opt + bqxq

opt = 0

axp
opt

bxq
opt

=
−p

q
=

g1(xopt)

g2(xopt)
(6.2)

So the ratio of the two components axp
opt and bxq

opt is −p/q, a constant that does
not depend on the weights a and b.

For example, the ratio of the first and second term at the minimum of F1(x) =
0.01x−2 + 1000x4 is exactly the same (equal to 2

4
= 1

2
) as the ratio of the first

and second term at the minimum of F2(x) = 1000x−2 + 0.01x4, despite the widely
different weights on the power laws.

6.3 Metabolic cost components can be approximated by
power laws

The basic hypothesis is that animals move in a manner that minimizes the metabolic
cost of locomotion per unit distance. The relevant cost of locomotion Eloc can be
defined as the total metabolic cost during locomotion minus the resting metabolic
cost. As discussed in the introduction above, we model Eloc as the sum of the two
terms, the stance cost Estance and the swing cost Eswing, both per unit distance.
The magnitude of these terms will depend both on the speed v of locomotion and
on the stride rate f , or equivalently, the step-length d. For example, keeping the
speed constant and varying the stride rate, or vice versa, changes the magnitudes
of the costs. While swing cost and stance cost will depend on many other details
of the muscular coordination as well, for simplicity, they can be assumed to be
functions of only the speed and the stride rate. This assumption is equivalent to
using the costs for the gait with optimal muscle-use for a given speed and stride
rate.

In some simple mathematical models of animal mechanics, and in experiments,
the individual cost terms seem to be relatively well-approximated by power laws.
The stance cost per unit distance is of the form:

Estance = b1v
αfβ. (6.3)
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Simple curve-fits to running data (Kram and Taylor, 1990) and simple models
of running (for instance, Equation 2.34 for impulsive running here; see also, Ruina
et al., 2005; Srinivasan and Ruina, 2006) give a power law dependence for the cost.
Also, assuming a metabolic cost proportional to work, maximum force, integral of
force, or any other plausible physical quantity, each separately results in such a
power law for the cost of the so-called step-to-step transition in walking (Eq. 2.11
here and also, Kuo, 2001; Ruina et al., 2005). The power law dependence described
above for the cost of stance can be lost if more than one of these cost mechanisms
(work, force, etc) has a substantial contribution – that is, if we imagine that stance
cost as the sum of two or more cost components.

The swing cost per unit distance is assumed to have the same power-law func-
tional form, Eswing = b2v

γf δ. This is again approximately true, especially for
not-too-small frequencies, as suggested by Doke et al. (2005). Also, our simpler
work-based estimations of the leg-swing cost in the previous chapter, are amenable
to approximation by power laws.

Both simple models of leg-swinging and simple experiments indicate that δ > 0.
i.e., leg-swinging cost at any given speed increases with stride frequency. Similarly,
in reality and in models, for a given speed, Estance decreases with increasing f , so
β < 0. The total cost of locomotion Eloc is given by,

Eloc = Estance + Eswing = b1v
αfβ + b2v

γf δ. (6.4)

6.4 Optimal trade-offs between the stance and leg-swing
cost

For a given velocity v, humans and animals tend to pick the step length fopt that
minimizes their cost of locomotion (Högberg, 1952; Zarrugh et al., 1974; Bertram
and Ruina, 2001; Kuo, 2001). The optimal stride frequency fopt for a given speed
v might be obtained by differentiating Eq. 6.4 with respect to f , and setting it
equal to zero. Thus,

dEloc

df
= βb1v

αfβ−1
opt + δb2v

γf δ−1
opt = 0. (6.5)

Following the derivation of Eq. 6.2, we obtain an expression for the ratio of
Eswing to Estance.

Eswing(v, fopt)

Estance(v, fopt)
=

b1v
αfβ

b2vγf δ
= − δ

β
. (6.6)

The ratio Eswing/Estance is a positive constant because δ > 0 and β < 0, as noted
earlier. Since the ratio Eswing/Estance depends only on the constant exponents of
the step length in the power laws, the constant is independent of the speed v,
weighting coefficients b1, b2, or the exponents of v.
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From Eq. 6.6 we deduce that Estance/Eloc = β/(β − δ) i.e., the simple model
predicts that the stance cost (and the swing cost) are constant fractions of the
total cost as the speed is varied. The stance cost and swing cost increase in
direct proportion to the total cost. In particular, if the costs were proportional to
mechanical work of the muscles, positive work during stance should be proportional
to the total metabolic cost.

6.5 Discussion

Running turkeys. In a recent experimental study, Marsh et al. (2004) per-
formed detailed measurements of blood flow to various muscles in turkeys running
at different speeds. They found that the leg-muscles that are most active dur-
ing stance are relatively inactive during swing, and vice versa. This observation
enabled them to estimate the ratio of the metabolic cost for these two activities
from the ratio of the total blood flow to the muscles contributing to leg swing and
stance, respectively. They found this ratio to be roughly constant (approximately
equal to 1/3) as the velocity is varied, just as our simple theory predicts.

Interestingly enough, the simple energetic models of both walking and running
give the same fraction Eswing/Estance = 1/3. For walking, the simplest model
suggests β = −1 (Kuo, 2001; Ruina et al., 2005; Srinivasan and Ruina, 2006, and
Chapters 2 and 3 here) and for running the simplest model again suggests β =
−1 (Ruina et al., 2005). Doke et al. (2005) gives the scaling for leg swing (δ = 3).
Using these numbers in Eq. 6.6, we again obtain Eswing/Estance = −δ/β = 1/3.
The quality of these predictions is perhaps too good for the simple model here,
and more experimental data is needed to test the validity of the simple explanation
here.

External work and metabolic cost in walking and running The so-called
“external work” is often used as an approximate estimate of the work done by the
legs during stance (Cavagna, 1975, also see relevant section in chapter 2). We could
check if this estimate of stance cost is proportional to the total metabolic cost as
the speed of locomotion is changed. Experiments in running have shown that the
“external work” is indeed approximately proportional to the total metabolic cost as
the speed is varied (Cavagna et al., 1964, and Figure 2.7). The situation for walking
seems to be similar. Re-analyzing published data (Bobbert, 1960; Kuo et al., 2005)
we find that the there is not as good a proportionality between the measured
metabolic cost and the external work as the speed is increased (Fig. 2.4). However,
in both cases, the actual constant of (approximate) proportionality suggests an
excessively high muscle efficiency (again Fig. 2.7), thus implying an elastic work
component (much more so in running than in walking).

When costs are not quite power laws. We must emphasize that the power
law description of the cost is merely a crude approximation. More complete models
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of cost, that do not exactly give power laws, might show deviations from propor-
tionality (e.g., 10-15% deviation in walking, Kuo, 2001)) over the relevant range
of speeds.

6.6 Conclusions

We have presented a simple way of understanding the apparently constant parti-
tioning of the metabolic cost of legged locomotion suggested by some experiments.
This explanation is especially powerful as it requires very little information about
the specific trends in the metabolic costs.



Chapter 7
Conclusions
We have presented arguably the simplest first-principles models of the various as-
pects of legged locomotion. A key contribution is the presentation of a minimal
model of a bipedal animal (chapters 2–3 and Alexander, 1980), which could lo-
comote in a variety of different ways. When appropriately nondimensionalized,
the minimal model has exactly zero parameters. This makes the model amenable
to extensive analysis: the chapters 2–4 were essentially an elaboration of what
happens when this minimal animal moves in specific ways, and how this minimal
animal ought to move if it wished to move in a manner that minimized the work
done by its muscles.

In particular, we found that in chapter 2, the classical descriptions of walking
(inverted pendulum walking) and running (impulsive running and the pogostick
model of running) were special cases of this more general minimal model. We
then used the model to describe some less familiar gaits such as level walking
and skipping. We found that if the only gaits the animal could use were walking,
running, skipping, or level-walking – it was best to walk when going slow, and run
when going faster, and maybe level-walk at a small range of intermediate speeds.
Skipping was always a little worse than running.

We then formulated a more general question – which gait among all the periodic
gaits (with a certain reasonable structure) the minimal model is capable of, requires
the least positive work for a given speed and step-length. This question and its
answer in Chapter 3 was another key contribution of this thesis. Alexander had
explored this question with a three parameter family of gaits that was somewhat
based on what animals perform already. We extended this work, answered a more
general question, explored a greater variety – conceptually infinite-dimensional
space – of gaits, not in any significant way informed by experimental observations.

By asking a more general question, we obtained simpler results. Numerical
optimization found that the two classic descriptions of walking and running are
actually two of the three optimal gaits for this minimal model. This is an especially
satisfactory result – the optimization of the simplest model discovers its simplest
special cases as optima. The result is also somewhat amusing because there is no
way anyone could have known, without doing the calculations reported here, that
the simplest descriptions (over 1940 - 1975) of walking and running were actually
energetically optimal in any sense, let alone for the same model.

A curious aside in this story was the discovery of a third (optimal) gait by the
optimization, that we have dubbed the pendular run. While this prediction might
well turn out to be an artifact of the model defects, its discovery is indicative of
the optimization’s ability to generate novel hypotheses.

Discovery of impulsive running by the optimization, for instance, indicates that
elasticity in the leg-muscle-tendons is not necessary for running to energetically
beneficial. And even without elasticity, running should “look” elastic to be ener-
getically optimal. A classic hypothesis in biomechanics was that the smoothest

108



109

level-walking gait would be perfectly optimal. This, we showed in chapter 2, is
far from being the case. Indeed, normal walking and running – especially their
optimal idealizations – while consuming much less energy than the smoother gaits,
are also particularly non-smooth with rapid changes in velocity during some parts
of the stance phase.

We confirmed the results of the extensive numerical optimizations of Chapter
3, by providing an analytical proof of optimality for walking and running in a
tractable simplification of the minimal model (chapter 4). It turns out that we
can obtain some insight into perhaps the fundamental question in the study of
bipedal locomotion (why are particular gaits preferred over others?) by essentially
elementary, and somewhat informal, mathematical arguments.

The structure of the optimal solutions described in Chapters 3, 4, 5 serves
as a textitpost hoc rationalization of a recent trend in robotics, especially the
sub-field of robotics that concerns itself with the development of legged robots
– the development of the so-called passive dynamic robots. Pioneered by Tad
McGeer (McGeer, 1990b,c,d, 1992), these passive dynamic robots were initially
designed as going downhill powered only by gravity, but have since been minimally
modified to walk on level ground (Collins et al., 2005). The first robots were
completely passive (powered by gravity) and the more recent robots have largely
passive motions, with minimal injections of motor power. One motivation for the
building of such robots is energy efficiency. However, why having largely passive
motions (in a periodic motion that is not completely passive) would be energy
efficient is not obvious a priori. That passivity might imply energy efficiency was
initially motivated by observation of human gait (Mochon and McMahon, 1980)
and later experimentally demonstrated by the building of these robots. It is in
this context that we must note that the minimum-work solution (Chapters 3, 4,
5) in this thesis all consist of largely passive motions with brief periods where
all the work is performed (impulsively). It is likely that some of the energetic
benefits of these optimal solutions are inherited by the passive robots by their
designers requiring most of the motion to be passive. Thus rather than attributing
the energetic economy of the passive dynamic robots to some imagined but ill-
defined notion of “natural dynamics” (by which passive dynamics is meant), their
energy efficiency should be attributed to similarity to work-optimal motions. For
instance, it might be possible to invent a world, where energy-optimal motions are
far away from work-optimal motions, where passive dynamics would be far from
being efficient – perhaps a world in which the energetic cost is dominated by a cost
for force.

In summary, we hope that the analysis and appreciation of the simple models
presented here will provide a minimal template to base our more complex thoughts
upon, either for the building of robots, or more usefully, for the understanding,
augmentation and modification of human and animal performance.



Chapter 8
Future work
8.1 Less restrictive calculations with the minimal model

In Chapter 3, for combinatorial simplicity of the optimal control problem, we con-
sidered only gaits with certain structure. For instance, we only considered gaits
that had no double stance. We could relax this restriction, and repeat the opti-
mizations including gaits with double stance. We also assumed that the two legs
of the bipedal animal alternately go through the same motions. This assumption
of symmetry between the two legs rules out gaits in which the two legs perform
asymmetrically, as in unilateral skipping (see Chapter 2.5). We also ruled out
higher periodic gaits such bilateral skipping. We believe that the relaxation of all
these constraints will produce no change in the optimal gaits except perhaps near
the gait-transition region (around V = 1), where the metabolic cost landscape
seems quite flat (that is, many gaits have very similar costs).

Although we believe that the relaxation of these constraints will produce no
changes in the optimal solutions, we now briefly discuss how to relax these con-
straints. There are many ways to relax these restrictions on the structure of the
gaits, but the relaxation must be done carefully. One way to relax these restrictions
is to first enumerate separately each of the various distinct permutations of the
flight, single stances and double stances. And then one can seek the optimal gait
among gaits that have a particular permutation of stance and flight phases. Such
a combinatorial approach is likely to get out of hand very quickly with the depth
of the explored tree of possibilities. Another (less combinatorial) way to describe
the structure of the various stance and flight phases is to specify the start and end
times of each of the stance phases. But such parametrization of the phase-structure
of a gait has its own issues. Using a separate grid to represent each of the leg-forces
is no longer a good idea: relative movement of the two grids will mean that even
a constant step-size integrator will be “inconsistent” (that is, a different sequence
of arithmetic operations will be performed for arbitrarily small changes in some
parameter). A solution to this problem might be to use high-accuracy integrators
(say, using Taylor series methods) in conjunction with high-degree splines. Or
avoid discretization using grids entirely and use C∞ approximations such as those
due to Fourier or Chebyschev as appropriate.

8.2 More calculations with the minimal model

We have clearly not exhausted all the possibly interesting calculations that could be
performed with the minimal model. We have considered only steady locomotion on
level ground. It would be interesting to see how predictions about gait transitions
change with the slope of the ground. One could also use the model in the context
of actually travelling a given distance in a given amount of time — starting from
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rest and ending at rest. Of course, if we are trying to solve this problem for exactly
the minimal model, one needs to impose further constraints such as average step
lengths as in Chapter 3.

8.2.1 Optimal state-based feedback control

Even in steady locomotion, animals’ gaits are not strictly periodic (Chapter 2)
— external perturbations of various kinds need to be constantly corrected for.
The principle of energetic optimality can be applied to these incessant corrective
actions. How does one actuate the legs when knocked off a nominal optimal tra-
jectory (such as inverted pendulum walking) so as to still minimize the cost per
unit distance, but given the current perturbed state. The answer to this question
will be a “control policy” or a state-based feedback control. The solution method
(in the absence of incessant stochastic perturbations) will involve some numerical
implementation of dynamic programming (Bertsekas, 1995; Morimoto et al., 2003).
On the other hand, much of the stabilizing control authority in legged locomotion
probably comes from appropriate foot-placement (Bauby and Kuo, 2000; Carver,
2003). So it is not clear if an attempt to find the optimal corrective action will be
particularly insightful.

8.2.2 Adding force and power constraints

The minimal model can be minimally modified in a number of ways. For example,
the minimal model had conceptually no force bounds — that is, infinite forces
are possible. And this possibility of infinite forces were taken advantage of by
three optimal gaits (inverted pendulum walking, etc.). In human walking and
running, the leg-forces hardly exceed a small multiple of the body-weight. We
could specify such an upper bound on the force, and compute the optimal gaits once
again. Presumably, walking and running will still be optimal. But the impulses
in inverted pendulum walking and impulsive running would be replaced by much
lower forces — and the optimal gaits would be a little smoother. Constraints on
the force-rate or the leg-power would presumably have a similar smoothing effect.
In particular, we believe that such constraints would discover a running gait that
would superficially look compliant and springy even though the mechanical model
has no springs in it. Further, we believe that an extended double stance in walking
might be energetically favored under these constraints, as it is in human walking.

8.2.3 Adding a cost for force

Alternative to (or in addition to) adding various constraints on force, we could
modify the model of metabolic cost to incorporate a cost for force instead of a
constraint on the force as in Equation 1.2 or variations thereof. A high-enough
cost for high forces would have a smoothing effect on the optimal gaits, similar
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to the smoothing effects of constraints on the leg-forces, presumably discovering a
compliant running gait and a walking gait with an extended double stance phase.

8.2.4 Tendons in series with muscles

Real animal legs have tendons in series with the muscles. To model these tendons,
we might add a spring in series with the telescoping actuator. But adding just
a spring to the minimal model without appropriately adding a cost for force or
adding passive dissipative elements will result in perfectly optimal zero-cost run-
ning motions (see 2.4.2). Dissipation is mechanically messy to incorporate into the
model — and there is not much evidence for passive (non-collisional) dissipative
mechanisms in a human leg (viscous dissipation is more likely dominant in a small
insect). It seems more appropriate to add a cost for force instead to rule out passive
cost-free motions. But what value of stiffness do we use for the spring? Perhaps
we can use the effective spring constant displayed in Figure 2.8. The spring in
series with the actuator will probably make walking a little more compliant. On
the other hand, it would be interesting to see if running is indeed (as conjectured
by some) a gait in which close-to-zero work is done by the muscle, most of the
work done by the tendons, with most of the metabolic cost being due to the cost
for isometric force.

8.3 A kinematically accurate minimal model of a bipedal
animal

It is a common observation that we do not feel as tired standing with straight legs
as we do standing with bent knees. Clearly standing requires the same vertical
force (= mg) irrespective of how bent the legs are. However the kinematics of the
knee is such that a straighter leg requires a much smaller knee-torque and hence
much smaller forces from the muscles spanning the knee joint. This means that
when the leg is straight, the cost of muscle force is likely to be small (Kuo et al.,
2005).

Note that the addition of springs to the minimal model is likely to tilt the bal-
ance in favor of compliant gaits like running Alexander (1992). It seems plausible
that the addition of a knee to the minimal model is likely to promote a straight-
legged walking gait even in the presence of springs in series with the muscles.

So perhaps the minimal model that will capture most of the energetic aspects
of human locomotion will be one that has a point-mass body, massless legs with
actuated knees and ankles, springs in series with the actuators at the knee and the
ankle, and a metabolic cost model that provides a cost for both work and force. If
indeed energetic optimization with this model discovers walking and running, and
predicts their respective metabolic costs quite accurately, we have reason to hope
that it will explain why skipping is preferred by children and astronauts, but is
more expensive than walking and running for human adults on earth.
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